Infinite dimensional vector space

Definition 2 (TVS, nls, Banach space, ips, Hilbert space)  

Example 2 (Sequence space)   For $ 1\leq p\leq q\leq \infty$,

$\displaystyle c_{00}\subsetneq, l^p\subsetneq l^q\subsetneq c_0 \subsetneq c\subsetneq l^\infty.$

Example 3 (Function space)   Let $ X$ be a compact set $ (C(X), \Vert~\Vert _\infty)$, $ (C^n(X), \Vert~\Vert _\infty)$

Definition 3 (Measure space)   Let $ X$ be a set and % latex2html id marker 937
$ \Omega$ is a $ \sigma$-algebra on $ X$ and $ \mu$ is a measure. Then for $ 1\leq p <\infty$,

% latex2html id marker 947
$\displaystyle L^p(X,\Omega, \mu):=\left\{f:X\rightarrow \mathbb{C} \middle\vert \int_X \vert f\vert^pd\mu < \infty \right\}$

is a Banach space with respect to the norm, denoted by $ \Vert~\Vert _p$, called as ``$ p$-norm", and defined as

$\displaystyle \Vert f\Vert _p =\left(\int_X \vert f\vert^pd\mu \right)^\frac{1}{p}.$

For $ p=\infty$ case,

% latex2html id marker 957
$\displaystyle L^\infty(X,\Omega, \mu):=\left\{f:X\r...
...arrow \mathbb{C} \middle\vert \inf\{c: \mu\{x\in X:f(x)>c\}=0 \}<\infty\right\}$

is also a Banach space with respect to the norm, denoted by $ \Vert~\Vert _\infty$, called as ``essential supremum", and defined as

$\displaystyle \Vert f\Vert _\infty =\inf\Big\{c: \mu\{x:\vert f(x)\vert>c\}=0 \Big\}.$

Note that those measurable functions, for which we can define the norm, are precisely collected in the appropriate space.

Theorem 2.1   Let % latex2html id marker 968
$ (X,\Omega, \mu)$ be a measure space and $ \mu(X)$ is a finite positive number. Suppose $ 1< p < q < \infty$ and % latex2html id marker 974
$ f\in L^p(X,\Omega, \mu)$. Then

$\displaystyle \frac{1}{\mu(X)^\frac{1}{p}}\Vert f\Vert _q\leq \frac{1}{\mu(X)^\frac{1}{q}}\Vert f\Vert _p$

$\displaystyle \Vert f\Vert _q\leq \mu(X)^{\left(\frac{1}{p}-\frac{1}{q}\right)}\Vert f\Vert _p$

Proof. Use Holders inequality or Jensen's inequality with $ \vert f\vert^p\in L^1$ and $ 1\in L^\infty$ with $ p'=\frac{q}{p}>1$ $ \qedsymbol$

From the above discussion, when $ X$ has positive finite measure (ie $ \mu(x)<\infty$), for $ 1 <p \leq q < \infty$,

$\displaystyle L^\infty \subsetneq, L^p\subsetneq L^q\subsetneq L^1.$

Remark 1   Among the above $ L^p$ spaces, $ L^2$ is a Hilbert space.

suku 2013-09-27