Adjoint and types of operator

Let $ H, K$ are complex Hilbert spaces. Let $ A: H\rightarrow K$ be a bounded linear operator. Fix $ k\in K$, define $ L_k: H\rightarrow \mathbb{C}$ as $ L_k(h)=\langle Ah, k\rangle$ for all $ h\in H$. Note that

self adjoint, normal, unitary, isometry, partial isometry


suku 2013-09-27