
H-Free Coloring on Graphs with Bounded
Tree-Width

N. R. Aravind1, Subrahmanyam Kalyanasundaram1, and Anjeneya Swami
Kare2

1 Department of Computer Science and Engineering,
IIT Hyderabad, Hyderabad, India
{aravind,subruk}@iith.ac.in

2 School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, India

askcs@uohyd.ac.in

Abstract. Let H be a fixed undirected graph. A vertex coloring of an
undirected input graph G is said to be an H-Free Coloring if none
of the color classes contain H as an induced subgraph. The H-Free
Chromatic Number of G is the minimum number of colors required
for an H-Free Coloring of G. This problem is NP-complete and is
expressible in monadic second order logic (MSOL). The MSOL formu-
lation, together with Courcelle’s theorem implies linear time solvability
on graphs with bounded tree-width. This approach yields an algorithm
with running time f(||ϕ||, t) · n, where ||ϕ|| is the length of the MSOL
formula, t is the tree-width of the graph and n is the number of vertices
of the graph. The dependency of f(||ϕ||, t) on ||ϕ|| can be as bad as a
tower of exponentials.
In this paper, we provide an explicit combinatorial FPT algorithm to
compute the H-Free Chromatic Number of a given graph G, param-
eterized by the tree-width of G. The techniques are also used to provide
an FPT algorithm when H is forbidden as a subgraph (not necessarily
induced) in the color classes of G.

1 Introduction

Let G be an undirected graph. The classical q-Coloring problem asks to color
the vertices of the graph using at most q colors such that no pair of adjacent
vertices are of the same color. The Chromatic Number of the graph is the
minimum number of colors required for q-coloring the graph and is denoted
by χ(G). The graph coloring problem has been extensively studied in various
settings.

In this paper we consider a generalization of the graph coloring problem
called H-Free q-Coloring which asks to color the vertices of the graph using
at most q colors such that none of the color classes contain H as an induced
subgraph. Here, H is any fixed graph, |V (H)| = r, for some fixed r. The H-Free
Chromatic Number is the minimum number of colors required to H-free color

the graph. Note that when H = K2, the H-Free q-Coloring problem is same
as the classical q-Coloring problem.

For q ≥ 3,H-Free q-Coloring problem is NP-complete as the q-Coloring
problem is NP-complete. The 2-Coloring problem is polynomial time solvable
as it is equivalent to decide whether the graph is bipartite. The H-Free 2-
Coloring problem has been shown to be NP-complete as long as H has 3 or
more vertices [1]. A variant of H-Free Coloring problem which we call H-
(Subgraph)Free q-Coloring which asks to color the vertices of the graph
such that none of the color classes contain H as a subgraph (not necessarily
induced) is studied in [2, 3].

Graph bipartitioning (2-coloring) problems with other constraints have been
explored in the past. Many variants of 2-coloring have been shown to be NP-hard.
Recently, Karpiński [4] studied a problem which asks to color the vertices of the
graph using 2 colors such that there is no monochromatic cycle of a fixed length.
The degree bounded bipartitioning problem asks to partition the vertices of G
into two sets A and B such that the maximum degree in the induced subgraphs
G[A] and G[B] are at most a and b respectively. Xiao and Nagamochi [5] proved
that this problem is NP-complete for any non-negative integers a and b except
for the case a = b = 0, in which case the problem is equivalent to testing
whether G is bipartite. Other variants that place constraints on the degree of
the vertices within the partitions have also been studied [6, 7]. Wu, Yuan and
Zhao [8] showed the NP-completeness of the variant that asks to partition the
vertices of the graph G into two sets such that both the induced graphs are
acyclic. Farrugia [9] showed the NP-completeness of a problem called (P,Q)-
coloring problem. Here, P and Q are any additive induced-hereditary graph
properties. The problem asks to partition the vertices of G into A and B such
that G[A] and G[B] have properties P and Q respectively.

For a fixed q, the H-Free q-Coloring problem can be expressed in monadic
second order logic (MSOL) [10]. The MSOL formulation together with Cour-
celle’s theorem [11, 12] implies linear time solvability on graphs with bounded
tree-width. This approach yields an algorithm with running time f(||ϕ||, t) · n,
where ||ϕ|| is the length of the MSOL formula, t is the tree-width of the graph
and n is the number of vertices of the graph. The dependency of f(||ϕ||, t) on
||ϕ|| can be as bad as a tower of exponentials.

In this paper we present explicit combinatorial algorithms for the H-Free
q-Coloring problem. We have the following results:

– O(q4t
r · n) time algorithm for the H-Free q-Coloring problem for any

arbitrary fixed graph H on r vertices.
– O(2t+r log t · n) time algorithm for Kr-Free 2-Coloring problem, where Kr is

a complete graph on r vertices.
– O(23t

2 · n) time algorithm for C4-Free 2-Coloring problem, where C4 is a
cycle on 4 vertices.

From the above we get the explicit FPT algorithm for H-Free Chromatic
Number problem. The techniques can also be extended to obtain analogous
results for the H-(Subgraph)Free q-Coloring.

2 Preliminaries

For a vertex set S ⊆ V , the subgraph induced by S is denoted by G[S]. A graph
G is said to be H-free if G does not have H as an induced subgraph. We follow
the standard graph theoretic terminology from [13].

A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed
and finite alphabet. For (x, k) ∈ Σ∗ × N, k is referred to as the parameter.
A parameterized problem L is fixed parameter tractable (FPT) if there is an
algorithm A, a computable non-decreasing function f : N → N and a constant
c such that, given (x, k) ∈ Σ∗ × N the algorithm A correctly decides whether
(x, k) ∈ L in time bounded by f(k).|x|c. For more details on parameterized
algorithms refer to [14].

A tree decomposition of G is a pair (T, {Xi, i ∈ I}), where for i ∈ I, Xi ⊆ V
(usually called bags) and T is a tree with elements of I as the nodes such that:

1. For each vertex v ∈ V , there is an i ∈ I such that v ∈ Xi.
2. For each edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi.
3. For each vertex v ∈ V , T [{i ∈ I|v ∈ Xi}] is connected.

The width of the tree decomposition is maxi∈I(|Xi| − 1). The tree-width of G
is the minimum width taken over all tree decompositions of G and we denote it
as t. For more details on tree-width, we refer the reader to [15]. A rooted tree
decomposition is called a nice tree decomposition, if every node i ∈ I is one of
the following types:

1. Leaf Node: For a leaf node i, Xi = ∅.
2. Introduce Node: An introduce node i has exactly one child j and there is a

vertex v ∈ V \Xj such that Xi = Xj ∪ {v}.
3. Forget Node: A forget node i has exactly one child j and there is a vertex
v ∈ V \Xi such that Xj = Xi ∪ {v}.

4. Join Node: A join node i has exactly two children j1 and j2 such that Xi =
Xj1 = Xj2 .

The notion of nice tree decomposition was introduced by Kloks [16]. Every graph
G has a nice tree decomposition with |I| = O(n) nodes and width equal to the
tree-width of G. Moreover, such a decomposition can be found in linear time if
the tree-width is bounded.

2.1 Overview of the Techniques Used

In the rest of the paper, we assume that the nice tree decomposition is given. Let
i be a node in the nice tree decomposition, Xi is the bag of vertices associated
with the node i. Let Ti be the subtree rooted at the node i and G[Ti] denote the
graph induced by all the vertices in Ti.

We use dynamic programming on the nice tree decomposition. We process
the nodes of the nice tree decomposition according to its post order traversal. We
say that a partition (A,B) of G is a valid partition if neither G[A] nor G[B] has

H as an induced subgraph. At each node i, we check each bipartition (Ai, Bi) of
the bag Xi to see if (Ai, Bi) leads to a valid partition in the graph G[Ti]. For each
partition, we also keep some extra information that will help us to detect if the
partition leads to an invalid partition at some ancestral (parent) node. We have
four types of nodes in the tree decomposition – leaf, introduce, forget and join
nodes. In the algorithm, we explain the procedure for updating the information
at each of these nodes and consequently, to certify whether a partition is valid
or not. During the description of the algorithms, we refer to the set V (Ti)\Xi,
i.e., the vertices in the subtree Ti but not in the bag Xi, as forgotten vertices of
the subtree Ti.

In Section 3, we start the discussion with H-Free 2-Coloring problems.
In Sections 3.1 and 3.2, we discuss the algorithm for the cases when H = Kr and
H = C4 respectively before moving on to the case of general H in Section 3.3.
In Section 4, we give the algorithm for H-Free q-Coloring problem. In Sec-
tion 5, we give the algorithm for H-(Subgraph)Free q-Coloring problem.
Presenting the algorithms for H = Kr and H = C4 initially will help in the
exposition, as they will help to understand the setup before moving to the more
involved general case.

3 Algorithms for H-Free 2-Coloring Problems

3.1 Kr-Free 2-Coloring

In this section, we consider the H-Free 2-Coloring problem when H = Kr,
a complete graph on r vertices.

Let Ψ = (Ai, Bi) be a partition of a bag Xi. We set Mi[Ψ] to 1 if there exists
a partition (A,B) of V (Ti) such that Ai ⊆ A, Bi ⊆ B and both G[A] and G[B]
are Kr-free. Otherwise, Mi[Ψ] is set to 0.

Leaf node: For a leaf node Ψ = (∅, ∅) and Mi[Ψ] = 1. This step takes constant
time.

Introduce node: Let j be the only child of the node i. Let v be the lone vertex
in Xi\Xj . Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has Kr as a
subgraph, we set Mi[Ψ] to 0. Otherwise, we use the following cases to compute
Mi[Ψ] value. Since v cannot have forgotten neighbors, it can form a Kr only
within the bag Xi.

Case 1: v ∈ Ai, Mi[Ψ] = Mj [Ψ
′], where Ψ ′ = (Ai\{v}, Bi).

Case 2: v ∈ Bi, Mi[Ψ] = Mj [Ψ
′], where Ψ ′ = (Ai, Bi\{v}).

The total number of Ψ ’s for Xi is 2t+1, for each Ψ checking if G[Ai] or G[Bi]
contains Kr as subgraph can be done in (t + 1)rr2 time. Hence the total time
complexity at the introduce node is O(2ttr).

Forget node: Let j be the only child of the node i. Let v be the lone vertex
in Xj\Xi. Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or G[Bi] has Kr as a

subgraph, we set Mi[Ψ] to 0. Otherwise, Mi[Ψ] = max{Mj [Ψ
′],Mj [Ψ

′′]}, where,
Ψ ′ = (Ai ∪ {v}, Bi) and Ψ ′′ = (Ai, Bi ∪ {v}).

The total number of Ψ ’s for Xi is 2t, for each Ψ checking if G[Ai] or G[Bi] con-
tains Kr as subgraph can be done in trr2 time. Hence the total time complexity
at the forget node is O(2ttr).

Join node: Let j1 and j2 be the children of the node i. Xi = Xj1 = Xj2

and V (Tj1) ∩ V (Tj2) = Xi. Let Ψ = (Ai, Bi) be a partition of Xi. If G[Ai] or
G[Bi] has Kr as a subgraph, we set Mi[Ψ] to 0. Otherwise, we use the following
expression to compute Mi[Ψ] value. Since there are no edges between V (Tj1)\Xi

and V (Tj2)\Xi, a Kr cannot contain forgotten vertices from both Tj1 and Tj2 .

Mi[Ψ] =

{
1, If Mj1 [Ψ] = 1 and Mj2 [Ψ] = 1.

0, Otherwise.
(1)

The total number of Ψ ’s for Xi is 2t+1, for each Ψ checking if G[Ai] or G[Bi]
contains Kr as subgraph can be done in (t + 1)rr2 time. Hence the total time
complexity at the join node is O(2ttr).

The correctness of the algorithm is implied from the correctness of Mi[Ψ]
values, which can be proved using bottom up induction on the nice tree decom-
position. G has a valid bipartitioning if there exists a Ψ such that Mr[Ψ] = 1,
where r is the root node of the nice tree decomposition. The total time com-
plexity of the algorithm is O(2ttr · n) = O(2t+r log t · n). With this we state the
following theorem.

Theorem 1. There is an O(2t+r log t ·n) time algorithm that solves the H-Free
2-Coloring problem when H = Kr, on graphs with tree-width at most t.

3.2 C4-Free 2-Coloring

In this section, we describe the combinatorial algorithm for the H-Free 2-
Coloring problem for the case when H = C4, a cycle of length 4.

Note that an induced cycle of length 4 is formed when a pair of non-adjacent
vertices have two non-adjacent neighbors. If a graph has no induced C4 then
any non-adjacent vertex pairs cannot have two or more non-adjacent vertices
as neighbors. They can have neighbors which are pairwise adjacent. We keep
track of such vertex pairs as they can form an induced C4 at some ancestral
(introduce/join) nodes. Let Xi be a bag at the node i of the nice tree decom-
position. We consider partitions (Ai, Bi) of the bag Xi and see if they lead to a
valid partition (A,B) of V (Ti). For each non-adjacent pair of vertices from Ai
(similarly Bi), we also guess if the pair has a common forgotten neighbor in part
A (similarly B) of the partition. We check if the above guesses lead to a valid
partitioning in the subgraph G[Ti], which is the graph induced by the vertices
in the node i and all its descendant nodes. In this section, we use the standard
notation of

(
S
2

)
to denote the set of all 2-subsets of a set S.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple defined as follows: (Ai, Bi) is a partition
of Xi, Pi ⊆

(
Ai

2

)
and Qi ⊆

(
Bi

2

)
. Intuitively, Pi and Qi are the set of those

non-adjacent pairs that have common forgotten neighbor.
We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.
2. Every pair in Pi has a common neighbor in A\Ai.
3. Every pair in

(
Ai

2

)
\ Pi does not have a common neighbor in A\Ai.

4. Every pair in Qi has a common neighbor in B\Bi.
5. Every pair in

(
Bi

2

)
\Qi does not have a common neighbor in B\Bi.

6. G[A] and G[B] are C4-free.

Otherwise, Mi[Ψ] is set to 0. Suppose there exists a 4-tuple Ψ such that Mr[Ψ] =
1, where r is the root of the nice tree decomposition. Then the above conditions
1 and 6 ensure that G can be partitioned in the required manner.

When one of the following occurs, it is easy to see that the 4-tuple does not
lead to a required partition. We say that the 4-tuple Ψ is invalid if one of the
below cases occur:

(i) G[Ai] or G[Bi] contains an induced C4.
(ii) There exists a pair {x, y} ∈ Pi such that {x, y} ∈ E.
(iii) There exists a pair {x, y} ∈ Qi such that {x, y} ∈ E.

Note that it takes O(t4) time to check if a given Ψ is invalid. Below we explain
how to compute Mi[Ψ] value at each node i.

Leaf node: For a leaf node i, Ψ = (∅, ∅, ∅, ∅) and Mi[Ψ] = 1. This step takes
constant time.

Introduce node: Let j be the only child of the node i. Suppose v ∈ Xi is the
new vertex present in Xi, v /∈ Xj . Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If
Ψ is invalid, we set Mi[Ψ] to 0. Otherwise, we use the following cases to compute
the Mi[Ψ] value.

Case 1, v ∈ Ai: If ∃{v, x} ∈ Pi for some x ∈ Ai or if ∃{x, y} ∈ Pi such that
{x, y} ⊆ N(v) ∩ Ai, then Mi[Ψ] = 0. Otherwise, Mi[Ψ] = Mj [Ψ

′], where
Ψ ′ = (Ai\{v}, Bi, Pi, Qi).
As v is a newly introduced vertex, it cannot have any forgotten neighbors.
Hence, {v, x} ∈ Pi =⇒ Mi[Ψ] = 0. If x and y have a common forgotten
neighbor, they all form an induced C4, together with v. Hence {x, y} ∈
Pi =⇒Mi[Ψ] = 0.

Case 2, v ∈ Bi: If ∃{v, x} ∈ Qi for some x ∈ Bi or if ∃{x, y} ∈ Qi such that
{x, y} ⊆ N(v) ∩ Bi, then Mi[Ψ] = 0. Otherwise, Mi[Ψ] = Mj [Ψ

′], where
Ψ ′ = (Ai, Bi\{v}, Pi, Qi).

The total number of Ψ ’s for Xi is 2t+12(t+1)2 . It takes O(t4) time to check if

Ψ is invalid. Hence total time complexity at the introduce node is O(2t
2+3tt4).

Forget node: Let j be the only child of the node i. Suppose v ∈ Xj is the
vertex missing in Xi, v /∈ Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple of Xi, If Ψ is
invalid, we set Mi[Ψ] to 0. Otherwise, Mi[Ψ] is computed as follows:

Case 1, v ∈ Aj: If ∃x, y ∈ Ai such that xy /∈ E and xv, yv ∈ E, then v is a
common forgotten neighbor for x and y. Hence we set Mi[Ψ] = 0 whenever
{x, y} /∈ Pi. Otherwise, let R = {{x, y}|x, y ∈ Ai∩N(v)}. Some of the vertex
pairs in R can still have a common forgotten neighbor (other than v) at node
j which is adjacent to v. Also there can be new pairs formed with v at the
node j. Let S = {{v, x}|x ∈ Ai}. We have the following equation.

δ1 = max
X⊆S,Y⊆R

{Mj [Ai ∪ {v}, Bi, (Pi\R) ∪ (X ∪ Y), Qi]}. (2)

Case 2, v ∈ Bj: This is analogous to Case 1. We set Mi[Ψ] = 0, whenever
{x, y} /∈ Qi. Otherwise, letR = {{x, y}|x, y ∈ Bi∩N(v)} and S = {{v, x}|x ∈
Bi}.

δ2 = max
X⊆S,Y⊆R

{Mj [Ai, Bi ∪ {v}, Pi, (Qi\R) ∪ (X ∪ Y)]}. (3)

If Mi[Ψ] is not set to 0 already, we set Mi[Ψ] = max{δ1, δ2}.
The total number of Ψ ’s for Xi is 2t2t

2

. It takes O(t4) time to check if Ψ is
invalid. The computations of δ1 and δ2 requires us to iterate over every subset
of S which is of size at most t and every subset of R which is of size at most
t2. Hence, we get a factor of 2t+t

2

in the overall time complexity. Thus the total
time complexity at the forget node is O(22t

2+2tt4).

Join node: Let j1 and j2 be the children of the node i. By the property of nice
tree decomposition, we have Xi = Xj1 = Xj2 and V (Tj1) ∩ V (Tj2) = Xi. There
are no edges between V (Tj1)\Xi and V (Tj2)\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a
4-tuple of Xi. If Ψ is invalid, we set Mi[Ψ] to 0. Otherwise, we use the following
expression to compute the value of Mi[Ψ].

A pair {x, y} ∈ Pi can come either from the left subtree or from the right
subtree but not from both, for that would imply two distinct non-adjacent com-
mon neighbors for x and y and hence an induced C4. For X ⊆ Pi and Y ⊆ Qi,
Ψ1 = (Ai, Bi, X, Y) and Ψ2 = (Ai, Bi, Pi\X,Qi\Y).

Mi[Ψ] =

{
1, ∃X ⊆ Pi, Y ⊆ Qi such that Mj1 [Ψ1] = Mj2 [Ψ2] = 1.

0, Otherwise.
(4)

The total number of Ψ ’s for Xi is 2t+12(t+1)2 . It takes O(t4) time to check if

Ψ is invalid. As we solve the equation 4, a factor of 2(t+1)2 comes in the overall
time complexity. Hence total time complexity at the join node is O(22t

2+5tt4).

The correctness of the algorithm is implied by the correctness of Mi[Ψ] values,
which follows by a bottom-up induction on the nice tree decomposition. G has
a valid bipartitioning if there exists a 4-tuple Ψ such that Mr[Ψ] = 1, where r is
the root of the nice tree decomposition. We have the following theorem.

Theorem 2. There is an O(23t
2 · n) time algorithm that solves the H-Free

2-Coloring problem when H = C4 on graphs with tree-width at most t.

u u

u u

u u

1

3 4

5 6

2

Fig. 1. An example graph H.

iv

v v1 2

Fig. 2. Forming H at an introduce node.
Sequence s = (v, v2, v1, fg, fg, fg).

i

jj
v v v v

v v

1 2 21

1 2

1 2

Fig. 3. Forming H at join node. Sequences at node j1, s′ = (dc, dc, v1, v2, fg, fg), at
node j2, s′′ = (fg, fg, v1, v2, dc, dc) gives a sequence s = (fg, fg, v1, v2, fg, fg) at node i.
The vertices outside the dashed lines are forgotten vertices.

3.3 H-Free 2-Coloring Problem

Let Xi be a bag at node i of the nice tree decomposition. Let (Ai, Bi) be a
partition of Xi. We can easily check if G[Ai] or G[Bi] has H as an induced
subgraph. Otherwise, we need to see if there is a partition (A,B) of V (Ti) such
that Ai ⊆ A, Bi ⊆ B and both G[A] and G[B] are H-free. If there is such
a partition (A,B), then G[A] and G[B] may have subgraph H ′, an induced
subgraph of H which can lead to H at some ancestral node (introduce node or
join node) of the nice tree decomposition (see Figures 2 and 3).

We perform dynamic programming over the nice tree decomposition. At each
node i we guess a partition (Ai, Bi) of Xi and possible induced subgraphs of H
that are part of A and B respectively. We check if such a partition is possible.
Below we explain the algorithm in detail.

Let the vertices of the graph H be labeled as u1, u2, u3, . . . , ur. Let (Ai, Bi)
be a partition of vertices in the bag Xi. Let (A,B) be a partition of V (Ti) such
that A ⊇ Ai and B ⊇ Bi. We define ΓAi

as follows:

SAi
={(w1, w2, w3, . . . , wr)|w` ∈ {Ai ∪ {fg,dc}},
∀`1 6= `2, w`1 = w`2 =⇒ w`1 ∈ {fg,dc}}.

IAi
={s = (w1, w2, w3, . . . , wr) ∈ SAi

| there exists `1 6= `2

such that w`1 = fg, w`2 = dc and {u`1 , u`2} ∈ E(H)}.
ΓAi

=SAi
\IAi

.

Here ‘fg’ represents a vertex in A\Ai, i.e. the forgotten vertices in A. The
label ‘dc’ (can be thought of as “don’t care”) represents the vertices that are not
part of the subgraph right now, and can potentially be added at some ancestral
nodes to form a larger induced subgraph of H.

Similarly, we can define ΓBi
with respect to the sets Bi and B.

A sequence in SAi corresponds to an induced subgraph H ′ of H in A as
follows:

1. If w` = fg then u` is part of A\Ai, the forgotten vertices in A.
2. If w` = dc then u` is not be part of the subgraph H ′.
3. If w` ∈ Ai then the vertex w` corresponds to the vertex u` of H ′.

ΓAi
is the set of sequences that can become H in future at some ancestral

(introduce/join) node of the tree decomposition. Note that the sequences IAi
are

excluded from ΓAi
because a forgotten vertex cannot have an edge to a vertex

which will come in future at some ancestral node (introduce or join nodes).

Definition 1 (Induced Subgraph Legal Sequence in ΓAi
with respect

to A). A sequence s = (w1, w2, w3, . . . , wr) ∈ ΓAi
is legal if the sequence s

corresponds to an induced subgraph H ′ of H within A as follows.
Let FG(s) = {`|w` = fg}, DC(s) = {`|w` = dc} and VI(s) = [r]\{FG(s) ∪

DC(s)}. Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s)∪FG(s)}.
That is H ′ = H[{u`|` ∈ VI(s) ∪ FG(s)}].

If there exist |FG(s)| distinct vertices z` ∈ A\Ai corresponding to each index
in FG(s) such that H ′ is isomorphic to G[{w`|` ∈ VI(s)}∪{z`|` ∈ FG(s)}], then
s is legal. Otherwise, the sequence is illegal.

Analogously, we define legal/illegal sequences in ΓBi
with respect to B.

Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple. Here, (Ai, Bi) is a partition of Xi,
Pi ⊆ ΓAi

and Qi ⊆ ΓBi
.

We define Mi[Ψ] to be 1 if there is a partition (A,B) of V (Ti) such that:

1. Ai ⊆ A and Bi ⊆ B.
2. Every sequence in Pi is legal with respect to A.
3. Every sequence in Qi is legal with respect to B.
4. Every sequence in ΓAi\Pi is illegal with respect to A.
5. Every sequence in ΓBi\Qi is illegal with respect to B.
6. Neither G[A] nor G[B] contains H as an induced subgraph.

Otherwise Mi[Ψ] is set to 0.

We call a 4-tuple Ψ as invalid if one of the following conditions occur. If Ψ is
invalid we set Mi[Ψ] to 0.

1. There exists a sequence s ∈ Pi such that s does not contain dc.

2. There exists a sequence s ∈ Qi such that s does not contain dc.

As |Pi|+ |Qi| ≤ (t+ 5)r, it takes (t+ 5)rr time to check if Ψ is invalid.

Now we explain how to compute Mi[Ψ] values at the leaf, introduce, forget
and join nodes of the nice tree decomposition.

Leaf node: Let i be a leaf node, Xi = ∅, for Ψ = (Ai, Bi, Pi, Qi), we have
Mi[Ψ] = 1. Here Ai = Bi = ∅, Pi ⊆ {([dc]r)} and Qi ⊆ {([dc]r)}. This step
takes constant time.

Introduce node: Let i be an introduce node and j be the child node of i. Let
{v} = Xi\Xj . Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid
we set Mi[Ψ] = 0. Otherwise depending on whether v ∈ Ai or v ∈ Bi we have
two cases. We discuss only the case v ∈ Ai, the case v ∈ Bi can be analogously
defined.

v ∈ Ai: We set Mi[Ψ] = 0, if there exists an illegal sequence s (in Pi) containing
v or if there exists a trivial legal sequence s containing v but s is not in Pi.

That is, we set Mi[Ψ] = 0 if one of the following (?) conditions occurs:

[? Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) but
{v, w`2} /∈ E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} /∈ E(H) but
{v, w`2} ∈ E(G).

3. ∃`1 6= `2, such that w`1 = v, w`2 = fg, {u`1 , u`2} ∈ E(H).
4. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAi\Pi. There exists `1 such that
w`1 = v and for all `2 6= `1, w`2 ∈ Ai ∪ {dc}. For all `1 6= `2,
w`1 , w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) ⇐⇒ {w`1 , w`2} ∈ E(G).

The conditions 1 − 3 are to check if a sequence s ∈ Pi containing the
vertex v is an illegal sequence. The condition 4 is to check if a sequence
s /∈ Pi containing the vertex v is a trivial legal sequence. Otherwise we set
Mi[Ψ] = Mj [Ψ

′], where Ψ ′ = (Ai\{v}, Bi, Pj , Qi). Here Pj is computed as
Pj = ∪s∈Pi

{Repdc(s, v)}, where Repdc is defined as follows:

Definition 2. Repdc(s, v) = s′, sequence s′ obtained by replacing v (if
present) with dc in s.

Note that, Repdc(s, v) = s, if v not present in s.

The total number of Ψ ’s for Xi is 2(t+1)2(t+5)r . Checking if Ψ is invalid takes
(t + 5)rr time. Checking for illegal sequences containing v (steps 1 to 3 in ?
Conditions) takes (t+ 5)rr time. Checking for legal sequences containing v not
part of Pi/Qi (steps 4 in ? Conditions) takes (t + 5)rr2. Computing Ψ ′ takes
(t+ 5)rr. Hence total time complexity is O(2(t+1)2(t+5)r (t+ 5)2rr2) = O(22t

r

).

Forget node: Let i be a forget node and j be the only child of node i. Let
{v} = Xj\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid
we set Mi[Ψ] = 0. Otherwise, we set Mi[Ψ] = max{δ1, δ2} where δ1 and δ2 are
computed as follows:

Computing δ1: Set Aj = Ai ∪ {v}. As v is the extra vertex in Aj , there could
be many possible Pj at node j.

Definition 3. Repfg(s, v) = s′, sequence s′ obtained by replacing v (if present)

with fg in s.

Note that, if s does not contain the vertex v then Repfg(s, v) = s.

We also extend the definition of Repfg to a set of sequences as follows:

Repfg(S, v) = ∪s∈S{Repfg(s, v)}.

Note that, if s is a legal sequence at the node j with respect to A, then
Repfg(s, v) is also a legal sequence at node i with respect to A.

δ1 = max
Pj⊆ΓAj

Repfg(Pj ,v)=Pi

{Mj [(Aj , Bi, Pj , Qi)]}

Computing δ2: Bj = Bi ∪{v}. It is analogous to computing δ1 but we process
on B.

The total number of Ψ ’s for Xi is 2t(t + 4)r. Checking for invalid case takes
(t+ 4)rr time. computing δ1 and δ2 takes 2(t+4)r (t+ 4)rr time. Hence the total
time complexity is O(2t22(t+4)r (t+ 4)2rr2) = O(23t

r

).

Join node: Let i be a join node, j1, j2 be the left and right children of the node
i respectively. Xi = Xj1 = Xj2 and there are no edges between V (Tj1)\Xi and
V (Tj2)\Xi. Let Ψ = (Ai, Bi, Pi, Qi) be a 4-tuple at node i. If Ψ is invalid we set
Mi[Ψ] = 0. Otherwise, we compute Mi[Ψ] value as follows:

Definition 4. Let s = (w1, w2, w3, . . . , wr), s′ = (w′1, w
′
2, w

′
3, . . . , w

′
r) and s′′ =

(w′′1 , w
′′
2 , w

′′
3 , . . . , w

′′
r) be three sequences. We say that s = Merge(s′, s′′) if the

following conditions are satisfied.

1. ∀` w` ∈ Xi =⇒ w′` = w′′` = w`.

2. ∀` w` = fg =⇒ either (w′` = fg and w′′` = dc) or (w′` = dc and w′′` = fg).

3. ∀` w` = dc =⇒ w′` = w′′` = dc.

Note that, if s′ ∈ ΓAj1
and s′′ ∈ ΓAj2

are legal sequences at node j1 and j2
respectively then s is a legal sequence at node i with respect to A. We extend
the Merge operation to sets of sequences as follows:

Merge(S1, S2) = {s|∃s′ ∈ S1, s
′′ ∈ S2 such that s = Merge(s′, s′′)}.

We set Mi[Ψ] = 1 if there exists Pj1 , Qj1 , Pj2 and Qj2 such that the following
conditions are satisfied:

(i) Pi = Merge(Pj1 , Pj2), (ii) Qi = Merge(Qj1 , Qj2),
(iii) Mj1 [Ai, Bi, Pj1 , Qj1] = 1, and (iv) Mj2 [Ai, Bi, Pj2 , Qj2] = 1.

The total number of Ψ ’s for Xi is 2(t+1)2(t+5)r . Checking if Ψ is invalid takes
(t+5)rr. A factor of 4(t+5)r (t+5)rr comes as we try all possible Pj1 , Qj1 , Pj2 , Qj2 .
Hence the total time complexity at join node is O(2(t+1)23(t+5)r (t + 5)rr) =
O(24t

r

).
The graph has a valid bipartitioning if there exists a Ψ such that Mr[Ψ] = 1,

where r is the root node of the nice tree decomposition. The correctness of the
algorithm is implied by the correctness of Mi[Ψ] values, which can be proved
using a bottom up induction on the nice tree decomposition. Thus we get the
following:

Theorem 3. There is an O(24t
r · n) time algorithm that solves the H-Free 2-

Coloring problem for any arbitrary fixed H, on graphs with tree-width at most
t.

4 Algorithm for H-Free q-Coloring Problem

We note that our techniques extend in a straightforward manner to solve the
H-Free q-Coloring problem. In this case, we have to consider tuples Ψ that
have 2q sets. That is Ψ = (A1

i , A
2
i , . . . , A

q
i , P

1
i , P

2
i , . . . , P

q
i). Here Aji ⊆ Xi and

P ji ⊆ ΓAj
i
. The operations at the leaf, introduce and forget nodes are very similar

to the case of 2-coloring problem. At introduce and forget nodes we will have q
cases instead of 2 cases. At the join node we need to define the Merge operation
on q sets instead of 2 sets. Below is the modified definition of Merge.

Definition 5. Let s = (w1, w2, w3, . . . , wr), s1 = (w1
1, w

1
2, w

1
3, . . . , w

1
r), s

2 =
(w2

1, w
2
2, w

2
3, . . . , w2

r) , . . . , s
q = (wq1, w

q
2, w

q
3, . . . , w

q
r) be three sequences. We say

that s = Merge(s1, s2, s3, . . . , sq) if the following conditions are satisfied.

1. ∀` w` ∈ Xi =⇒ w1
` = w2

` = · · · = wq` = w`.

2. ∀` w` = fg =⇒ ∃i such that wi` = fg and ∀j 6= i, wj` = dc.
3. ∀` w` = dc =⇒ w1

` = w2
` = · · · = wq` = dc.

Thus we state the following theorem.

Theorem 4. There is an O(q4t
r · n) time algorithm that solves the H-Free q-

Coloring problem for any arbitrary fixed H, on graphs with tree-width at most
t.

The H-Free Chromatic Number is at most the chromatic number χ(G).
For graphs with tree-width t, we have χ(G) ≤ t+ 1. Our techniques can also be
used to compute the H-Free Chromatic Number of the graph by searching
for the smallest q for which there is an H-free q-coloring. We have the following
theorem.

Theorem 5. There is an O(t4t
r · n log t) time algorithm to compute H-Free

Chromatic Number of the graph whose tree-width is at most t.

5 Algorithm for H-(Subgraph)Free q-Coloring Problem

We can solve the H-(Subgraph)Free 2-Coloring problem using the tech-
niques described in Section 3.3. As we are looking for bipartitioning without H
as a subgraph, we need to modify the Definition 1 and (?) conditions.

Instead of Definition 1 we have Definition 6.

Definition 6 (Subgraph Legal Sequence in ΓAi
with respect to A). A

sequence s = (w1, w2, w3, . . . , wr) ∈ ΓAi
is legal if the sequence s corresponds to

a subgraph H ′ of H within A as follows.
Let FG(s) = {`|w` = fg}, DC(s) = {`|w` = dc} and VI(s) = [r]\{FG(s) ∪

DC(s)}. Let H ′ be the induced subgraph of H formed by u`, ` ∈ {VI(s)∪FG(s)}.
That is H ′ = H[{u`|` ∈ VI(s) ∪ FG(s)}].

If there exist |FG(s)| distinct vertices z` ∈ A\Ai corresponding to each index
in FG(s) such that H ′ is a subgraph of G[{w`|` ∈ VI(s)}∪ {z`|` ∈ FG(s)}], then
s is legal. Otherwise, the sequence is illegal.

At the introduce node, instead of (?) conditions we have to check the following
(??) conditions:

[?? Conditions]

1. ∃`1 6= `2, such that w`1 = v, w`2 ∈ Ai, {u`1 , u`2} ∈ E(H) but {v, w`2} /∈
E(G).

2. ∃`1 6= `2, such that w`1 = v, w`2 = fg, {u`1 , u`2} ∈ E(H).
3. Let s = (w1, w2, w3, . . . , wr) ∈ ΓAi

\Pi. There exists `1 such that w`1 = v
and for all `2 6= `1, w`2 ∈ Ai ∪ {dc}. For all `1 6= `2, w`1 , w`2 ∈ Ai,
{u`1 , u`2} ∈ E(H) =⇒ {w`1 , w`2} ∈ E(G).

Thus we get the following:

Theorem 6. There is an O(q4t
r ·n) time algorithm that solves the H-(Subgraph)Free

q-Coloring problem for any arbitrary fixed H, on graphs with tree-width at most
t.

Theorem 7. There is an O(t4t
r ·n log t) time algorithm to compute H-(Subgraph)Free

Chromatic Number of the graph whose tree-width is at most t.

References

1. Achlioptas, D.: The complexity of G-free colourability. Discrete Mathematics
165-166(Supplement C) (1997) 21–30

2. Kubicka, E., Kubicki, G., McKeon, K.A.: Chromatic sums for colorings avoiding
monochromatic subgraphs. Electronic Notes in Discrete Mathematics 43 (2013)
247–254

3. Kubicka, E., Kubicki, G., McKeon, K.A.: Chromatic sums for colorings avoiding
monochromatic subgraphs. Discussiones Mathematicae Graph Theory 43 (08 2015)
541–555

4. Karpiński, M.: Vertex 2-coloring without monochromatic cycles of fixed size is
NP-complete. Theoretical Computer Science 659(Supplement C) (2017) 88–94

5. Xiao, M., Nagamochi, H.: Complexity and kernels for bipartition into degree-
bounded induced graphs. Theoretical Computer Science 659 (2017) 72–82

6. Cowen, L.J., Cowen, R.H., Woodall, D.R.: Defective colorings of graphs in surfaces:
Partitions into subgraphs of bounded valency. Journal of Graph Theory 10(2)
(1986) 187–195

7. Bazgan, C., Tuza, Z., Vanderpooten, D.: Degree-constrained decompositions of
graphs: Bounded treewidth and planarity. Theoretical Computer Science 355(3)
(2006) 389–395

8. Wu, Y., Yuan, J., Zhao, Y.: Partition a graph into two induced forests. Journal of
Mathematical Study 1 (1996) 1–6

9. Farrugia, A.: Vertex-partitioning into fixed additive induced-hereditary properties
is NP-hard. The Electronic Journal of Combinatorics 11 (2004)

10. Rao, M.: MSOL partitioning problems on graphs of bounded treewidth and clique-
width. Theoretical Computer Science 377(1) (2007) 260–267

11. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation 85(1) (1990) 12–75

12. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. Theoretical Informatics and Applications 26 (1992)
257–286

13. Diestel, R.: Graph Theory. Springer-Verlag Heidelberg (2005)
14. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,

Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)
15. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.

Journal of Combinatorial Theory, Series B 52(2) (1991) 153–190
16. Kloks, T., ed. In: Treewidth: Computations and Approximations. Lecture Notes

in Computer Science, Springer (1994)

