Linear maps on finite dimensional vector spaces

Let $ V$ and $ W$ are finite dimensional vector spaces such that dim $ V= n$ and dim $ W=n$

Definition 1 (Linear Operator)  

Example 1  

Theorem 1.1   Let $ S,T\in L(V,W)$ such that $ S(v_i)=T(v_i)$ for every element of the basis then $ S(x)= T(x)$ for every $ x\in V$.

Theorem 1.2   Let $ V$ be a finite dimensional vector space. Let

$\displaystyle B=\{v_1,v_2,\dots,v_n\}$

be a basis of $ V$ and $ \{w_1, w_2, \dots, w_n\}$ be arbitrary elements of $ W$. Then there exists a unique $ T\in L(V,W)$ such that $ T(v_i)=w_i$ for $ i=1,2,\dots, n$.

Exercise 1   Let $ v\in V$ and $ w\in W$. Find the necessary and sufficient conditions for the existence of a linear map $ T\in L(V,W)$ such that $ T(v)=w$.



suku 2013-09-27