
On Structural Parameterizations of the
Matching Cut Problem

N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare?

Department of Computer Science and Engineering,
IIT Hyderabad, Hyderabad, India

{aravind,subruk,cs14resch01002}@iith.ac.in

Abstract. In an undirected graph, a matching cut is a partition of ver-
tices into two sets such that the edges across the sets induce a matching.
The matching cut problem is the problem of deciding whether a given
graph has a matching cut. The matching cut problem can be expressed
using a monadic second-order logic (MSOL) formula and hence is solv-
able in linear time for graphs with bounded tree-width. However, this
approach leads to a running time of f(φ, t)nO(1), where φ is the length
of the MSOL formula, t is the tree-width of the graph and n is the number
of vertices of the graph.
In [Theoretical Computer Science, 2016], Kratsch and Le asked to give a
single exponential algorithm for the matching cut problem with tree-
width alone as the parameter. We answer this question by giving a
2O(t)nO(1) time algorithm. We also show the tractability of the matching
cut problem when parameterized by neighborhood diversity and other
structural parameters.

Keywords: Matching Cut, Decomposable Graphs, Parameterized Algorithm

1 Introduction

Consider an undirected graph G = (V,E) such that |V | = n. An edge cut is a
minimal edge set S ⊆ E such that the removal of S from the graph increase the
number of components in the graph. A matching is an edge set such that no
two edges in the set have a common end point. A matching cut is an edge cut
which is also a matching. The matching cut problem is the decision problem of
determining whether a given graph G has a matching cut.

The matching cut problem was first introduced by Graham in [1], in the name
of decomposable graphs. Farley and Proskurowski [2] pointed out the applications
of the matching cut problem in computer networks – in studying the networks
which are immune to failures of non-adjacent links. Patrignani and Pizzonia [3]
pointed out the applications of the matching cut problem in graph drawing. They
refer to a method of graph drawing, where one starts with a degenerate drawing
where all the vertices and edges are at the same point. At each step, the vertices

? Author is a faculty member of University of Hyderabad.

in the drawing are partitioned and progressively the drawing approaches the
original graph. In this regard, the cut involving the non-adjacent edges (matching
cut) yields a more efficient and effective performance.

The matching cut problem is NP-Complete for the following graph classes:

– Graphs with maximum degree 4 (Chvátal [4], Patrignani and Pizzonia [3]).
– Bipartite graphs with one partite set has maximum degree 3 and the other

partite set has maximum degree 4 (Le and Randerath [5]).
– Planar graphs with maximum degree 4 and planar graphs with girth 5 (Bon-

sma [6]).
– K1,4-free graphs with maximum degree 4 (inferred from the reduction in [4]).

The matching cut problem has polynomial time algorithms for the following
graph classes:

– Graphs with maximum degree 3 (Chvátal [4]).
– Line graphs (Moshi [7]).
– Graphs without chordless cycles of length 5 or more (Moshi [7]).
– Series parallel graphs (Patrignani and Pizzonia [3]).
– Claw-free graphs, cographs, graphs with bounded tree-width and graphs with

bounded clique-width (Bonsma [6]).
– Graphs with diameter 2 (Borowiecki and Jesse-Józefczyk [8]).
– (K1,4,K1,4 + e)-free graphs (Kratsch and Le [9]).

When the graph G has degree at least 2, the matching cut problem in G is
equivalent to the problem of deciding whether the line graph of G has a stable cut
set. A stable cut set is a set S ⊆ V of independent vertices, such that the removal
of S from the graph G increases the number of components of G. Algorithmic
aspects of stable cut set of line graphs have been studied in [5, 10–12].

Recently, Kratsch and Le [9] presented a 2n/2nO(1) time algorithm for the
matching cut problem using branching techniques. They also showed that the
matching cut problem is tractable for graphs with bounded vertex cover.

The matching cut problem can be expressed using a monadic second-order
logic (MSOL) formula [6] and is hence solvable in linear time for graphs with
bounded tree-width. This approach leads to an algorithm with running time
f(φ, t)nO(1), where φ is the length of the MSOL formula and t is the tree-
width of the graph. However, for most graphs, the function f(φ, t) is a tower of
exponentials of height φ. That raises the following question, asked in [9]: Can
we have an algorithm where f is a single exponential function?

In this paper, we answer the above question by giving a 2O(t)nO(1) algo-
rithm for the matching cut problem, where t is the tree-width of the graph. We
also show that the matching cut problem is tractable for graphs with bounded
neighborhood diversity and other structural parameters.

2 Preliminaries

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed and
finite alphabet. For (x, k) ∈ Σ∗×N, k is referred to as the parameter. A param-
eterized problem L is fixed parameter tractable (FPT) if there is an algorithm

A, a computable non-decreasing function f : N→ N and a constant c such that,
given (x, k) ∈ Σ∗ × N the algorithm A correctly decides whether (x, k) ∈ L in
time bounded by f(k).|x|c.

Sometimes, we write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where
poly(n) is a polynomial in n. Two vertices u, v are called neighbors if {u, v} ∈ E,
we say v is a neighbor of u and vice versa. The set of all neighbors of u (open
neighborhood) is denoted by N(u). The closed neighborhood of u, is denoted by
N [u], is defined as N [u] = N(u) ∪ {u}. For a vertex set S ⊆ V , the subgraph
induced by S is denoted by G[S]. For a vertex set S ⊆ V , G\S denotes the
graph G[V \S]. When there is no ambiguity, we use the simpler notations S\x
to denote S\{x} and S ∪ x to denote S ∪ {x}.

3 Graphs with Bounded Tree-width

A tree decomposition of G is a pair (T, {Xi, i ∈ I}), where for i ∈ I, Xi ⊆ V
(usually called bags) and T is a tree with elements of I as the nodes such that:

1. For each vertex v ∈ V , there is an i ∈ I such that v ∈ Xi.
2. For each edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.
3. For each vertex v ∈ V , T [{i ∈ I|v ∈ Xi}] is connected.

The width of the tree decomposition is maxi∈I(|Xi| − 1). The tree-width of G
is the minimum width taken over all tree decompositions of G and we denote
it as t. For more details on tree-width, we refer the reader to [13]. Kloks [14]
introduced nice tree decomposition, which is a tree decomposition where every
node i ∈ I is one of the following types:

1. Leaf node: For a leaf node i, Xi = ∅.
2. Introduce Node: An introduce node i has exactly one child j and there is a

vertex v ∈ V \Xj such that Xi = Xj ∪ {v}.
3. Forget Node: A forget node i has exactly one child j and there is a vertex
v ∈ V \Xi such that Xj = Xi ∪ {v}.

4. Join Node: A join node i has exactly two children j1 and j2 such that Xi =
Xj1 = Xj2 .

Every graph G has a nice tree decomposition with |I| = O(n) nodes and width
equal to the tree-width of G. Moreover, such a decomposition can be found in
linear time if the tree-width is bounded [14].

Now we present an O∗(2O(t)) time algorithm for the matching cut problem.
The algorithm we present is based on dynamic programming technique on the
nice tree decomposition.

The matching cut problem is a graph partitioning problem, where we need
to partition the vertices into two sets A and B such that the edges across the
sets induce a matching. And we denote such a matching cut by (A,B). We use
the following notation in the algorithm.

– i: A node in the tree decomposition.

– Xi: The set of vertices associated with bag at node i.
– G[Xi]: Subgraph induced by Xi.
– Ti: The sub-tree rooted at node i of the tree decomposition. This includes

node i and all its descendants.
– G[Ti]: Subgraph induced by the vertices in node i and all its descendants.

Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi, we say that the parti-
tion Ψ is legal at node i if it satisfies the following conditions (?):

1. Every vertex of A1 (respectively B1) has exactly one neighbor in B1

(resp. A1) and no neighbors in B2 ∪B3 (resp. A2 ∪A3).
2. Every vertex of A2 ∪A3 (resp. B2 ∪B3) has no neighbors in any of the
Bi’s (resp. Ai’s).

We say that a legal partition ψ is valid for the node i if there exists a
matching cut (A,B) of G[Ti] such that the following conditions (??) hold:

1. The Ai’s are contained in A and the Bi’s are contained in B.
2. Every vertex of A1 (resp. B1) has a matching cut neighbor in B1 (resp.
A1).

3. Every vertex of A2 ∪B2 has a matching cut neighbor in G[Ti] \Xi.
4. The vertices of A3 ∪ B3 are not part of the cut-edges, i.e. every vertex

of A3 (resp. B3) has no neighbor in B (resp. A).

A matching cut is empty if there are no edges in cut. We say that a valid
partition Ψ of Xi is locally empty in G[Ti], if every matching cut of G[Ti] ex-
tending ψ (i.e. satisfying ??) is empty. Note that a necessary condition for Ψ to
be locally empty is: A1 ∪A2 ∪B1 ∪B2 = ∅.

We define Mi[Ψ] to be +1 if Ψ is valid for the node Xi and not locally empty,
0 if it is valid and locally empty, and −1 otherwise. Now, we explain how to
compute Mi[Ψ] for each partition Ψ at the nodes of the nice tree decomposition.

Leaf node: For a leaf node i, Xi = ∅. We have Ψ = (∅, ∅, ∅, ∅, ∅, ∅) and
Mi[Ψ] = 0. This step can be executed in constant time.

Introduce node: Let j be the only child of the node i. Suppose, v ∈ Xi is the
new node present in Xi, v /∈ Xj . Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition
of Xi. If Ψ is not legal, we straightaway set Mi[Ψ] to −1. Otherwise, we use the
below procedure to compute Mi[Ψ] for v ∈ Ai, and analogously for v ∈ Bi.

Case 1: v ∈ A1, then Mi[Ψ] = +1, if there exists a unique x ∈ B1, such
that, (v, x) ∈ E and Mj [Ψ

′] ≥ 0 for Ψ ′ = (A1\v,A2, A3, B1\x,B2, B3 ∪ x).
Otherwise Mi[Ψ] = −1. Note that, Mi[Ψ] can not be 0, as v ∈ A1 brings an
edge into the cut if it is valid.

Case 2: v ∈ A2, this case is not valid as v does not have any neighbor in
V (Ti)\Xi (it is the property of the nice tree decomposition).

Case 3 v ∈ A3, Mi[Ψ] = Mj [Ψ
′] where Ψ ′ = (A1, A2, A3\v,B1, B2, B3).

The total number of possible Ψ ’s for Xi is 6t+1. For each Ψ , the above cases can
be executed in polynomial time. Hence the total time complexity at the intro-
duce node is O∗(6t).

Forget node: Let j be the only child of the node i. Suppose, v ∈ Xj is the node
missing in Xi, v /∈ Xi. Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi. If
Ψ is not legal, we straightaway set Mi[Ψ] to −1.

Otherwise, Mi[Ψ] = maxk=6
k=1{δk}, where δk is computed as follows: If Ψ is

valid, it should be possible to add v to one of the six sets to get a valid partition
at node j.

Case 1: v is in the first set at the node j. If there is a unique x ∈ B2 such that
(v, x) ∈ E then δ1 = Mj [Ψ

′] where Ψ ′ = (A1 ∪ v,A2, A3, B1 ∪ x,B2\x,B3).
If no such x exists, then δ1 is set to −1.

Case 2: v is in the second set at the node j.
Let Ψ ′ = (A1, A2 ∪ v,A3, B1, B2, B3) and δ2 = Mj [Ψ

′].
Case 3: v is in the third set at the node j.

Let Ψ ′ = (A1, A2, A3 ∪ v,B1, B2, B3) and δ3 = Mj [Ψ
′].

The values δ4, δ5 and δ6 are computed analogously. The total number of possible
Ψ ’s for Xi is 6t. For each Ψ , the above cases can be executed in polynomial time.
Hence the total time complexity at the forget node is O∗(6t).

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2 and
V (Tj1) ∩ V (Tj2) = Xi. There are no edges between V (Tj1)\Xi and V (Tj2)\Xi.
Let Ψ = (A1, A2, A3, B1, B2, B3) be a partition of Xi. For X ⊆ A2 and Y ⊆ B2

let Ψ1 = (A1, X,A3 ∪ {A2\X}, B1, Y, B3 ∪ {B2\Y }) and Ψ2 = (A1, A2\X,A3 ∪
X,B1, B2\Y,B3 ∪ Y).

Mi[Ψ] =

+1, If ∃X ⊆ A2 and Y ⊆ B2 such that Mj1 [Ψ1] +Mj2 [Ψ2] ≥ 1;
0, If Ψ is locally empty, (i.e Mj1 [Ψ] = 0 and Mj2 [Ψ] = 0);
−1, Otherwise

The total number of possible Ψ ’s for Xi is 6t+1. For each Ψ , we need to check
2t+1 different Ψ1 and Ψ2. The total time complexity at the join node is O∗(12t).

At each node i, let ∆i = maxΨ{Mi[Ψ]}. If ∆i = +1, then G[Ti] has a valid
non-empty matching cut. If r is the root of the nice tree decomposition, the
graph G has a matching cut if ∆r = +1. By induction and the correctness of
Mi[Ψ] values, we can conclude the correctness of the algorithm. The total time
complexity of the algorithm is O∗(12t) = O∗(2O(t)).

Theorem 1 There is an algorithm with running time O∗(2O(t)) that solves the
matching cut problem, where t is the tree-width of the graph.

4 Graphs with Bounded Neighborhood Diversity

Lampis [15] introduced a structural parameter called neighborhood diversity
which is defined as follows:

Definition 1 (Neighborhood Diversity [15]). In an undirected graph G, two
vertices u and v have the same type if and only if N(u) \ {v} = N(v) \ {u}.

The graph G has neighborhood diversity d if there exists a partition of V (G)
into d sets P1, P2, . . . , Pd such that all the vertices in each set have the same
type. Such a partition is called a type partition. Moreover, it can be computed in
linear time.

Note that, each Pi forms either a clique or an independent set in G.
If a graph has vertex cover number q, then the neighborhood diversity of the

graph is at most 2q + q [15]. Hence, graphs with bounded vertex cover number
also have bounded neighborhood diversity. However, the converse is not true
since complete graphs have neighborhood diversity 1. Some NP-hard problems
are shown to be tractable on graphs with bounded neighborhood diversity (see
e.g., [16]). Here, we show that the matching cut problem is tractable for graphs
with bounded neighborhood diversity. We describe an algorithm with time com-
plexity O∗(22d), where d is the neighborhood diversity of the graph.

We start with a graph G, and its type partitioning with d partitions, i.e
neighborhood diversity of G is d. We label the vertices of G (using the type
partitioning) such that vertices having the same label should be entirely on
one side of the cut. We assume that the graph is connected and so is the type
partitioning graph. Let P1, P2, . . . , Pd be the sets of the type partition. We say
Pi is an I-set if Pi induces an independent set. Similarly, we say Pi is a C-set if
Pi induces a clique. The size of a set Pi is the number of vertices in the set Pi.

Observe that a clique Kc with c ≥ 3 and Kr,s with r ≥ 2 and s ≥ 3 do not
have a matching cut. It means that all the vertices of these graphs should be
entirely on one side of the cut. Consider a partition Pi, vertices of Pi are labeled
according to the following rules in order:

– If Pi is a C-set with size ≥ 2, vertices in the set Pi and all the vertices in its
neighboring sets get the same label.

– If Pi is an I-set with size ≥ 3 and is adjacent to an I-set with size ≥ 2, then
the vertices in both the sets get the same label.

– If Pi is an I-set with size ≥ 3 and is adjacent to two or more sets of size ≥ 1,
then vertices in all these sets get the same label.

– If Pi is an I-set with size ≥ 3 and has only one adjacent set of size 1, then
G has a matching cut.

– If Pi is an I-set with size 2 and is adjacent to an I-set of size 2 and a set of
size 1, then vertices in all these sets get the same label.

– If Pi is an I-set with size 2 and is adjacent to only one I-set of size 2, in
these two sets, each vertex will get different label.

– If Pi is an I-set with size 2 and is adjacent to two sets of size 1, in these
three sets, each vertex will get different label.

– If Pi is an I-set with size 2 and is adjacent to a set of size 1, then G has a
matching cut.

– All the remaining sets of size 1 will get different labels.

If we apply the above rules, either we conclude that G has a matching cut,
or for each set we use at most 2 labels, hence we can state the following:

Lemma 2 The number of labels required is at most 2d.

The vertices of each label should entirely be in the same set of the matching cut.
Hence there are 22d possible label combinations. Thus we have the following:

Theorem 3 There is an algorithm with running time O∗(22d) that solves the
matching cut problem, where d is the neighbourhood diversity of the graph.

5 Other Structural Parameters

For graphs with bounded feedback vertex number, the tree-width is also bounded.
As the matching cut problem is in FPT for tree-width, it is also in FPT for feed-
back vertex number. Kratsch and Le [9] showed that the matching cut problem
is in FPT for the size of the vertex cover. We use the techniques used in [9] to
show that the matching cut problem is in FPT for the parameters twin cover
and the distance to split graphs.

Lemma 4 (stated as Lemma 3 in [9]) Let I be an independent set and let
U = V \I. Given a partition (X,Y) of U , it can be decided in O(n2) time if the
graph has a matching cut (A,B) such that X ⊆ A and Y ⊆ B.

Two non-adjacent (adjacent) vertices having the same open (closed) neigh-
borhood are called twins. A twin cover is a vertex set S such that for each edge
{u, v} ∈ E, either u ∈ S or v ∈ S or u and v are twins. Note that, for a twin
cover S ⊆ V , G[V \S] is a collection of disjoint cliques.

Lemma 5 Let S ⊆ V be a twin cover of G. Given a partition (X,Y) of S, it
can be decided in O(n2) time if the graph has a matching cut (A,B) such that
X ⊆ A and Y ⊆ B.

Proof. Clearly, V \S induces a collection of disjoint cliques. Consider a maximal
clique C on two or more vertices in V \S. Let u, v be any two vertices of the clique
C. Clearly, u and v are twins. If u and v has a common neighbor in both X and
Y , then the graph has no matching cut such that X ⊆ A and Y ⊆ B. Hence,
without loss of generality we can assume that u and v have common neighbors
only in X. Let X ′ = X ∪ V (C). Clearly, V \(S ∪ V (C)) is an independent set.
Using Lemma 4, we can decide in O(n2) time if the graph has a matching cut
(A,B) such that X ′ ⊆ A and Y ⊆ B. ut

Let S be a twin cover of the graph. By guessing a partition (X,Y) of S, we
can check in O(n2) time if G has a matching cut (A,B) such that X ⊆ A and
Y ⊆ B. Hence we can state the following theorem.

Theorem 6 There is an algorithm with running time O∗(2|S|) to solve matching
cut problem, where S is the twin cover of the graph.

Lemma 7 Let G be a graph with vertex set V , if S ⊆ V be such that G[V \S]
is a split graph. Given a partition (X,Y) of S, it can be decided in O(n2) time
whether the graph G has a matching cut (A,B) such that X ⊆ A and Y ⊆ B.

Proof. Let V \S = C ∪ I be the vertex set of the split graph, where C is a clique
and I is an independent set. If |C| = 1 or |C| ≥ 3, then let X ′ = X ∪ V (C)
and Y ′ = Y ∪ V (C). Clearly, V \(S ∪ V (C)) is an independent set. Hence, G
has matching cut (A,B) such that X ⊆ A and Y ⊆ B if and only if G has a
matching cut such that either X ′ ⊆ A and Y ⊆ B or X ⊆ A and Y ′ ⊆ B.
Both these instances can be solved in O(n2) time using Lemma 4. If |C| = 2,
depending on whether the vertices of C go to X or Y , we solve four instances of
Lemma 4 to check whether graph has a matching cut (A,B) such that X ⊆ A
and Y ⊆ B. Therefore the time complexity is O(n2). ut

Similar to Theorem 6, we can state the following theorem.

Theorem 8 There is an algorithm with running time O∗(2|S|) to solve the
matching cut problem, where S ⊆ V such that G[V \S] is a split graph.

References

1. Graham, R.L.: On primitive graphs and optimal vertex assignments. Annals of
the New York Academy of Sciences 175(1) (1970) 170–186

2. Farley, A.M., Proskurowski, A.: Networks immune to isolated line failures. Net-
works 12(4) (1982) 393–403

3. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In:
27th International Workshop Graph-Theoretic Concepts in Computer Science (WG
2001) Boltenhagen, Germany. (2001) 284–295

4. Chvátal, V.: Recognizing decomposable graphs. Journal of Graph Theory 8(1)
(1984) 51–53

5. Le, V.B., Randerath, B.: On stable cutsets in line graphs. In: 27th Inter-
national Workshop Graph-Theoretic Concepts in Computer Science (WG 2001)
Boltenhagen, Germany. (2001) 263–271

6. Bonsma, P.: The complexity of the matching-cut problem for planar graphs and
other graph classes. Journal of Graph Theory 62(2) (2009) 109–126

7. Moshi, A.M.: Matching cutsets in graphs. Journal of Graph Theory 13(5) (1989)
527–536

8. Borowiecki, M., Jesse-Józefczyk, K.: Matching cutsets in graphs of diameter 2.
Theoretical Computer Science 407(1-3) (2008) 574–582

9. Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theoretical
Computer Science 609(2) (2016) 328–335

10. Klein, S., de Figueiredo, C.M.H.: The NP-completeness of multi-partite cutset
testing. Congressus Numerantium 119 (1996) 217–222

11. Brandstädt, A., Dragan, F.F., Le, V.B., Szymczak, T.: On stable cutsets in graphs.
Discrete Applied Mathematics 105(1) (2000) 39–50

12. Le, V.B., Mosca, R., Müller, H.: On stable cutsets in claw-free graphs and planar
graphs. Journal of Discrete Algorithms 6(2) (2008) 256–276

13. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B 52(2) (1991) 153–190

14. Kloks, T., ed. In: Treewidth: Computations and Approximations. Lecture Notes
in Computer Science, Springer (1994)

15. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1) (2012) 19–37

16. Ganian, R.: Using neighborhood diversity to solve hard problems. CoRR
abs/1201.3091 (2012)

