
On the Tractability of (k, i)-Coloring

Saurabh Joshi, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare, and
Sriram Bhyravarapu?

Department of Computer Science and Engineering, IIT Hyderabad
{sbjoshi,subruk,cs14resch01002,cs16resch11001}@iith.ac.in

Abstract. In an undirected graph, a proper (k, i)-coloring is an assign-
ment of a set of k colors to each vertex such that any two adjacent
vertices have at most i common colors. The (k, i)-coloring problem is
to compute the minimum number of colors required for a proper (k, i)-
coloring. This is a generalization of the classic graph coloring problem.

Majumdar et. al. [CALDAM 2017] studied this problem and showed
that the decision version of the (k, i)-coloring problem is fixed parameter
tractable (FPT) with tree-width as the parameter. They asked if there
exists an FPT algorithm with the size of the feedback vertex set (FVS)
as the parameter without using tree-width machinery. We answer this in
positive by giving a parameterized algorithm with the size of the FVS
as the parameter. We also give a faster and simpler exact algorithm for
(k, k−1)-coloring, and make progress on the NP-completeness of specific
cases of (k, i)-coloring.

1 Introduction

In an undirected graph G = (V,E), |V | = n, a proper vertex coloring is to color
the vertices of the graph such that adjacent vertices get different colors. The
classic graph coloring problem asks to compute the minimum number of colors
required to properly color the graph. The minimum number of colors required
is called the chromatic number of the graph, denoted by χ(G). This is a well
known NP-hard problem and has been studied in multiple directions.

Many variants and generalizations of the graph coloring problem have been
studied in the past. In this paper we address a generalization of the graph coloring
problem called (k, i)-coloring problem. For a proper (k, i)-coloring, we need to
assign a set of k colors to each vertex such that the adjacent vertices share at
most i colors. The (k, i)-coloring problem asks to compute the minimum number
of colors required to properly (k, i)-color the graph. The minimum number of
colors required is called the (k, i)-chromatic number, denoted by χik(G). Note
that (1, 0)-coloring is the same as the classic graph coloring problem.

? The authors are in alphabetical order, with the fourth author’s first name being
considered.

(k, i)-Coloring Problem
Instance: An undirected graph G = (V,E).
Output: The (k, i)-chromatic number of G, χik(G).

We also define below the (q, k, i)-coloring problem, the decision version of the
(k, i)-coloring problem.

(q, k, i)-Coloring Problem
Instance: An undirected graph G = (V,E).
Question: Does G have a proper (k, i)-coloring using at most q colors?

The (k, i)-coloring problem was first studied by Méndez-Dı́az and Zabala
in [1]. For arbitrary k and i, the (k, i)-coloring problem is NP-hard because
(1, 0)-coloring is NP-hard. Apart from studying the basic properties, they also
gave an integer linear programming formulation of the problem. Stahl [2] and in-
dependently Bollobás and Thomason [3] introduced the (k, 0)-coloring problem
under the names of k-tuple coloring and k-set coloring respectively. The k-tuple
coloring problem has been studied in detail [4, 5], and Irving [6] showed that this
problem is NP-hard as well. Some of the applications for the (k, 0)-coloring prob-
lem include construction of pseudorandom number generators, randomness ex-
tractors, secure password management schemes, aircraft scheduling, biprocessor
tasks and frequency assignment to radio stations [7, 8]. Brigham and Dutton [9]
studied another variant of the problem, where k colors have to be assigned to
each vertex such that the adjacent vertices share exactly i colors.

Bonomo et. al. [10] studied the connection between the (k, i)-coloring problem
on cliques and the theory of error correcting codes. In coding theory, a (j, d, k)-
constant weight code represents a set of codewords of length j with exactly
k ones in each codeword, with Hamming distance at least d. Bonomo et. al.
observed a direct connection between A(j, d, k), the largest possible size of a
(j, d, k)-constant weight code, and the (k, i)-colorability of cliques and used the
existing results from coding theory (such as the Johnson bound [11]) to infer
results on the (k, i)-colorability of cliques. Finding bounds on A(j, d, k) is a well-
studied problem in coding theory, and lots of questions on A(j, d, k) are still
open. This indicates the difficulty of the (k, i)-coloring problem even on graphs
as simple as cliques.

Since the (k, i)-coloring problem is NP-hard in general, it is natural to study
the tractability for special classes of graphs. Polynomial time algorithms are
only known for a few of such classes namely bipartite graphs, cycles, cacti and
graphs with bounded vertex cover or tree-width [10, 12]. From the NP-hardness
perspective, it is interesting to ask if the (k, i)-coloring problem is NP-hard for
specific values of i. Except for the cases i = k, where the problem is trivial, and
i = 0, where the problem is NP-hard [6], the NP-hardness remains open for all
other values of i.

Recently, Majumdar et. al. [12] studied the (k, i)-coloring problem and gave
exact and parameterized algorithms for the problem. They showed that the prob-

lem is fixed parameter tractable (FPT) when parameterized by tree-width. As
the tree-width is at most (|S| + 1), where S is a feedback vertex set (FVS) of
the graph, their algorithm also implies that (k, i)-coloring is FPT when param-
eterized by the size of FVS. As an open question, they asked to devise an FPT
algorithm parameterized by the size of FVS, without going through tree-width.
In this paper we answer this question.

Our results are:

– An O((qk)|S|+2nO(1)) time algorithm for the (q, k, i)-coloring problem that
does not use tree-width machinery. Here S is an FVS of the graph.

– We make progress on the NP-hardness of the (k, i)-coloring problem. We
show that (k, 1)-coloring and (k, k−1) coloring are NP-complete, in addition
to other NP-completeness results. This partially answers questions posed
in [1] and [12].

– We give a 2nnO(1) time exact algorithm for the (k, k − 1)-coloring problem.
This is a direct improvement to the algorithm given in [12] for the same
problem.

2 Preliminaries

A parameterized problem is a language B ⊆ Σ∗ × N where Σ is a fixed, finite
alphabet. For example (x, `) ∈ Σ∗×N, here ` is called the parameter. A param-
eterized problem B ⊆ Σ∗ × N is called fixed-parameter tractable (FPT) if there
is an algorithm A, a computable function f : N→ N, and a constant c such that,
given (x, `) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, `) ∈ B in
time bounded by f(`)|x|c.

We assume that the graph is simple and undirected. We use n to denote
|V |, the number of vertices of the graph. We say that the vertices u and v are
adjacent (neighbors) if {u, v} ∈ E. For v ∈ V , we let N(v) denote the set of
neighbors of v. For S ⊆ V , the sub graph induced by S is denoted by G[S]. We
use O∗(f(n)) to denote O(f(n)nO(1)). We use the set of natural numbers for

coloring the graph. We use the standard notations [q] = {1, 2, . . . , q} and
(
[q]
k

)
to denote the set of all k-sized subsets of [q]. In the rest of the paper, we use

the term coloring of a set X ⊆ V to denote a mapping h : X →
(
[q]
k

)
. We say

that h is a proper (q, k, i)-coloring (or proper (k, i)-coloring) of X if any pair of
adjacent vertices in X have no more than i colors in common.

3 (q, k, i)-Coloring Parameterized by Size of FVS

In this section, we assume that q, k, i are fixed values and focus on the decision
problem of (q, k, i)-coloring. Let G = (V,E) be an undirected graph. Let G[V ′]
denote a subgraph of G induced by V ′ ⊆ V . A Feedback Vertex Set (FVS) is a set
of vertices S ⊆ V , removal of which from the graph G makes the remaining graph
(G[V \S]) acyclic. Many NP-hard problems have been shown to be tractable for
graphs with bounded FVS [13].

In [12], Majumdar et.al., gave an algorithm for the (q, k, i)-coloring prob-
lem in O((qk)tw+1nO(1)) time1, where tw denotes the tree-width of the graph.
Let S be a smallest FVS of G. It is known that tw ≤ |S| + 1, see for in-
stance [14]. In this section, we present an algorithm for (q, k, i)-coloring that
runs in O((qk)|S|+2nO(1)) time, where |S| is the size of the FVS of the graph.
Our algorithm does not use the tree-width machinery. Note that, FVS has a 2-
approximation algorithm [15], but there is no known polynomial time algorithm
that approximates tree-width within a constant factor [16]. Computing the size
of the smallest FVS is also known to be FPT parameterized by |S|, the size of
the smallest FVS. There has been a series of results improving the running time,
the fastest known algorithm [17] runs in O(3.619|S|nO(1)) time.

A brief description of our algorithm follows. Let S be an FVS of G. We start
with a coloring of the vertices of S. Recall that G[V \S] is a forest. Each of
the connected components of G[V \S] is a tree. For each of these components,
we traverse the tree bottom-up and use a dynamic programming technique to
compute the list of k-colorings that each vertex w ∈ V \S can take. For each

C ∈
(
[q]
k

)
, we include C in w’s list if there is a coloring for the subtree rooted at

w, consistent with the coloring of S, such that w receives color set C. We repeat
this for all proper colorings of S.

Let Ψ =
(
[q]
k

)
denote the family of all k-sized subsets of [q]. For any pair

of sets C,C ′ ∈ Ψ , we say that (C,C ′) is legal if |C ∩ C ′| ≤ i, and illegal if
|C ∩ C ′| > i. Given two sets C,C ′ ∈ Ψ , it is easy to check if (C,C ′) is a legal
pair. Formally, we have:

Proposition 1. Given C,C ′ ∈ Ψ , it takes O(k log k) time to check if (C,C ′) is
a legal pair.

Definition 2. Consider a partial coloring h : S → Ψ where only the vertices of
the FVS S are colored. For a vertex w ∈ V \S and a set C ∈ Ψ , we say that
(w,C) is h-compatible if for all x ∈ S ∩N(w), the pair (C, h(x)) is legal.

The set {C ∈ Ψ | (w,C) is h-compatible} is defined to be the set of h-
compatible colorings of w.

Proposition 3. Let h : S → Ψ be a coloring of the vertices in S. Let w ∈ V \S
and dS(w) = |N(w) ∩ S|. Then the set of h-compatible colorings of w can be
computed in time O

((
q
k

)
dS(w)k log k

)
.

Proof. For each C ∈ Ψ , we check if (w,C) is h-compatible. For this, we need to
check for all neighbors x of w in S, whether (C, h(x)) is legal. The total running
time is

(
q
k

)
· dS(w) ·O(k log k). ut

Definition 4. Given a graph G = (V,E) and a coloring h : X → Ψ for some
X ⊆ V , we say that the coloring h′ : V → Ψ is an extension of h, or extends h
if for all v ∈ X, we have h(v) = h′(v).

1 Even though [12] claims a running time of O((qk)twnO(1)) for their algorithm, there
is an additional factor of

(
q
k

)
that is omitted, presumably because

(
q
k

)
is treated as

a constant.

Lemma 5. Given a proper (q, k, i)-coloring h of the vertices in a feedback vertex
set S of the graph G = (V,E), we can determine if h can be extended to a proper

(q, k, i)-coloring of V in O(
(
q
k

)2
nO(1)) time.

Proof. The graph G[V \S] is a forest because S is a feedback vertex set. There-
fore each connected component of G[V \ S] is a tree. Below, we describe an
algorithm that we can apply to each of these trees to yield a proper (q, k, i)-
coloring extending h for the trees. Combining the colorings, we get a proper
(q, k, i)-coloring of V , that is an extension of h.

Let T denote one of the trees in the forest. We will designate any one of the
vertices (say r) of T as root. Let Tw denote the subtree rooted at a node w ∈ T .

Our plan is to maintain a table at each vertex w, indexed with the elements
of Ψ . The entry at each color set C is denoted by Mw(C). The entry Mw(C)
indicates whether there is a proper (q, k, i)-coloring of Tw, with w assigned the
set C, consistent with the coloring h of S.

We will process T in a post order fashion as follows:

1. When w is a leaf in T : In this case, we set Mw(C) = 1 if (w,C) is
h-compatible. Otherwise, we set Mw(C) = 0.
For any leaf w, the values Mw(C) corresponding to all C ∈ Ψ can be com-
puted in time O(

(
q
k

)
dS(w)k log k) by Proposition 3. Here dS(w) denotes the

number of neighbors of w in S.
2. When w is an internal node in T : Let u1, u2, . . . be the children of w in
T . Recall that we process T in post order fashion. Before we process w, the
Muj values for all the children of w would already have been computed. The
value Mw(C) is computed as follows:
– If (w,C) is not h-compatible, we set Mw(C) = 0.
– If (w,C) is h-compatible, we do the following:

– If for each child uj of w, there exists at least one coloring C ′ ∈ Ψ such
that Muj

(C ′) = 1 and (C,C ′) is a legal pair, then set Mw(C) = 1.
– Otherwise set Mw(C) = 0.

For each w and C, the h-compatibility check takes O(dS(w)k log k) time. If
(w,C) is h-compatible, we need to check all the children uj , and the table
entries Muj (C ′) for all C ′ ∈ Ψ . Together with the check for (C,C ′) being a
legal pair, the computation takes dT (w) ·

(
q
k

)
·O(k log k) time, where dT (w)

is the number of children of w in the tree T .
Adding all up, the computation of the table entries for w takes time

O

((
q

k

)
· k log k ·

[
dS(w) + dT (w)

(
q

k

)])
. (1)

If for some C ∈ Ψ , Mr(C) = 1, then we know that there exists a proper (q, k, i)-
coloring of T that is consistent with the coloring h of S.

The time complexity is obtained by adding the expression in (1) over all the
vertices w ∈ V \S. By using the bounds dS(w) ≤ n and

∑
Trees T

∑
w∈V (T) dT (w) ≤∑

Trees T |V (T)| ≤ n, we get that the time complexity is upper bounded by

O

((
q

k

)
· k log k ·

[
n2 + n

(
q

k

)])
,

which is at most O
((

q
k

)2 · n2), by noting that k is a constant. ut

The correctness of the procedure explained in the above lemma can be proved
using an induction on the vertices of T according to its post order traversal. The
inductive claim says that Mw(C) = 1 if and only if there is a proper (q, k, i)-
coloring of Tw, with w assigned the set C, consistent with the given coloring of
S.

Lemma 6. Given a proper (q, k, i)-coloring h of the vertices in a feedback vertex
set S of the graph G = (V,E), we can determine if h can be extended to a proper
(q, k, i)-coloring of V with space complexity O(

(
q
k

)
n).

Proof. Recall the algorithm explained in Lemma 5. At each vertex w in G[V \S],
we need O(

(
q
k

)
) space to store values Mw(C) for all C ∈ Ψ . ut

Theorem 7. The (q, k, i)-coloring problem can be solved in time O((qk)|S|+2nO(1))
and O(

(
q
k

)
n) space, where S is a feedback vertex set of G.

Proof. For each coloring assignment h of S, we first determine if h is a proper
(q, k, i)-coloring. This can be done in O(|S|2k log k) time. Then we determine
whether there exists a proper (q, k, i)-coloring that extends h in O((qk)2.nO(1))
time by Lemma 5. Since there are at most (qk)|S| many colorings of S, we can
determine whether there exists a proper (q, k, i)-coloring of G in O((qk)|S|+2nO(1))
time.

We need O(|S|k log q) space to store the coloring h of S. And by Lemma 6,
we need O(

(
q
k

)
n) space to determine if h can be extended to a proper coloring of

G. The latter is the dominating term and determines the total space requirement
of the algorithm. ut

On generating a proper (q, k, i)-coloring. We observe that we can modify
Theorem 7 to obtain an algorithm that generates a proper (q, k, i)-coloring of G,
if one exists. After executing the steps of the algorithm corresponding to Theo-
rem 7, we traverse the tree in top-down fashion from the root, and find colorings
for each vertex w ∈ T , consistent with its parent, subtree Tw and coloring of S.
The latter two are already encoded in Mw(C) value. The asymptotic time and
space complexity are the same as that in Theorem 7.

We would like to observe a difference in the space usage of our FPT algorithm
to the FPT algorithm for (q, k, i)-coloring parameterized by tree-width in [12].
We note that the algorithm in [12] can also be modified similarly to obtain an
algorithm that generates a proper coloring. However, such an algorithm would
require to store all feasible colorings at each bag of the tree-decomposition,
resulting in a O((qk)tw+1) space usage at each bag. Since there are O(n) bags,
total space required by the algorithm is O((qk)tw+1n), which is significantly larger
than the O(

(
q
k

)
n) space required by our algorithm.

Decision vs. search problem. We note that we could run the algorithm for
(q, k, i)-coloring for q = 1, 2, 3, . . . till we reach χik(G), the smallest q for which the
graph has a proper (q, k, i)-coloring. The running time of this procedure would

be at most O

(
χik
(
χi
k
k

)|S|+2
nO(1)

)
. Thus an FPT algorithm parameterized by

the size of the FVS for the (q, k, i)-coloring problem implies an FPT algorithm
parameterized by combined parameters — the size of the FVS and the (k, i)-
chromatic number.

3.1 Counting all proper (q, k, i)-colorings

Here we show that we can modify the algorithm described in Lemma 5 to count
the number of proper (q, k, i)-colorings of G. Let a proper (q, k, i)-coloring h of
FVS S be given. Instead of maintaining Mw(C) for a vertex w in a rooted tree
T , we maintain another value M#

w (C).

M#
w (C) =

0 if (w,C) is not h-compatible.

1

{
if w is a leaf,

and (w,C) is h-compatible.∏
∀uj∈child(w)

∑
legal(C,C′)

M#
uj

(C ′)

{
if w is a non-leaf vertex,

and (w,C) is h-compatible.

At each vertex w, M#
w (C) maintains a count of the proper (q, k, i)-colorings

of Tw, consistent with the coloring h of S, where w gets assigned the set C. The
correctness can be verified by a straightforward induction on the tree vertices
in post order traversal. If r is the root of T , M#

r (C) gives the count of proper
(q, k, i)-colorings of T , where r is colored C, consistent with the coloring h of S.

The total number of proper (q, k, i)-colorings of G is therefore computed by
taking into account (i) all proper (q, k, i)-colorings h of S, (ii) all the trees Tj in
G[V \S], and (iii) all color sets C ∈ Ψ at the root of Tj . The full expression is as
follows:

No. of proper (q, k, i)-colorings =
∑

proper (q,k,i)-
colorings of S

 ∏
Tj in G[V \S]

(∑
C∈Ψ

M#
root(Tj)

(C)

) .

The above expression implies the following theorem. The asymptotic time com-
plexity remains the same as Theorem 7, whereas the space complexity incurs a
blowup of nk log q, because of the maximum value M#

w (C) can take.

Theorem 8. There is an algorithm that computes the number of proper (q, k, i)-
colorings of G, in O((qk)|S|+2nO(1)) time and O(

(
q
k

)
n2 log q) space, where S is a

feedback vertex set of G.

4 Faster Exact Algorithm for (k, k − 1)-coloring

In [12], Majumdar et. al. gave an O∗(4n) time exact algorithm for the (k, k−1)-
coloring problem. Their algorithm was based on running an exact algorithm for a

set cover instance where the universe is the set of all the vertices V and the family
of sets F is the set of all independent sets of vertices of G. To show correctness
and running time, they used a claim (unnumbered) that relates χk−1k (G) to the
size of solution of the set cover instance, an O(2n ·n·|F|) time exact algorithm for
the set cover problem [18] and an upper bound of 2n on the size of the family of
sets F . Hence, the time complexity of their algorithm is O(2n ·n ·2n) = O(4n ·n).

We first note that their algorithm also works when F is replaced by F ′, the
set of all maximal independent sets of G. This is because any independent set
A ∈ F is contained in a maximal independent set A′ ∈ F ′. In any set covering of
V using elements of F , each set A can be replaced by an A′ ∈ F ′, thus obtaining
a set cover of V using elements of only F ′. By using the 3n/3 upper bound of
Moon and Moser [19] on the number of maximal independent sets, the time
complexity improves to O(2n · n · 3n/3) = O(2.88n · n).

We now present a simpler and faster O∗(2n) algorithm to determine χk−1k (G).

Lemma 9. For any graph G, χk−1k (G) = q where q is the smallest integer such
that

(
q
k

)
≥ χ0

1(G). Thus there is a polynomial time reduction from the (k, k− 1)-
coloring problem to the (1, 0)-coloring problem.

Proof. The (k, k − 1)-coloring problem asks to assign sets of k colors to each
vertex, with the requirement that neighboring vertices must have distinct sets
assigned to them. We may view each of the k-sized subsets as a color, and the
(1, 0)-chromatic number χ0

1(G) is the number of distinct k-sized subsets required.
Thus χk−1k (G) is the smallest q that will provide χ0

1(G) number of k-sized
subsets. The polynomial time reduction is immediate. ut

Combining the above lemma with the O∗(2n) time algorithm of Koivisto [20]
to compute χ0

1(G), we get the following theorem.

Theorem 10. There is an algorithm with O∗(2n) time complexity that computes
the (k, k − 1) chromatic number of a given graph.

Further, we can infer from Lemma 9 that for those graphs G where we can
compute χ0

1(G) in polynomial time, χk−1k (G) can also be found in polynomial

time. For instance, χk−1k (Kn) can be computed in polynomial time as χ0
1(Kn) =

n.

5 NP-completeness results

Since the (k, i)-coloring problem is a generalization of the (1, 0)-coloring problem,
it follows that (k, i)-coloring is NP-hard. Méndez-Dı́az and Zabala [1] conjectured
that the (k, i)-coloring problem remains NP-hard even for specific values of i. In
this section, we show NP-completeness results for some specific cases of (k, i)-
coloring. We will only be proving the NP-hardness aspect of NP-completeness.
Given a coloring, we can easily verify that it is a proper (k, i)-coloring in poly-
nomial time.

Trivially, we have χkk(G) = k for all graphs G. For the (k, 0)-coloring problem,
we have the following result by Irving.

Theorem 11 ((k, 0)-coloring is NP-complete [6]). The (2k+1, k, 0)-coloring
problem is NP-complete for all k ≥ 1.

The NP-completeness of the (k, k − 1)-coloring problem is claimed by [1].
However, we are unable to follow and verify the proof. We provide an alternate
NP-hardness proof as a consequence of the correspondence in Lemma 9.

Theorem 12. The (k, k − 1)-coloring problem is NP-complete for all k ≥ 1.

Proof. We use reductions from the (1, 0)-coloring problem, for each value of
k ≥ 2. We show that the (q, k, k − 1)-coloring problem is NP-complete for all
values of q > k ≥ 2. From the correspondence in Lemma 9, it follows that for
any given k ≥ 1, a graph G is (q, k, k− 1)-colorable if and only if G is (

(
q
k

)
, 1, 0)-

colorable. Since the (r, 1, 0)-coloring problems are NP-complete for all r ≥ 3,
it follows that (

(
q
k

)
, 1, 0)-coloring problems are NP-complete for all q > k ≥ 2,

and hence we get that the (q, k, k−1)-coloring problems are NP-complete for all
q > k ≥ 2. ut

The following lemmas will help us in proving further NP-completeness results.

Lemma 13 (Complement trick). For integers k, i ≥ 1, any graph G is (2k+
i, k + i, i)-colorable if and only if it is (2k + i, k, 0)-colorable.

Proof. Let f : V →
(
[2k+i]
k

)
be a (2k+i, k, 0)-coloring of G. Consider the coloring

f ′ where each vertex v is assigned the complement set [2k+ i]\f(v). Notice that,
every vertex is assigned (k+i) colors, and any pair of adjacent vertices will share
exactly i colors in the coloring f ′. Thus we have a (2k+ i, k+ i, i)-coloring of G.

Similarly, if we start from a (2k + i, k + i, i)-coloring of G, we can get to a
(2k + i, k, 0)-coloring by taking the complement coloring. ut

Theorem 11 and the above lemma together imply the NP-completeness of
(k, 1)-coloring for all k ≥ 2.

Theorem 14 ((k, 1)-coloring is NP-complete). The (2k+1, k+1, 1)-coloring
problem is NP-complete for all k ≥ 1.

Now we introduce another simple gadget, the universal vertex. Given a graph
G, we can construct a graph G′ by adding a new vertex v that is adjacent to
all the vertices of G. It is straightforward to see that G has a (q, k, 0)-coloring
if and only if the new graph G′ has a (q + k, k, 0)-coloring. Thus we have the
following:

Lemma 15 (Universal vertex). There is a polynomial time reduction from
the (q, k, 0)-coloring problem to the (q+ k, k, 0)-coloring problem. Therefore, the
(q + k, k, 0)-coloring problem is NP-complete when the (q, k, 0)-coloring problem
is NP-complete.

Combining Lemma 13 and Lemma 15 yields a collection of NP-completeness
results.

Theorem 16. For any integers p ≥ 2 and ` ≥ 1, the (p`+ 1, (p− 1)`+ 1, (p−
2)`+ 1)-coloring problem is NP-complete.

Proof. From Theorem 11, we have that the (2`+ 1, `, 0)-coloring problem is NP-
complete. By applying the universal vertex gadget of Lemma 15 a total of (p−2)
times, we get that the (p`+1, `, 0)-coloring problem is NP-complete for all p ≥ 2.
Now we can use the complement trick of Lemma 13 to infer the NP-completeness
of the (p`+ 1, (p− 1)`+ 1, (p− 2)`+ 1)-coloring problem. ut

The above theorem gives us a collection of NP-completeness results. If we set
` = 2, we get that problems (5, 3, 1)-coloring, (7, 5, 3)-coloring, (9, 7, 5)-coloring
etc. are NP-complete. For other values of `, we get similar sequence of NP-
completeness results. But we cannot infer the NP-completeness of (k, 3)-coloring,
or (k, 5)-coloring from this because all values of k are not covered. To show
that (k, 3)-coloring is NP-hard, we need to exhibit for all relevant k, a value
q such that (q, k, 3)-coloring is NP-hard. As conjectured in [1], we believe that
the (k, i)-coloring problem is NP-complete for all values of i. As of now, the
NP-completeness of (k, i)-coloring is still open for 2 ≤ i ≤ k − 2.

Acknowledgment: The authors would like to thank the anonymous reviewer
for helpful comments, and pointing out a flaw in the proof of Theorem 12 in an
earlier version of the paper.

References

1. Méndez-Dı́az, I., Zabala, P.: A generalization of the graph coloring problem. In-
vestigation Operation 8 (1999) 167–184

2. Stahl, S.: n-tuple colorings and associated graphs. Journal of Combinatorial The-
ory, Series B 20(2) (1976) 185 – 203

3. Bollobás, B., Thomason, A.: Set colourings of graphs. Discrete Mathematics 25(1)
(1979) 21 – 26

4. Klostermeyer, W., Zhang, C.Q.: n-tuple coloring of planar graphs with large odd
girth. Graphs and Combinatorics 18(1) (2002) 119–132

5. Šparl, P., Žerovnik, J.: A note on n-tuple colourings and circular colourings of pla-
nar graphs with large odd girth. International Journal of Computer Mathematics
84(12) (2007) 1743–1746

6. Irving, R.W.: NP-completeness of a family of graph-colouring problems. Discrete
Applied Mathematics 5(1) (1983) 111 – 117

7. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica
Polytechnica Electrical Engineering 48(1-2) (2004) 11–16

8. Beideman, C., Blocki, J.: Set families with low pairwise intersection. arXiv preprint
arXiv:1404.4622 (2014)

9. Brigham, R.C., Dutton, R.D.: Generalized k-tuple colorings of cycles and other
graphs. Journal of Combinatorial Theory, Series B 32(1) (1982) 90–94

10. Bonomo, F., Durán, G., Koch, I., Valencia-Pabon, M.: On the (k, i)-coloring of
cacti and complete graphs. Ars Combinatoria (2014)

11. Johnson, S.: A new upper bound for error-correcting codes. IRE Transactions on
Information Theory 8(3) (1962) 203–207

12. Majumdar, D., Neogi, R., Raman, V., Tale, P.: Exact and parameterized algo-
rithms for (k, i)-coloring. In: Algorithms and Discrete Applied Mathematics: Third
International Conference, CALDAM 2017, India. (2017) 281–293

13. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex
set number. Algorithm Theory-SWAT 2010 (2010) 81–92

14. Jansen, B.M., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex
set. Tsinghua Science and Technology 19(4) (2014) 387–409

15. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics 12(3) (1999)
289–297

16. Wu, Y.L., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth, one-shot
pebbling, and related layout problems. J. Artif. Int. Res. 49(1) (January 2014)
569–600

17. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Informa-
tion Processing Letters 114(10) (2014) 556 – 560

18. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science, An EATCS Series. Springer (2010)

19. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3(1)
(Mar 1965) 23–28

20. Koivisto, M.: An O∗(2n) algorithm for graph coloring and other partitioning prob-
lems via inclusion–exclusion. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science. FOCS ’06, Washington, DC, USA, IEEE
Computer Society (2006) 583–590

