Linear transformations

Theorem 3.1   Let $ T: X\rightarrow Y$ linear transformation. TFAE (The following are equivalent)
  1. $ T$ is continuous at 0.
  2. $ T$ is continuous at any point $ x\in X$.
  3. If $ V\subseteq Y$ is an open set containing 0 then $ T^{-1}(V)$ contains an open set $ U\subseteq X$ containing 0.
  4. $ T$ maps bounded sets to bounded sets. i.e., If $ B\subseteq X$ is bounded then $ TB\subseteq Y$ is bounded.
  5. $ T$ is uniformly continuous.
  6. $ A=\sup\{\Vert Tx\Vert: \Vert x\Vert\leq 1\}<\infty$.
  7. $ B=\sup\left\{\Vert Tx\Vert: \Vert x\Vert= 1\right\}<\infty$.
  8. $ C=\sup\left\{\frac{\Vert Tx\Vert}{\Vert x\Vert}:x\neq 0\right\}<\infty$.
  9. $ D=\inf\left\{M: \Vert Tx\Vert\leq M \Vert x\Vert,\, \forall x\in X\right\}<\infty$.
More over, $ A=B=C=D$ and this number is called as norm of $ T$, denoted by $ \Vert T\Vert$.

$ B(X,Y)=\{T:X\rightarrow Y: T$    is bounded and linear $ \}$ $ B(X)=B(X,X)$

Example 4 (Identity Operator)  

Example 5 (Unilateral, Bilateral shifts)   Right, Left shifts

Example 6 (Multiplication)  

Example 7 (Integral)  

Define convolution of two real valued Lebesgue measurable functions $ f,g: \mathbb{R}^n\rightarrow \mathbb{R}$ as

$\displaystyle (f*g)(x)=\int_{\mathbb{R}^n}(f(y)g(x-y)d\mu(y)$

whenever the integral makes sense. The following inequality gives certain further information regarding the existence of the above defined integral.

Theorem 3.2 (Youngs inequality)   Let $ 1\leq p\leq r\leq \infty$ such that $ \frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$. Suppose $ f\in L^p(\mathbb{R}^n)$ and $ g\in L^q(\mathbb{R}^n)$ then

$\displaystyle \Vert f*g\Vert _r\leq \Vert f\Vert _p\Vert g\Vert _q.$

Let us look at the inequality at certain special values $ p$, $ q$ and $ r$.

Example 8 (Convolution Operator)   From the above discussion by fixing a $ g\in L^1(\mathbb{R}^n)$, we can view convolution as an operator $ C:L^p(\mathbb{R}^n)\rightarrow L^p(\mathbb{R}^n)$ defined as

$\displaystyle C(f)(x)=\int_{\mathbb{R}^n}(f(y)g(x-y)d\mu(y)$

By Young's inequality $ \Vert Cf\Vert\leq \Vert f\Vert _p\Vert g\Vert _1$ Hence $ \Vert C\Vert\leq \Vert g\Vert _1$

The same convolution operator can be recognized as an integral operator as well with kernel $ k(x,y)=g(x-y)$. With the same kernel, for $ p=2$ this appears like a Hilbert-Schmidt operator. Let us first consider Schur's condition

$\displaystyle C_1={\esssup}_{x\in \mathbb{R}^n}\int_{\mathbb{R}^n}\vert g(x-y)\vert d\mu(y)<\infty$

$\displaystyle C_1={\esssup}_{y\in\mathbb{R}^n}\int_{\mathbb{R}^n}\vert g(x-y)\vert d\mu(x)<\infty $

But, even if $ g\in L^2(\mathbb{R}^n)$,

$\displaystyle \Vert K\Vert _2^2=\int_{\mathbb{R}^n}\int_{\mathbb{R}^n}\vert g(x-y)\vert^2d\mu(y)d\mu(x)=\infty $

suku 2013-09-27