
Parameterized Complexity of Happy Coloring Problems*

Akanksha Agrawal�1, N. R. Aravind2, Subrahmanyam Kalyanasundaram2, Anjeneya
Swami Kare�3, Juho Lauri4, Neeldhara Misra5, and I. Vinod Reddy§6

1Ben-Gurion University of the Negev, Israel
2Indian Institute of Technology Hyderabad, India

3University of Hyderabad, India
4Nokia Bell Labs, Ireland

5Indian Institute of Technology Gandhinagar, India
6Indian Institute of Technology Bhilai, India

Abstract

In a vertex-colored graph, an edge is happy if its endpoints have the same color. Similarly, a
vertex is happy if all its incident edges are happy. Motivated by the computation of homophily in
social networks, we consider the algorithmic aspects of the following Maximum Happy Edges (k-
MHE) problem: given a partially k-colored graph G and an integer `, find an extended full k-coloring
of G making at least ` edges happy. When we want to make ` vertices happy on the same input,
the problem is known as Maximum Happy Vertices (k-MHV). We perform an extensive study
into the complexity of the problems, particularly from a parameterized viewpoint. For every k ≥ 3,
we prove both problems can be solved in time 2nnO(1). Moreover, by combining this result with a
linear vertex kernel of size (k + `) for k-MHE, we show that the edge-variant can be solved in time
2`nO(1). In contrast, we prove that the vertex-variant remains W[1]-hard for the natural parameter `.
However, the problem does admit a kernel with O(k2`2) vertices for the combined parameter k + `.
From a structural perspective, we show both problems are fixed-parameter tractable for treewidth
and neighborhood diversity, which can both be seen as sparsity and density measures of a graph.
Finally, we extend the known NP-completeness results of the problems by showing they remain hard
on bipartite graphs and split graphs. On the positive side, we show the vertex-variant can be solved
optimally in polynomial-time for cographs.

1 Introduction

Analyzing large networks is of fundamental importance for a constantly growing number of applications.
In particular, how does one mine e.g., social networks to provide valuable insight? A basic observation
concerning the structure of social networks is homophily, that is, the principle that we tend to share
characteristics with our friends. Intuitively, it seems believable our friends are similar to us in terms of
their age, gender, interests, opinions, and so on. In fact, this observation is well-known in sociology (see
e.g., [16, 27, 26]). For example, imagine a network of supporters in a country with a two-party system.
In order to check whether there is homophily by political stance (i.e., a person tends to befriend a person
with similar political beliefs), we could count the number of edges between two people of opposite beliefs.
If there were no such edges, we would observe homophily in an extreme sense. It is characteristic of
social networks that they evolve over time: links tend to be added between people that share some
characteristic. But given a snapshot of the network, how extensively can homophily be present? For
instance, how far can an extreme ideology spread among people some of whom are “politically neutral”?

*The present manuscript is a combination of the works [1, 3, 28], two of which appeared in the proceedings of the 28th
International Workshop on Combinatorial Algorithms (IWOCA).

�This work was done while the author was a Ph.D. student at University of Bergen, Norway.
�This work was done while the author was a Ph.D. student at IIT Hyderabad, India.
§This work was done while the author was a Ph.D. student at IIT Gandhinagar, India.

1

We abstract these questions regarding the computation of homophily as follows. Consider a vertex-
colored graph G = (V,E). We say an edge is happy if its endpoints have the same color (otherwise, the
edge is unhappy). Similarly, a vertex is happy if it and all its neighbors have the same color (otherwise,
the vertex is unhappy). Equivalently, a vertex is happy when all of its incident edges are happy. Let
S ⊆ V (G), and let c : S → [k] be a partial vertex-coloring of G. A coloring c̃ : V (G)→ [k] is an extended
full coloring of c if c̃|S = c, i.e, c̃(v) = c(v) for all v ∈ S. In this work, we consider the following coloring
problems.

Weighted Maximum Happy Edges (Weighted MHE)
Input: A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring c : S → [k], and a
weight function w : E(G)→ N.
Output: A coloring c̃ : V (G) → [k] such that c̃|S = c maximizing the total weight of the happy
edges.

Weighted Maximum Happy Vertices (Weighted MHV)
Input: A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring c : S → [k], and a
weight function w : V (G)→ N.
Output: A coloring c̃ : V (G) → [k] such that c̃|S = c maximizing the total weight of the happy
vertices.

Less generally, we typically consider the unweighted variants of the problems obtained by letting the
weight of each edge or vertex be one. We refer these problems as Maximum Happy Edges (MHE) and
Maximum Happy Vertices (MHV) respectively. Moreover, when k is fixed and not part of the input,
we refer the weighted variants of the problems as Weighted k-MHE and Weighted k-MHV and the
unweighted variants of the problems as k-MHE and k-MHV respectively.

1.1 Previous Work

Zhang and Li [30] proved that for every k ≥ 3, the problems k-MHE and k-MHV are NP-complete.
However, when k = 2, they gave algorithms running in time O(min{n2/3m,m3/2}) and O(mn7 log n)
for 2-MHE and 2-MHV, respectively. Towards this end, the authors used max-flow algorithms (2-MHE)
and minimization of submodular functions (2-MHV). Moreover, the authors presented approximation
algorithms with approximation ratios 1/2 and max{1/k,Ω(∆−3)} for k-MHE and k-MHV, respectively,
where ∆ is the maximum degree of the graph. Later on, Zhang, Jiang, and Li [29] gave improved
algorithms with approximation ratios 0.8535 and 1/(∆+1) for k-MHE and k-MHV, respectively. In [2],
a subset of the current authors proved that both problems are solvable in polynomial time for trees.

Perhaps not surprisingly, the happy coloring problems are tightly related to cut problems. Indeed, the
k-MHE problem is a generalization of the following Multiway Uncut problem [25]. In this problem,
we are given a weighted undirected graph G = (V,E) and a terminal set S = {s1, s2, . . . , sk} ⊆ V (G).
The goal is to find a partition of V (G) into classes V1, . . . , Vk such that each class contains exactly
one terminal and the total weight of the edges not cut by the partition is maximized. We obtain the
Multiway Uncut problem as a special case of k-MHE, when each color is used to precolor exactly one
vertex. We also mention that the complement of the Multiway Uncut problem is the Multiway Cut
problem that has been studied before (see e.g., [13, 11]). There are known (parameterized) algorithms
for the Multiway Cut problem with the size of the cut ` as the parameter. In this regard, the fastest
known algorithm runs in O∗(1.84`) time [10].

1.2 Our Results

We perform an extensive study of the complexity of the two problems, particularly from a parameterized
perspective. For the summary below, we recall that we use k to denote the number of colors, and ` to
denote the target total weight of the number of happy vertices.

� In Section 3, we consider exact exponential-time algorithms for the happy coloring problems. The
naive brute force runs in knnO(1) time, but we show that for every k ≥ 3, there is an algorithm
running in time O∗(2n), where n is the number of vertices in the input graph. Moreover, we prove
that this is not optimal for every k by giving an even faster O∗(1.89n)-time algorithm for both
3-MHE and 3-MHV.

2

� In Section 4, we show that the decision variant of Weighted MHE admits a small kernel of
size k + `. The ingredients of the kernel are a polynomial-time algorithm for Weighted MHE
when the uncolored vertices induce a forest together with simple reduction rules. By combining
the algorithm of Section 3 with the kernel, we obtain an algorithm running in time 2`nO(1) for
k-MHE.

� In Section 5 we prove that the decision variant of MHV is W[1]-hard for the natural parameter `.
On a positive side, we proceed to show in Section 6 that the problem does admit a kernel of size
O(k2`2) for the combined parameter k + `. The kernel is obtained using the annotation strategy
(see e.g., [9]) and explicit reduction rules.

� In Section 7, we turn our attention to structural parameters. In particular, we consider two
measures of sparsity and density, namely treewidth and neighborhood diversity. Our main result
here is that both MHV and MHE are FPT parameterized by treewidth and the number of colors.
Similarly, both problems are FPT parameterized by neighborhood diversity.

� In Section 8, we extend the known hardness results of the problems by proving that the decision
variants of both MHE and MHV remain NP-complete for bipartite graphs and also for split
graphs. On the positive side, we show MHV can be solved in polynomial-time for cographs.

2 Preliminaries

We denote the set of natural numbers by N. For notational convenience, we write [k] for k ∈ N to denote
the set {1, 2, . . . , k}. We use −∞ to denote minus infinity and use the convention that for any n ∈ N,
we have −∞ + n = −∞ and −∞ + −∞ = −∞. Let f : X → Y be a function. For y ∈ Y , by f−1(y)
we denote the set {x ∈ X | f(x) = y}. For X ′ ⊆ X, by f |X′ we denote the function f |X′ : X ′ → Y
such that fX′(x) = f(x), for all x ∈ X ′. For an ordered set R = X × Y , a function f : R → Z, and an
element r = (x, y) ∈ R, we slightly abuse the notation to denote f(r) = f((x, y)) by f(x, y).

Sometimes, we write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n) represents any
polynomial in n.

Graph Theory We use standard terminology from the book of Diestel [14] for graph-theoretical terms
that are not explicitly defined here. For a graph G, by V (G) and E(G) we denote the vertex and
edge sets of G, respectively. For a graph G and a vertex v ∈ V (G), by NG(v) we denote the set
{u ∈ V (G) | (v, u) ∈ E(G)} and by NG[v] we denote the set NG(v) ∪ {v}. For S ⊆ V (G), by NG(S)
we denote the set (∪u∈SNG(u)) \ S. We drop the subscript G from NG(v), NG[v] and NG(S) when the
context is clear. For a vertex subset S ⊆ V (G), by G[S] we denote the subgraph of G induced by S,
i.e., the graph with vertex set S and edge set {(u, v) ∈ E(G) | v, u ∈ S}. By G− S we denote the graph
G[V (G) \ S].

For vertices u, v ∈ V (G), identifying u and v in G results in the following graph G′. We have V (G′) =
(V (G)\{u, v})∪{u?} and E(G′) = E(G[V (G)\{u, v}])∪{(u?, w) | w ∈ (NG(u)∪NG(v))\{u, v}}, where
u? is a vertex that is not in V (G). Moreover, we refer to u? as the resulting vertex after identification
and the operation is said to identify u with v in G.

A coloring of a graph G with k ∈ N colors is a function ϕ : V (G)→ [k]. A partial coloring of G with
k colors is a function c : S → [k], where S ⊆ V (G). We will refer to a partial coloring as a coloring when
the context is clear. A coloring c̃ : V (G)→ [k] is said to extend a partial coloring c : S → [k] if c̃|S = c.

Parameterized Complexity A parameterized problem is a language L ⊆ Σ∗ ×N, where Σ is a fixed,
finite alphabet. For an instance (x, p) ∈ Σ∗ ×N, we call p the parameter. The parameterized problem L
is fixed-parameter tractable (FPT) when there is an algorithm A, a computable function f : N→ N, and
a constant r such that, given (x, p) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, p) ∈ L in
time bounded by f(p) · |x|r. An equivalent way of proving a problem is FPT is by constructing a kernel
for it. A kernel for a parameterized problem (x, p) is a polynomial-time algorithm B that returns an
equivalent instance (x′, p′) of L such that |x′| ≤ g(p), for some computable function g : N→ N. Here, we
say two instances are equivalent if the first is a YES-instance iff the second is a YES-instance. Given a

3

parameterized problem, it is natural to ask whether it admits a kernel, and moreover whether that kernel
is small.1 By small, we typically mean a polynomial kernel, or even a linear kernel (i.e., g(p) = O(p)).

Kernelization is often discovered through reduction rules. A reduction rule is a polynomial-time
transformation of an instance (x, p) to another instance of the same problem (x′, p′) such that |x′| < |x|
and p′ ≤ p. A reduction rule is safe when the instances are equivalent. For more on parameterized
complexity, we refer the interested reader to [12, 19].

Special Graph Classes. We now define some of the special graph classes considered in this paper. A
graph is bipartite if its vertex set can be partitioned into two disjoint sets such that no two vertices in
same set are adjacent. A graph is a split graph if its vertex set can be partitioned into a clique and an
independent set. Split graphs do not contain C4, C5 or 2K2 as induced subgraphs. Cographs are P4-free
graphs, that is, they do not contain any induced paths on four vertices..

Definition 1. A tree decomposition of a graph G is a pair (T ,X = {Xt | t ∈ V (T)}), where an element
X ∈ X is a subset of V (G), called a bag, and T is a rooted tree satisfying the following properties:

1. ∪X∈XX = V (G);

2. For every (u, v) ∈ E(G), there exists X ∈ X such that u, v ∈ X;

3. For all t1, t2, t3 ∈ V (T) if t2 lies on the unique path between t1 and t3 in T then Xt1 ∩Xt3 ⊆ Xt2 .

Let (T ,X) be a tree decomposition of a graph G. We refer to the vertices of the tree T as nodes.
Note that since T is a rooted tree, we have a natural parent-child and ancestor-descendant relationship
among nodes in T . A leaf node or a leaf of T is a node with degree exactly one in T which is different
from the root node. All the nodes of T which are neither the root node or a leaf will be called non-leaf
nodes. The width of the tree decomposition (T ,X) is defined to be maxX∈X (|X| − 1). The treewidth of
a graph G, denoted by tw(G), is the minimum of the widths of all its tree decompositions. We use the
following structured tree decomposition in our algorithm.

Definition 2. A tree decomposition (T ,X = {Xt | t ∈ V (T)}) with root node as r of G is called a nice
tree decomposition if the following conditions are satisfied.

1. Xr = ∅ and X` = ∅ for every leaf node ` in T ;

2. Every non-leaf node t of T is of one of the following type:

� Introduce node: The node t has exactly one child t′ in T and Xt = Xt′∪{v}, where v /∈ Xt′ .

� Forget node: The node t has exactly one child t′ in T and Xt = Xt′ \ {v}, where v ∈ Xt′ .

� Join node: The node t has exactly two children t1, t2 in T and Xt = Xt1 = Xt2 .

Lemma 3 ([12, 23]). If a G has a tree decomposition (T ,X) of width at most w then there is a nice
tree decomposition of G of width at most w. Moreover, given a tree decomposition (T ,X) of G of width
at most w, in time O(w2 ·max(|V (T)|, |V (G)|)) we can compute a nice tree decomposition of G of width
at most w with at most O(w|V (G)|) nodes.

3 Exact Exponential-Time Algorithms for Happy Coloring

In this section, we consider the happy coloring problems from the viewpoint of exact exponential-time
algorithms. Every problem in NP can be solved in time exponential in the input size by a brute-force
algorithm. For Weighted MHE (Weighted MHV), such an algorithm goes through each of the at
most kn colorings, and outputs the one maximizing the total weight of the happy edges (vertices). It
is natural to ask whether there is an algorithm that is considerably faster than the knnO(1)-time brute
force approach. In what follows, we show that brute-force can be beaten. Let us introduce the following
more general problem.

1This is abuse of notation: as is commonly done, we call the output of the kernel also a kernel.

4

Max Weighted Partition
Input: An n-element set N , integer d, and functions f1, f2, . . . , fd : 2N → [−M,M] for some
integer M .
Question: A d-partition (S1, S2, . . . , Sd) of N that maximizes f1(S1) + f2(S2) + · · ·+ fd(Sd).

Using an algebraic approach, the following has been shown regarding the complexity of the problem.

Theorem 4 (Björklund, Husfeldt, Koivisto [4]). The Max Weighted Partition problem can be
solved in 3nd2M · nO(1) time and polynomial space. In exponential space, the time can be improved to
2nd2M · nO(1).

In the following, we observe that the weighted variants of both problems can be reduced to Max
Weighted Partition. This results in an algorithm that is considerably faster than one running in
time knnO(1).

Lemma 5. Weighted MHE and Weighted MHV reduce in polynomial time to Max Weighted
Partition.

Proof. Consider the claim for an instance I = (G,w, k, S, c) of Weighted MHE. To construct an
instance of Max Weighted Partition, let N = V (G) \S, where S is the set of precolored vertices, let
d = k, and let M =

∑
uv∈E(G) w(uv). Define fi =

∑
uv∈E(G[Si∪c−1(i)]) w(uv), i.e., fi sums the weights

of the edges uv that range over the edge set of the subgraph induced by the union of Si and c−1(i),
the vertices precolored with color i. Thus, a partition (S1, . . . , Sk) maximizing f1(S1) + · · · + fk(Sk)
maximizes the weight of happy edges.

Finally, consider the claim for an instance I = (G,w, k, S, c) of Weighted MHV. Now, we define
fi =

∑
v∈Si:∀y∈N(v):y∈(Si∪c−1(i)) w(v), i.e., fi sums the weights of the vertices v for which it holds that

v and each neighbor y of v are all colored with color i. Also, we let M =
∑
v∈V (G) w(v), but otherwise

the argument is the same as above.

For some NP-complete problems, the fastest known algorithms run in O∗(2n) time, but we do not
necessarily know whether (under reasonable complexity-theoretic assumptions) they are optimal. Indeed,
could one have an algorithm that runs in O∗((2− ε)n) time, for any ε > 0, for either Weighted MHE
or Weighted MHV? We prove that at least for some values of k this bound can be achieved. For this,
we recall the following result.

Theorem 6 (Zhang and Li [30]). For k = 2, k-MHE and k-MHV are solvable in O(min{n2/3m,m3/2})
and O(mn7 log n) time, respectively.

We are ready to proceed with the following.

Lemma 7. For k = 3, k-MHE and k-MHV can be solved in time O∗(1.89n
′
), where n′ is the number

of uncolored vertices in the input graph.

Proof. First, consider the claim for an instance I = (G,S, c) of k-MHE. Consider a partition S =
(S1, S2, S3) of the uncolored vertices into k = 3 color classes that maximizes the number of happy edges.
Also, denote by Ci for i ∈ [k] the set of vertices precolored with color i. In V (G) \ (S3 ∪ C3), by the
optimality of S, it must be the case that S1 ∪C1 and S2 ∪C2 have a minimum number of crossing edges.
Thus, we can proceed as follows. Observe that in any optimal solution S, there exists Si ∈ S such that
|Si| ≤ n′/3. The number of subsets of size at most n′/3 is 2H(1/3)n′ < 1.89n

′
, using the well-known

bound 2H(1/3) < 1.89, where H(·) is the binary entropy function (for a proof, see e.g., [18, Lemma 3.13]).
Thus, we guess Si by extending it in all possible at most 1.89n

′
ways. Then, for every such partial

coloring, we solve an instance of 2-MHE on the remaining graph G[V (G) \ (S1 ∪C1)] in polynomial time
by Theorem 6. Combining the bounds, we obtain an algorithm running in time O∗(1.89n

′
) for 3-MHE.

For 3-MHV, as above we guess the vertices colored i in all possible 1.89n
′

ways. Let us first consider
the case i = 1. Notice that the vertices in the neighborhood of the vertices colored 1, i.e., N(S1 ∪ C1)
cannot be made happy. We add two new vertices v2 and v3 which are precolored 2 and 3 respectively.
We add edges from vertices v2 and v3 to all the vertices in N(S1 ∪ C1). Now we solve an instance of
2-MHV on the graph G[V (G) ∪ {v2, v3} \ (S1 ∪ C1)]. Repeating this for i = 2 and i = 3, we get the
desired algorithm for 3-MHV.

5

By Lemma 7 and by combining Theorem 4 with Lemma 5, we arrive at the following.

Theorem 8. For every k ≥ 3, Weighted k-MHE and Weighted k-MHV can be solved in time
O∗(2n

′
). When k = 3, the problems k-MHE and k-MHV are solvable in time O∗(1.89n

′
), where n′ is

the number of uncolored vertices in the input graph.

4 A Linear Kernel for Weighted MHE

In this section, we consider the following decision version of the Weighted MHE.

Weighted DMHE Parameter: k + `
Input: A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring c : S → [k], and
a weight function w : E(G)→ N.
Question: Does there exist a coloring c̃ : V (G)→ [k] such that c̃|S = c and the sum of the weights
of the happy edges is at least `?

In particular, we prove that Weighted DMHE has a kernel of size k + `. Our strategy to obtain the
kernel consists of two parts: first, we will show that there is a polynomial-time algorithm for Weighted
MHE when the uncolored vertices induce a forest. Then, to leverage this algorithm, we apply a set of
reduction rules that shrink the instance considerably, or solve it directly along the way.

4.1 Polynomial Time Algorithm for Subproblems of Weighted MHE

We show that the Weighted MHE problem is polynomial-time solvable when the uncolored vertices
V (G) \ S induce a tree, where S is the set of precolored vertices. When V (G) \ S induces a forest, we
run the algorithm for each component in V (G) \ S independently. The approach we present is based on
dynamic programming, and inspired by the algorithm given in [2].

We define edges touching a subtree to be those edges that have at least one endpoint in the subtree.
We choose any vertex r ∈ V (G) \ S as the root of the tree induced by V (G) \ S. The vertices of this
rooted tree are processed according to its post-order traversal. At each node, we keep k values. The k
values are defined as follows, for 1 ≤ i ≤ k:

� Tv[i] : The maximum total weight of the happy edges touching the subtree Tv, when the vertex v
is colored with color i.

We also define the following expressions:

� Tv[∗] : The maximum total weight of the happy edges touching the subtree Tv, i.e.,

Tv[∗] =
k

max
i=1
{Tv[i]}. (1)

� Tv[ı] : The maximum total weight of the happy edges touching the subtree Tv, when the vertex v
is colored with a color other than i, i.e.,

Tv[ı] =
k

max
j=1,j 6=i

{Tv[j]}. (2)

If Wp is the total weight of the happy edges in the initial partial coloring, Wp + Tr[∗] gives us the
maximum total weight of the happy edges in G. Now, we explain how to compute the values Tv[i] for
1 ≤ i ≤ k and for each v ∈ V (G)\S. When we say color-i vertices, we mean the vertices precolored with
color i.

For a leaf vertex v ∈ V (G) \ S, let v1, v2, . . . , vx be the color-i neighbors of v in G. Then,

Tv[i] =

x∑
j=1

w(vvj). (3)

If there are no color-i neighbors for v, then Tv[i] is set to 0.

6

For a non-leaf vertex v ∈ V (G) \ S, let v1, v2, . . . , vx be the color-i neighbors of v in G and let
u1, u2, . . . , ud be the children of v in V (G) \ S. Then,

Tv[i] =

x∑
j=1

w(vvj) +

d∑
j=1

max{(w(vuj) + Tuj [i]), Tuj [ı]}. (4)

This naturally leads to an algorithm listed as Algorithm 1.

Algorithm 1 Algorithm for a special case of Weighted MHE

Input: A weighted undirected graphG with S ⊆ V (G) precolored vertices under a partial vertex-coloring
c : S → [k], V (G) \ S induces a tree, and a vertex r ∈ V (G) \ S as the root of the tree.

Output: Maximum total weight of the happy edges in G.
1: Mp ← 0
2: for all happy edge uv in the precoloring do
3: Mp ←Mp + w(uv)
4: end for
5: for all v ∈ V (G) \ S in post-order do
6: if v is a leaf vertex in V (G) \ S then
7: for i = 1 to k do
8: Tv[i]← 0
9: for all vu ∈ E(G) such that u ∈ S and c(u) = i do

10: Tv[i]← Tv[i] + w(vu)
11: end for
12: end for
13: else
14: for i = 1 to k do
15: Tv[i]← 0
16: for all vu ∈ E(G) such that u ∈ S and c(u) = i do
17: Tv[i]← Tv[i] + w(vu)
18: end for
19: for all child u of v in V (G) \ S do
20: Tv[i]← Tv[i] + max{(w(vu) + Tu[i]), Tu[ı]}
21: end for
22: end for
23: end if
24: end for
25: return (Mp + Tr[∗])

The running time of the algorithm is O(k(m+ n)). The correctness of the values Tv[i], for 1 ≤ i ≤ k
and for each v ∈ V (G) \ S, implies the correctness of the algorithm. The following theorem is proved by
induction on the size of the subtrees.

Theorem 9. Algorithm 1 correctly computes the values Tv[i] for every v ∈ V (G) \ S and 1 ≤ i ≤ k.

Proof. We prove the theorem by using induction on the size of the subtrees. For a leaf vertex v, the
algorithm correctly computes the values Tv[i] for 1 ≤ i ≤ k. For a non-leaf vertex v, let u1, u2, . . . , ud
be the children of v in V (G) \ S. By induction, all the k values associated with each child uj of v are
correctly computed. Moreover, Tv[i] is the sum of two quantities (see Equation 4), the first quantity is
correct because it is the sum of the weights of the happy edges from v to S. If Tv[i] is not correct, it will
contradict the correctness of Tuj [∗] for some child uj of v. So, the second term in the Tv[i] is correct.
Hence, the algorithm correctly computes the values Tv[i] for every v in V (G) \ S and 1 ≤ i ≤ k.

4.2 Reduction Rules Combined with the Algorithm: a Kernel

In this subsection, we assume the edge weights of the Weighted DMHE instance are positive integers.
The kernel will also work for real weights that are at least 1. We present the following simple reduction
rules.

7

Rule 1. If G contains an isolated vertex, delete it.

Rule 2. If both endpoints of an edge uv ∈ E(G) are colored, remove uv. Furthermore, if c(u) = c(v),
decrement ` by the weight on uv.

Lemma 10. Rule 2 is correct.

Proof. As both endpoints of uv are colored, the existence of the edge uv does not further contribute
to the value of the optimal solution. Moreover, if the edge is already happy under c, we can safely
decrement `.

Rule 3. Identify every color class Ci induced by the partial coloring c into a single vertex. Let e1, . . . , er
be the (parallel) edges between two vertices u and v. Delete each edge in e1, . . . , er except for e1, and
update w(e1) = w(e1) + w(e2) + · · ·+ w(er).

Lemma 11. Rule 3 is correct.

Proof. Let G′ be the resulting graph after the application of Rule 3. Because Rule 2 does not apply,
each color class Ci forms an independent set. Thus, G′ contains no self-loops.

Fix a color i, and consider an uncolored vertex v ∈ V (G) \ Ci. Denote by Ni(v) the neighbors of
v with color i, and denote by E[X,Y] the set of edges whose one endpoint is in X and the other in
Y . Depending on the color v gets in an extended full coloring of c, either all edges in E[{v}, Ni(v)] are
happy or all are unhappy. Hence, we can safely replace these edges with a single weighted edge.

Theorem 12. The problem Weighted DMHE admits a kernel on k + ` vertices.

Proof. Let (G,w, k, S, c) be a reduced instance of Weighted DMHE. We claim that if G has more than
k + ` vertices, then we have YES-instance. The proof follows by the claims below.

Claim 1. The weight of each edge is at most `.

Proof. If an edge uv has w(uv) ≥ ` and at least one of u and v is uncolored, we make uv happy and
output YES. On the other hand, any unhappy edge (with any weight) has been removed by Rule 2. �

Claim 2. The number of precolored vertices in G is at most k.

Proof. Follows directly from Rule 3. �

Claim 3. The number of uncolored vertices in G is at most `− 1.

Proof. Let H be the graph induced by the uncolored vertices, i.e., H = G[V (G) \∪i∈[k]Ci]. We note the
following two cases:

� If any of the connected components of H is a tree, then we apply the procedure described in
Section 4.1 for that component, and decrement the parameter ` accordingly.

� If w(E(H)) ≥ `, then we color all the vertices in H by the same color making all the edges in H
happy. So the case where w(E(H)) ≥ ` is a YES-instance.

After the application of the above, every component of H contains a cycle, and |E(H)| < `. So in
each component of H, the number of vertices is at most the number of edges. Consequently, we have
|V (H)| ≤ |E(H)| < `. Hence the number of uncolored vertices is at most `− 1. �

Clearly, all of the mentioned rules can be implemented to run in polynomial time. Moreover, as we have
bounded the number of precolored and uncolored vertices, the claimed kernel follows.

By combining Theorem 12 with Theorem 8, we have the following corollary.

Corollary 13. The Weighted DMHE problem can be solved in time O∗(2`). For the special case of
k = 3, the problem Weighted DMHE admits an algorithm running in time O∗(1.89`).

8

vj1ṽj1

vj2ṽj2

wi

xi

x0
i

pj1

p0j1

p0j2

pj2

vjni
ṽjni

p0jni

pjni

vj3ṽj3

pj3

p0j3

Wi

Vi

vj3

vjni

vj1

vj2

Figure 1: Construction of vertex selection gadget.

5 W[1]-hardness of Maximum Happy Vertices for the Natural
Parameter

In this section, we consider the following decision version of the MHV.

DMHV Parameter: `
Input: A graph G, integers k and `, a vertex subset S ⊆ V (G), (partial) coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and the number of happy
vertices is at least `?

We show that DMHV parameterized by the number of happy vertices is W[1]-hard. We give a
parameterized reduction from Multicolored Independent Set (MIS) which is known to be W[1]-
hard [17]. The problem MIS is formally defined below.

Multicolored Independent Set (MIS) Parameter: t
Input: A t-partite graph G with a partition V1, V2, . . . , Vt of V (G).
Question: Does there exist X ⊆ V (G), such that for each i ∈ [t], |X ∩ Vi| = 1 and G[X] is an
independent set?

Intuitively, given an instance (G,V1, V2, . . . , Vt) of MIS, for each Vi we create a vertex selection gadget,
Wi which ensures that exactly one vertex from Vi can be happy in any valid coloring. Furthermore, the
selected set of vertices from Vis form a set of happy vertices in the instance of DMHV created. We now
move to the formal description of the reduction.

Let (G,V1, V2, . . . , Vt) be an instance of MIS. We create an instance (G′, k, `, S, c) of DMHV as
follows. Let n = |V (G)| and V (G) = {vi | i ∈ [n]}. Initially, we have V (G′) = V (G) and E(G′) =
{(u, v) ∈ E(G) | u ∈ Vi, v ∈ Vj , i, j ∈ [t] and i 6= j}. We now describe the vertex selection gadget Wi, for
i ∈ [t]. For each vi ∈ V (G), we add three vertices ṽi, pi, p

′
i to V (G′), and add the edges (vi, ṽi), (ṽi, pi),

(ṽi, p
′
i), and (pi, p

′
i) to E(G′). Furthermore, we add ṽi, pi, and p′i to S, and set c(ṽi) = i, c(pi) = n + 1,

and c(p′i) = n + 2. For i ∈ [t], we add three vertices wi, xi, x
′
i to V (G′) and add all the edges in

{(u,wi) | u ∈ Vi} ∪ {(wi, xi), (wi, x
′
i), (xi, x

′
i)} to E(G′). Furthermore, we add xi and x′i to S, and set

c(xi) = n+ 1 and c(x′i) = n+ 2. Here, the vertices xi and x′i are added to ensure that wi can never be
a happy vertex in any coloring of G′, and wi is added to ensure that at most one vertex from Vi can be
happy in any coloring of V (G′). We have Wi = G′[Vi ∪ {ṽj , pj , p′j | vj ∈ Vi} ∪ {wi, xi, x′i}]. Notice that
we have S = {ṽj , pj , p′j | vj ∈ V (G)} ∪ {xi, x′i | i ∈ [t]}. Note that for each u ∈ S, we have described
the value of c(u), and we have k = n+ 2. Finally, we set ` = t, and the resulting instance of DMHV is
(G′, k, `, S, c).

We state some lemmata which establish certain properties of the instance (G′, k, `, S, c) of DMHV
that we created.

9

Lemma 14. Let c̃ be a coloring that extends c to a coloring of G′, and H be the set of happy vertices in
G′ with respect c̃. Then for all u ∈ {wi | i ∈ [t]} ∪ S we have u /∈ H.

Proof. Consider wi∗ ∈ {wi | i ∈ [t]}. Recall that by construction, wi∗ has two neighbors xi∗ and x′i∗ with
c̃(xi∗) = c(x′i∗) = n+ 1 and c̃(x′i∗) = c(x′i∗) = n+ 2. Therefore, wi /∈ H. For each u ∈ S, by construction
we have a vertex v ∈ NG′(u) ∩ S such that c̃(u) = c(u) 6= c(v) = c̃(v), therefore u /∈ H.

Lemma 15. Let c̃ be a coloring that extends c to a coloring of G′, and H be the set of happy vertices in
G′ with respect c̃. Then for all i ∈ [t], we have |Vi ∩H| ≤ 1.

Proof. Consider i ∈ [t], such that |Vi ∩ H| > 1. Let vj , vj′ be two distinct (j 6= j′) vertices in Vi ∩ H.
Since vj ∈ H, and c̃(ṽj) = c(ṽj) = j, we have c̃(vj) = j. Since wi ∈ NG′(vj) therefore, we have c̃(wi) = j.
By similar arguments we have c̃(vj′) = j′ and c̃(wi) = j′. This implies that j = j′, a contradicting.

We now state the main lemma of this section.

Lemma 16. (G,V1, V2, . . . , Vt) is a YES-instance of MIS if and only if (G′, k, `, S, c) is a YES-instance
of DMHV.

Proof. In the forward direction, let (G,V1, V2, . . . , Vt) be a YES-instance of MIS and X = {vi? | i ∈ [t]}
be one of its solutions. We construct a solution c̃ to DMHV in (G′, k, `, S, c) as follows. For each u ∈ S,
we let c̃(u) = c(u). For i ∈ [t], for each v ∈ Vi, we let c̃(v) = i? and c̃(wi) = i?. This completes the
description of c̃. Notice that for each vi? ∈ X, we have that for all v ∈ NG′(vi?), c̃(v) = i?. This implies
that X ⊆ H, where H is the set of happy vertices in G′ with respect to c̃. Moreover, we have |X| = t = `.
This concludes the proof in the forward direction.

In the reverse direction, let (G′, k, `, S, c) be a YES-instance of DMHV, c̃ be one of its solutions, and
H be the set of happy vertices in G′ with respect to c̃. We show that H is a solution to MIS in (G,V1, V2,
. . . , Vt). By construction we have V (G′) = ∪i∈[t]V (Wi). Lemma 14 implies that H∩({wi | i ∈ [t]}∪S) =
∅, and Lemma 15 implies that for each i ∈ [t], we have |H ∩ Vi| ≤ 1. This together with the fact that
|H| ≥ ` implies that for each i ∈ [t], we have |H ∩Vi| = 1. Therefore, we only need to show that H is an
independent set in G. For i ∈ [t], let hi? be the unique vertex in H ∩ Vi. Consider hi? , hj? ∈ H, where

i, j ∈ [t] and i 6= j. Recall that hi? has a neighbor h̃i? in G′ such that c̃(h̃i?) = i?. Similarly, hj? has a

neighbor h̃j? in G′ such that c̃(h̃i?) = j?. Therefore, we have c̃(hi?) = i? and c̃(hj?) = j?, where i? 6= j?.
This implies that (hi? , hj?) /∈ E(G′), and hence by construction we have (hi? , hj?) /∈ E(G). Therefore,
H is an independent set in G.

Theorem 17. DMHV when parameterized by the number of happy vertices is W[1]-hard.

Proof. Follows from the construction of the instance (G′, k, `, S, c) of DMHV for the given instance
(G,V1, V2, . . . , Vt) of MIS, Lemma 16, and W[1]-hardness of MIS.

6 Kernelization Algorithm for Maximum Happy Vertices

In this section, we give a polynomial kernel for the problem DMHV. In fact, we give a kernel for an
annotated version of DMHV, which we call Annotated DMHV (ADMHV). The problem is formally
defined below.

Annotated DMHV (ADMHV) Parameter: k + `
Input: A graph G, integers k and `, a vertex subsets S,U ⊆ V (G), a (partial) coloring c : S → [k].
Question: Does there exist a coloring c̃ : V (G) → [k] such that c̃|S = c and |H \ U | ≥ `, where H
is the set of happy vertices in G with respect to c̃?

Observe that DMHV is a special case of ADMHV, where U = ∅. Moreover, given an instance
(G, k, `, S, U, c) of ADMHV, in polynomial time we can construct an instance (G′, k′, `, S′, c′) of DMHV
such that |V (G′)| ∈ O(|V (G)|), k′ ∈ O(k), and |S′| ∈ O(|S|) as follows. Initially, we have G′ = G and
c′ = c. We add two (new) vertices u?, v? to V (G′), add the edge (u?, v?) to E(G′), add u?, v? to S, and
set c′(u?) = k + 1 and c′(v?) = k + 2. Furthermore, we add the edges {(u, u?), (u, v?) | u ∈ U} to E(G′)
and set k′ = k + 2. It is easy to see that (G, k, `, S, U, c) is a YES-instance of ADMHV if and only

10

if (G′, k′, `, S′, c′) is a YES-instance of DMHV. Therefore, to design a kernel for DMHV with O(k2`2)
vertices it is enough to design a kernel for ADMHV with O(k2`2) vertices. Hereafter, the focus of this
section will be to design a kernel with O(k2`2) vertices for ADMHV.

Let (G, k, `, S, U, c) be an instance of ADMHV. The kernelization algorithm applies the following
reduction rules in the order in which it is stated. Furthermore, at each step we assume that none of the
preceding reduction rules are applicable. When none of the reduction rules are applicable we argue that
we get a kernel of the desired size.

Rule 4. If ` ≤ 0, then return that (G, k, `, S, U, c) is a YES-instance of ADMHV.

Observe that if ` ≤ 0, then any coloring that extends c to a coloring of V (G) is a valid solution to
the instance (G, k, `, S, U, c) of ADMHV, which implies that Rule 4 is safe.

Rule 5. Let v ∈ V (G) \ U be a vertex such that N(v) ⊆ S, for all u, u′ ∈ N(v) we have c(u) = c(u′),
and one of the following conditions is satisfied. i) v /∈ S; or ii) c(v) = c(u), where u ∈ N(v). Then
delete v from G and decrease ` by one. The resulting instance is (G− {v}, k, `− 1, S \ {v}, U, c|S\{v}).

Lemma 18. Rule 5 is safe.

Proof. Let (G, k, `, S, U, c) be an instance of ADMHV and v ∈ V (G)\U be a vertex such that N(v) ⊆ S,
and for all u, u′ ∈ N(v) we have c(u) = c(u′). Furthermore, let (G′, k, ` − 1, S′, U, c′) be the instance
resulting after application of the Rule 5, where G′ = G − {v}, S′ = S \ {v}, and c′ = c|S′ . The proof
of forward direction follows from the fact that G′ = G[V (G) \ {v}]. In the reverse direction let c̃′ be a
coloring that extends c|S′ to a coloring of V (G′) such that the number of happy vertices in V (G′) \ U
is at least ` − 1. If v ∈ S, then the coloring c̃ obtained by extending c̃′ to a coloring of V (G) with
c̃(v) = c(v) is a coloring that extends c to a coloring of V (G) with at least ` happy vertices in V (G) \ U
in G. Otherwise, we have v /∈ S. In this case, let c̃ be the coloring obtained by extending c̃′ to a coloring
of V (G) with c̃(v) = c(u), where u ∈ NG(v). Observe that c̃ is a coloring that extends c to a coloring
of V (G), and there are at least ` happy vertices in V (G) \ U in G with respect to c̃. This concludes the
proof.

Rule 6. Let v ∈ S \ U be a vertex such that there exists u ∈ N(v) ∩ S with c(v) 6= c(u). Then add v to
the set U . The resulting instance is (G, k, `, S, U ∪ {v}, c).

The safeness of Rule 6 follows from the fact that a vertex v ∈ S \ U with u ∈ N(v) ∩ S such that
c(v) 6= c(u) can never be a happy vertex in any coloring of G that extends c to a coloring of V (G).

Rule 7. Let v ∈ V (G) \ U be a vertex such that there exists u, u′ ∈ N(v) ∩ S with c(u) 6= c(u′). Then
add v to the set U . The resulting instance is (G, k, `, S, U ∪ {v}, c).

The safeness of Rule 7 follows from the fact that a vertex v with u, u′ ∈ N(v)∩ S such that c(u) 6= c(u′)
can never be a happy vertex in any coloring of G that extends c to a coloring of V (G).

Next we consider the following sets. For i ∈ [k], let Ui = {v ∈ U ∩ S | c(v) = i}, and UR =
U \ (∪i∈[k]Ui). We proceed with the following reduction rules.

Rule 8. If there exists i ∈ [k] such that there are distinct u, v ∈ Ui then identify u, v in G to obtain the
graph G′ with u? being the vertex resulting after identification. Furthermore, let c′ : (S \{u, v})∪{u?} →
[k] be the coloring obtained from c with c′|S\{u,v} = c and c′(u?) = c(u). The resulting instance is
(G′, k, `, (S \ {u, v}) ∪ {u?}, (U \ {u, v}) ∪ {u?}, c′).

Lemma 19. Rule 8 is safe.

Proof. Let i ∈ [k] such that there are distinct u, v ∈ Ui, and G′ be the graph obtained from G after
identifying u and v with u? being the resulting vertex after identification. Furthermore, let U ′ =
(U \ {u, v}) ∪ {u?}, S′ = (S \ {u, v}) ∪ {u?}, and c′ : S′ → [k] be the coloring obtained from c with
c′|S′\{u?} = c|S\{u,v} and c′(u?) = c(u). We will show that (G, k, `, S, U, c) is a YES-instance of ADMHV
if and only if (G′, k, `, S′, U ′, c′) is a YES-instance of ADMHV.

In the forward direction let (G, k, `, S, U, c) be a YES-instance of ADMHV, c̃ be one of its solutions,
and H ⊆ V (G) \ U be the set of happy vertices in G with respect to c̃. Notice that we have |H| ≥ `.

11

U1 U2 UkUi

ZR

SZ
1 SZ

2 SZ
kSZ

j

Z1 \ SZ
1 Z2 \ SZ

2 Zk \ SZ
k

UR

S \ U U

Z \ S

Figure 2: An illustration of partition of V (G) into various sets.

Let c̃′ : V (G′)→ [k] be the coloring obtained from c̃ with c̃′(u?) = c̃(u) and c̃′|V (G′)\{u?} = c̃|V (G)\{u,v}.
Recall that V (G′) \ {u?} = V (G) \ {u, v}, hence c̃′ is a coloring of G′. Furthermore, we have c̃′|S′ = c′.
Hence, we only need to show that with respect to c̃′ in G′ we have at least ` vertices in V (G′) \ U ′ that
are happy. Observe that H ⊆ V (G′) \ U ′. We claim that all the vertices in H are happy in G′ with
respect to c̃′, which is enough to show that (G′, k, `, S′, U ′, c′) is a YES-instance of ADMHV. Consider
a vertex h ∈ H. Recall that NG′(h) \ U ′ = NG(h) \ U . This together with the construction of c̃′ implies
that for all w,w′ ∈ NG′(h) \ U ′ we have c̃′(w) = c̃′(w′) = c̃′(h). For w ∈ NG′(h) ∩ U ′ if c̃′(w) 6= c̃′(h)
then consider the following cases. If w = u? then replacing w by u (or v) in G we have that c̃(h) 6= c̃(w),
contradicting that h is a happy vertex in G with respect to c̃. On the other hand if w 6= u? then w ∈ U
and in G we have that c̃(h) 6= c̃(w), a contradiction. This concludes the proof in the forward direction.

In the reverse direction let (G′, k, `, S′, U ′, c′) be a YES-instance of ADMHV, c̃′ be one of its solutions,
and H ⊆ V (G′) \ U ′ be the set of happy vertices in G′ with respect to c̃′. Notice that |H| ≥ `. Let
c̃ : V (G)→ [k] be the coloring obtained from c̃′ with c̃(u) = c̃(v) = c̃′(u?) and c̃|V (G)\{u,v} = c̃′|V (G′)\{u?}.
Observe that we have c̃|S = c. Hence, we only need to show that with respect to c̃ in G we have at
least ` vertices in V (G) \ U that are happy. Observe that H ⊆ V (G) \ U . We claim that all vertices
in H are happy in G with respect to c̃, which is enough to show that (G, k, `, S, U, c) is a YES-instance
of ADMHV. Consider a vertex h ∈ H. Recall that NG(h) \ U = NG′(h) \ U ′. This together with
the construction of c̃ implies that for all w ∈ NG(h) \ U we have c̃(w) = c̃(h). For w ∈ NG(h) ∩ U if
c̃(w) 6= c̃(h) then consider the following cases. If w ∈ {u, v} then replacing w by u? in G′ we have that
c̃′(h) 6= c̃′(w), contradicting that h is a happy vertex in G′ with respect to c̃′. On the other hand if
w /∈ {u, v} then w ∈ U ′ and in G′ we have that c̃′(h) 6= c̃′(w), a contradiction.

Hereafter, we assume that Rule 8 is not applicable and hence for each i ∈ [k], we have |Ui| ≤ 1. Let
Z = V (G)\U . For i ∈ [k], let SZi = {v ∈ S∩Z | c(v) = i} and Zi = (Z∩N(Ui∪SZi))∪SZi . Furthermore,
we let ZR = Z \ (∪i∈[k]Zi). Observe that for i, j ∈ [k], i 6= j we have Zi ∩ Zj = ∅ since Rule 6 and 7
are not applicable. Also, for each v ∈ ZR, we have N(v) ⊆ V (G) \ S. We proceed with the following
reduction rules.

Rule 9. If there exists i ∈ [k] such that |Zi| ≥ ` then return that (G, k, `, S, U, c) is a YES-instance of
ADMHV.

Lemma 20. Rule 9 is safe.

Proof. Let (G, k, `, S, U, c) be an instance of ADMHV such that |ZR| ≥ `. Consider the coloring c̃ :
V (G)→ [k] with c̃|S = c, and for all v ∈ V (G) \ S, c̃(u) = i. We claim that c̃ is a solution to ADMHV
in (G, k, `, S, U, c), where all the vertices in Zi are happy with respect to c̃. Note that by definition c̃
extends c to a coloring of G therefore, we only need to show that vertices in Zi are happy in G with
respect to c̃. Consider a vertex z ∈ Zi and a vertex v ∈ N(z). By the definition of c̃ and Zi, we have
c̃(z) = i. If v ∈ S then we have c̃(v) = c(v) = i, since Rule 6 and 7 are not applicable. If v ∈ V (G) \ S
then by definition of c̃ we have c̃(v) = i. Therefore, z is a happy vertex in G with respect to c̃. This
concludes the proof.

Rule 10. If |ZR| ≥ ` then return that (G, k, `, S, U, c) is a YES-instance of ADMHV.

12

Lemma 21. Rule 10 is safe.

Proof. Let (G, k, `, S, U, c) be an instance of ADMHV such that |ZR| ≥ `. Consider the coloring c̃ :
V (G) → [k] with c̃|S = c, and for all v ∈ V (G) \ S, c̃(u) = 1. We claim that c̃ is solution to ADMHV
in (G, k, `, S, U, c), where all the vertices in ZR are happy with respect to c̃. Note that by definition c̃
extends c to a coloring of G therefore, we only need to show that vertices in ZR are happy in G with
respect to c̃. Consider a vertex z ∈ ZR and a vertex v ∈ N(z). By the definition of c̃ we have c̃(z) = 1.
By the construction of sets ZR, we have N(z) ⊆ V (G) \ S and by definition of c̃ it follows that c̃(v) = 1.
Therefore, z is a happy vertex in G with respect to c̃. This concludes the proof.

Notice that since Rule 7 is not applicable we have for each i ∈ [k], |Ui| = 1. Furthermore, since
Rule 9 is not applicable we have for each i ∈ [k], |Zi| < `, and since Rule 10 is not applicable we have
|ZR| < `. Therefore, we have |Z ∪ (∪i∈[k]Ui)| ≤ k` + ` − 1. We now move to bounding the size of UR,
which will give us the desired kernel. To bound the size of UR we employ the following marking scheme
and argue that all the unmarked vertices can be deleted.

Marking Scheme for bounding |UR|. We will denote the set of marked vertices by M? ⊆ UR. For
all u, v ∈ V (G) \ UR (not necessarily distinct) such that N(u) ∩ N(v) ∩ UR 6= ∅, choose an arbitrary
vertex in wuv ∈ N(u) ∩N(v) ∩ UR and add it to M?. That is we add a vertex in UR to the marked set
of vertices which is a common neighbor to vertices u and v.

We call a vertex in UR \M? as an unmarked vertex. We now move to the reduction rule which deletes
an unmarked vertex.

Rule 11. If there exists u ∈ UR\M? then delete u from G. The resulting instance is (G−{u}, k, `, S, U \
{u}, c).
Lemma 22. Rule 11 is safe.

Proof. Let (G, k, `, S, U, c) be an instance of ADMHV, u ∈ UR \M?, G′ = G − {u}, and U ′ = U \
{u}. Recall that UR ∩ S = ∅ and therefore, u /∈ S. The resulting instance after deletion of u in G
is (G′, k, `, S, U ′, c). We will show that (G, k, `, S, U, c) is a YES-instance of ADMHV if and only if
(G′, k, `, S, U ′, c) is a YES-instance of ADMHV.

In the forward direction let (G, k, `, S, U, c) be a YES-instance of ADMHV, c̃ be one of its solutions,
and H ⊆ V (G) \ U be the set of happy vertices in G with |H| ≥ `. Let c̃′ : V (G′)→ [k] be the coloring
obtained from c̃ with c̃′ = c̃|V (G′). Notice that since G′ = G[V (G) \ {u}], therefore it follows that all the
vertices in H are happy in G′ with respect to the coloring c̃′. This concludes the proof in the forward
direction.

In the reverse direction let (G′, k, `, S, U ′, c) be a YES-instance of ADMHV, c̃′ be one of its solutions,
and H ⊆ V (G′) \ U ′ be the set of happy vertices in G′ with |H| ≥ `. Let c̃ : V (G) → [k] be the
coloring obtained from c̃′ with c̃|V (G′) = c̃′ and c̃(u) to be determined shortly. Since u /∈ M?, for all
v, v′ ∈ N(u) ∩ Z, we have a vertex wvv′ ∈ M? ∩ N(v) ∩ N(v′). Consider the set Hu = H ∩ N(u). If
Hu = ∅, then we set c̃(u) = 1 (or any i ∈ [k]). Otherwise, we have Hu 6= ∅. Observe that for all
h, h′ ∈ Hu we have c̃′(h) = c̃′(h′). Therefore, we set c̃(u) = c̃′(h), where h ∈ Hu. The construction of c̃
implies that all the vertices in H are happy in G with respect to c̃. This concludes the proof.

Once Rule 11 is not applicable we have |UR| ≤
(|Z|

2

)
+ |Z|. Therefore, when none of the Rules 4 to 11

are applicable, we get the desired kernel. Hence, we obtain the following theorem.

Theorem 23. ADMHV admits a kernel with O(k2`2) vertices, where k is the number of colors in the
coloring function and ` is the desired number of happy vertices.

7 Structural Parameterization for Happy Coloring

In this section, we consider happy coloring from the standpoint of various structural parameters: treewidth,
neighborhood diversity, vertex cover number, and deletion distance to a clique. We begin by considering
treewidth. For the unweighted vertex-variant, we give an algorithm whose runtime is optimized to an
extent, while a less optimized algorithm is given for the weighted edge-variant. Our main goal is merely
to prove fixed-parameter tractability for treewidth. Indeed, we believe that the techniques presented can
be used to derive e.g., a faster algorithm for the edge-variant.

13

7.1 Treewidth

In this subsection, we design a dynamic programming based FPT algorithm for Maximum Happy Ver-
tices when parameterized by the treewidth of input graph and the number of colors in the precoloring
of a subset of vertices. The problem is formally defined as follows.

MHV Parameter: k, tw(G)
Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial) coloring c : S ⊆
V (G)→ [k].
Output: A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the number of happy vertices.

Let (G, k, S, c) be an instance of MHV, n = |V (G)| and m = |E(G)|. Without loss of generality we
assume that for each i ∈ [k], we have c−1(i) 6= ∅, otherwise we can adjust the instance appropriately by
adding isolated vertices. For each i ∈ [k], we arbitrarily choose a vertex from c−1(i), which we denote
by v?i . We let S? = {v?i | i ∈ [k]}, and S? = ({v?1}, {v?2}, . . . , {v?k}). We start by computing a tree
decomposition (T̄ , X̄) of width at most w ≤ 6 · tw(G) in time O(2O(tw(G))n), using the algorithm by
Bodlaender et al. [8]. Using Lemma 3 we compute a nice tree decomposition (T ′,X ′ = {X ′t | t ∈ V (T ′)})
of G with the root node as r′ and width at most w, in time O(tw(G)2n). We modify the nice tree
decomposition (T ′,X ′) to obtain a more structured tree decomposition (T ,X) with root node r = r′

as follows. We let T = T ′, and X = {Xt = X ′t ∪ S? | X ′t ∈ X ′}, i.e., (T ,X) is obtained from
(T ′,X ′) by adding all the vertices in S? to each bag of X ′. Note that width of (T ,X) is bounded by
w + k ≤ 6 · tw(G) + k. The purpose of adding all vertices in S? to each bag is to ensure the subgraph
induced by the subtree rooted at a node contains vertices of all k colors, which simplifies the proof.
We note that the notion of introduce node, forget node, and join node naturally extends to the tree
decomposition (T ,X).

For a node t ∈ V (T), by desc(t) we denote the set of nodes which are descendants of t (including t)
in T . Furthermore, for t ∈ V (T), by Gt we denote the graph G[Vt], where Vt = ∪t′∈desc(t)Xt′ .

We now move to the description of the entries of the dynamic programming table. Consider a node
t ∈ V (T), and an ordered partition P = (P1, P2, . . . Pk) of Xt into k sets. We call P a valid ordered
partition if and only if for all i ∈ [k], c−1(i) ∩ Xt ⊆ Pi. Note that for any valid ordered partition
P = (P1, P2, . . . , Pk), for all i ∈ [k], we have Pi 6= ∅. This follows from the fact that S? ⊆ Xt.

For a valid ordered partition P = (P1, P2, . . . Pk) ofXt, letH = {(Hi, Ui) | Hi]Ui = Pi and i ∈ [k]} be
a set comprising of ordered pairs, which are partitions of the sets Pis into two sets. A tuple τ = (t,P,H)
is a valid tuple if P is a valid ordered partition. For a valid tuple τ = (t,P,H), a coloring cτ : V (Gt)→ [k]
is called a τ -good coloring if all the following conditions are satisfied.

1. For all i ∈ [k], we have Pi ⊆ c−1τ (i);

2. For all i ∈ [k], all the vertices in Hi are happy in Gt with respect to cτ ;

3. cτ |S∩V (Gt) = c|S∩V (Gt).

For every valid tuple τ = (t,P,H), we have a table entry denoted by Π(τ) which is set to an element
z ∈ [|V (Gt)|] ∪ {−∞}. Intuitively, Π(τ) is set to an element z ∈ [|V (Gt)|] ∪ {−∞} which corresponds
to the maximum of the number of happy vertices in Gt over all τ -good colorings (if it exists). Formally,
the value of Π(τ) is determined as follows.

1. If there is no τ -good coloring of Gt then Π(τ) = −∞.

2. Otherwise, over all τ -good colorings of Gt, Π(τ) is set to the maximum of the number of happy
vertices in V (Gt) \ (∪i∈[k]Ui) of Gt over all such colorings.

Let H? be the set comprising of all H = {(Hi, Ui) | Hi] Ui = Pi and i ∈ [k]}. Observe that
maxH∈H? Π(r,S?,H) is exactly the number of happy vertices in G maximized over all colorings that
extends c to a coloring of V (G). We now move to the description of how the values of Π(·) are computed.
Since we have a structured form of tree decomposition we compute the value of each of the entries at
node t ∈ V (T) based on the entries of its children, which will be given by the recursive formula. For
leaf nodes, we compute the values directly, which corresponds to the base case for the recursive formula.
Therefore, by computing the formula in a bottom-up fashion we compute the value of Π(r,S?,H), for
each H ∈ H?, and hence the value of maxH∈H? Π(r,S?,H). We now move to the description of computing
Π(τ), where τ = (t,P = (P1, . . . , Pk),H = {(Hi, Ui) | Hi] Ui = Pi and i ∈ [k]}) is a valid tuple.

14

Leaf node. Suppose t is a leaf node. In this case, we have Xt = S?, and P = S?. Note that in this
case there is exactly one τ -good coloring of Gt namely, c|S? . Moreover, we can find the set of happy
vertices H, in Gt with respect to c|S? by looking at the adjacencies between the vertices in S?. If there
exist i ∈ [k] such that Hi \H 6= ∅ then we set Π(τ) = −∞. Otherwise, we set Π(τ) = |H \ (∪i∈[k]Ui)|.
The correctness of setting the values as described is justified by the uniqueness of τ -good coloring in Gt.

Introduce node. Suppose t is an introduce node. Let t′ be the unique child of t in T , and Xt =
Xt′ ∪ {ṽ}, where ṽ /∈ Xt′ . Furthermore, let Pi be the set containing ṽ, where i ∈ [k]. Recall that by the
properties of tree decomposition, there is no u ∈ NGt(ṽ) \Xt, i.e., all the neighbors of ṽ in Gt are in Xt.
Let P ′ = (P1, P2, . . . , Pi \ {ṽ}, . . . , Pk), and H′ = (H \ {(Hi, Ui)}) ∪ {(Hi \ {ṽ}, Ui \ {ṽ})}. Finally, let
τ ′ = (t′,P ′,H′). Note that τ ′ is a valid tuple. We start by considering the following simple cases where
we can immediately set the value of Π(τ).

� Case 1: If ṽ ∈ Hi and there is j ∈ [k] \{i} such that Pj ∩NGt
(ṽ) 6= ∅ then we set Π(τ) = −∞ since

for any τ -good coloring of Gt, ṽ is not a happy vertex.

� Case 2: If there is j ∈ [k] \ {i} such that Hj ∩NGt(ṽ) 6= ∅ then set Π(τ) = −∞. The correctness
of this step is justified by the fact that for any τ -good coloring cτ , a vertex in Hj ∩NGt(ṽ) cannot
be happy in Gt with respect to cτ .

If none of the above cases are applicable then we (recursively) set the value of Π(τ) such that

Π(τ) =

{
1 + Π(τ ′) if ṽ ∈ Hi;
Π(τ ′) if ṽ ∈ Ui. (5)

Forget node. Suppose t is a forget node. Let t′ be the unique child of t in T such that Xt = Xt′ \{ṽ},
where ṽ ∈ Xt′ . For i ∈ [k], let Pi = (P1, P2, . . . , Pi ∪ {ṽ}, . . . , Pk), i.e., the ordered partition of Xt′ =
Xt ∪ {ṽ} obtained from P by adding ṽ to the set Pi. Furthermore, for the partition (Hi, Ui) of Pi in H
let Hi1 = (H\ {(Hi, Ui)})∪ {(Hi ∪ {ṽ}, Ui)} and Hi2 = (H\ {(Hi, Ui)})∪ {(Hi, Ui ∪ {ṽ})}, i.e., Hi1 and
Hi2 are obtained from H by adding ṽ to the set of happy and unhappy vertices, respectively. If for some
ĩ ∈ [k], we have ṽ ∈ c−1(̃i) then we let P = {Pĩ}, otherwise we let P = {Pi | i ∈ [k]}. We set the value of
Π(τ) such that

Π(τ) = max
Pi∈P,j∈[2]

{Π(t′,Pi,Hij)}. (6)

Join node. Suppose t is a join node. Let t1, t2 be the two children of t in T . Recall that by the
definition of nice tree decomposition we have Xt = Xt1 = Xt2 . We set Π(t,P,H) such that

Π(t,P,H) = Π(t1,P,H) + Π(t2,P,H)− | ∪i∈[k] Hi| (7)

Correctness. In what follows, we prove the correctness of Equation 5, 6, and 7.

Equation 5 We prove that Equation 5 correctly computes the value of Π(τ) when the Cases 1 and 2
are not applicable. Consider a τ -good coloring cτ of Gt that maximizes the number of happy vertices in
V (Gt) \ (∪i∈[k]Ui), and let H ⊆ V (Gt) \ (∪i∈[k]Ui) be the set of happy vertices in Gt with respect to cτ .
Also, let cτ ′ = cτ |V (Gt′)

. Notice that cτ ′ is a τ ′-good coloring of Gt′ . Since Gt′ = Gt − {ṽ} therefore,
all the vertices in H \ {ṽ} are happy in Gt′ with respect to cτ ′ . This implies that Π(τ ′) ≥ |H \ {ṽ}|. If
ṽ ∈ Hi then it must hold that ṽ ∈ H since cτ is a τ -good coloring, and hence, we have Π(τ ′) ≥ Π(τ)− 1.
Otherwise, ṽ ∈ Ui, and therefore ṽ /∈ H. This implies that Π(τ ′) ≥ Π(τ).

For the other direction consider a τ ′-good coloring of Gt′ that maximizes the number of happy vertices
in V (Gt′) \ (∪i∈[k]Ui), and let H ⊆ V (Gt′) \ (∪i∈[k]Ui) be the set of happy vertices in Gt′ with respect to
cτ ′ . Let cτ be a coloring of Gt such that cτ |V (Gt\{v?}) = cτ ′ and cτ (ṽ) = i. Since Case 2 is not applicable
therefore, all the vertices in NGt

(ṽ) ∩H must belong to Pi. This implies that all the vertices in H are
happy in Gt with respect to cτ . Consider the case when ṽ ∈ Hi. Since Case 1 is not applicable therefore,
NGt(ṽ) ⊆ Pi. This implies that for all u ∈ NGt(ṽ), we have cτ (u) = cτ (ṽ). Therefore, all the vertices

15

in H ∪ {ṽ} are happy in Gt with respect to cτ . Moreover, cτ is a τ -good coloring of Gt. Therefore, in
this case we that Π(τ) ≥ Π(τ ′) + 1. Next, consider the case when ṽ ∈ Ui. Observe that cτ is a τ -good
coloring of Gt. This together with the fact that all the vertices in H are happy in Gt with respect to cτ ,
implies that Π(τ) ≥ Π(τ ′).

Equation 6 We prove that Equation 6 correctly computes the value of Π(τ). Consider a τ -good coloring
cτ of Gt that maximizes the number of happy vertices in V (Gt)\(∪i∈[k]Ui), and let H ⊆ V (Gt)\(∪i∈[k]Ui)
be the set of happy vertices in Gt with respect to cτ . Let ĩ = cτ (ṽ). Furthermore, let j̃ = 1 if ṽ ∈ H and
j̃ = 2, otherwise. Consider the tuple τ ′ = (t′,Pĩ,Hĩj̃). By definition of τ ′ it holds that cτ is a τ ′-good
coloring of Gt′ = Gt. Furthermore, all the vertices in H are happy in Gt′ with respect to cτ . This implies
that Π(τ) ≤ maxPi∈P,j∈[2]{Π(t′,Pi,Hij)}.

For the other direction consider Pi ∈ P, j ∈ [2], and let the corresponding tuple be τ ′ = (t′,Pi,Hij).
Let cτ ′ be a τ ′-good coloring ofGt′ that maximizes the number of happy vertices in V (Gt′)\(∪(H′i,U ′i)∈Hij

U ′i),
and let H ⊆ V (Gt′) \ (∪(H′i,U ′i)∈Hij

U ′i) be the set of happy vertices in Gt′ with respect to cτ ′ . Since
Gt = Gt′ , therefore all the vertices in H are happy in Gt with respect to cτ ′ . Furthermore, by the
definition of sets P, Pi, and Hij it follows that cτ ′ is a τ -good coloring of Gt. Therefore, Π(τ) ≥
maxPi∈P,j∈[2]{Π(t′,Pi,Hij)}.

Equation 7 The proof that Equation 7 correctly computes Π(τ) follows from the fact that Gt1 and
Gt2 are subgraphs of Gt, and in Gt−Xt there is no edge in Gt between a vertex in Gt1−Xt and a vertex
in Gt2 −Xt.

This concludes the description and the correctness proof for the recursive formulas for computing the
values Π(·). We now move to the runtime analysis of the algorithm.

Runtime Analysis. Let (G, k, S, c) be an instance of MHV. In time O(2O(tw(G))n), we compute a
nice tree decomposition (T ′,X ′) of G, with r as the root node, and of width at most w ≤ 6 · tw(G).
Furthermore, the number of nodes in T is bounded by O(wn). We then obtain a more structured tree
decomposition (T ,X), by adding S? to each bag of X ′. For each node in T we have at most kw+12k+w+1

many table entries. Here, we get a factor of kw+1 in the number of table entries instead of kk+w+1

because for a node t ∈ T , we only consider valid ordered partition of Xt, and therefore, we do not
guess the set for vertices in Xt ∩ S. Using the recursive formula we can compute each value of Π(·)
in time O(2O(k+w log k)nO(1)). At this point of time, we cannot guarantee the runtime which linearly
depends on n because we need to check the adjacency among vertices for setting the value of certain
entries of the table, which using the straightforward implementation will require quadratic dependence
on n. Nonetheless, we can start by computing a data structure for the graph G of treewidth at most
w in time wO(1)n that allows performing adjacency queries in time O(w) (for instance using [7] or
Exercise 7.16 in [12]). Thus using this data structure we can compute all the entries of the table in time
O(2O(k+w log k)n) ∈ O(2O(k+tw(G) log k)n), which gives us the desired running time with linear dependence
on n.

Theorem 24. Let (G, k, S, c) be an instance of MHV. Then in time O(2O(k+tw(G) log k)n) we can find
the maximum of the number of happy vertices over all colorings that extent c to a coloring of V (G).
Here, n is the number of vertices in G.

We note here that using the standard backtracking technique together with the fact that we have a
partition of vertices into at most k parts which extends c, we can construct a coloring which achieves
the maximum number of happy vertices.

We then turn our attention to the edge-variant. For convenience, we give a less detailed algorithm
with the goal of only proving fixed-parameter tractability for treewidth. We believe it is possible to
optimize the runtime further, but do not pursue this further. The problem is defined as follows.

Weighted MHE Parameter: k, tw(G)
Input: A graph G, integers k, a vertex subset S ⊆ V (G), (partial) coloring c : S → [k], and a
weight function w : V (G)→ N.
Output: A coloring c̃ : V (G) → [k] such that c̃|S = c maximizing the total weight of the happy
edges.

16

Theorem 25. Weighted MHE problem can be solved in time ktw(G) ·nO(1), where n is the number of
vertices of the input graph and tw(G) is its treewidth.

Proof. Let (G,w, k, S, c) be an instance of Weighted MHE, let (T ,X) be a nice tree decomposition of
G, and let r be the root of T . For a node t ∈ V (T), by desc(t) we denote the set of nodes which are
descendants of t (including t) in T . Furthermore, for t ∈ V (T), by Gt we denote the graph G[Vt], where
Vt = ∪t′∈desc(t)Xt′ .

For every node t of T we set up a table Πt indexed by all possible extended full k-colorings of Xt.
Intuitively, an entry of Πt indexed by f : Xt → [k] gives the total weight of edges happy in G[Vt] under
f . It holds that an optimal solution is given by maxf{Πt[f]}. In what follows, we detail the construction
of the tables Πt for every node t. The algorithm processes the nodes of T in a post-order manner, so
when processing t, a table has been computed for all children of t.

� Leaf node. Let t be a leaf node and Xt = {v}. Obviously, G[Vt] is edge-free, so we have Πt[f] = 0.
Hence, Πt is computed in O(k) time.

� Introduce node. Suppose t is an introduce node. Let t′ be the unique child of t in T , and Xt =
Xt′ ∪ {ṽ}, where ṽ /∈ Xt′ . It is not difficult to see that we set Πt[f] = Πt′ [f |Xt] +

∑
p∈Nh(ṽ)

w(pṽ),

where Nh(ṽ) denotes the neighbors of ṽ colored with the same color as ṽ. It follows Πt can be
computed in time O(ktw(G)+1).

� Forget node. Suppose t is a forget node. Let t′ be the unique child of t in T such that Xt =
Xt′ \ {ṽ}, where ṽ ∈ Xt′ . Observe that the graphs G[Vt] and G[V ′t] are the same. Thus, we set
Πt[f] to the maximum of Πt′ [f

′] where f ′|Xt
= f . Since there are at most k such colorings f ′ for

each f , we compute Πt in time O(ktw(G)+2).

� Join node. Suppose t is a join node. Let t1, t2 be the two children of t in T . Recall that by
the definition of nice tree decomposition we have Xt = Xt1 = Xt2 . The properties of a tree
decomposition guarantee that V (G[Vt1])∩ V (G[Vt2]) = Xt, and that no vertex in V (G[Vt1]) \Xt is
adjacent to a vertex in V (G[Vt2]) \Xt. Thus, we add together weights of happy edges that appear
in G[Vt1] and G[Vt2], while subtracting a term guaranteeing we do not add weights of edges that are
happy in both subgraphs. Indeed, we set Πt[f] = Πt1 [f] + Πt2 [f]− q, where q is the total weight of
the edges made happy under f in Xt. The table Πt[f] can also be computed in time O(ktw(G)+2).

To summarize, each table Πt has size bounded by ktw(G)+1. Moreover, as each table is computed in
O(ktw(G)+2) time, the algorithm runs in ktw(G) · nO(1) time, which is what we wanted to show.

7.2 Neighborhood Diversity

The polynomial-time solvability of a problem on bounded treewidth graphs implies the existence of a
polynomial-time algorithm also for other structural parameters that are polynomially upper-bounded in
treewidth. For instance, one such parameter is the vertex cover number, i.e., the size of a smallest vertex
cover that a graph has. However, graphs with bounded vertex cover number are highly restricted, and
it is natural to look for less restricting parameters that generalize vertex cover (like treewidth). Another
parameter generalizing vertex cover is neighborhood diversity, introduced by Lampis [24]. Let us first
define the parameter, and then discuss its connection to both vertex cover and treewidth.

Definition 26. In an undirected graph G, two vertices u and v have the same type if and only if N(u) \
{v} = N(v) \ {u}.

Definition 27 (Neighborhood diversity [24]). A graph G has neighborhood diversity t if there exists
a partition of V (G) into t sets P1, P2, . . . , Pt such that all the vertices in each set have the same type.
Such a partition is called a type partition. Moreover, it can be computed in linear time.

Note that all the vertices in Pi for every i ∈ [t] have the same neighborhood in G. Moreover, each Pi
either forms a clique or an independent set in G.

Neighborhood diversity can be viewed as representing the simplest of dense graphs. If a graph has
vertex cover number d, then the neighborhood diversity of the graph is not more than 2d + d (for a

17

... ...

C1 C2

X1 X2

Q1 Q2

Figure 3: A set of a type partition, where each vertex in Q1 ∪Q2 has the same type. The dashed edges
appear exactly when Q1 ∪Q2 induces a clique. The set Q1 forms a complete bipartite graph with both
X1 and X2; likewise for Q2 (edges omitted for brevity).

proof, see [24]). Hence, graphs with bounded vertex cover number also have bounded neighborhood
diversity. However, the converse is not true since complete graphs have neighborhood diversity 1. Paths
and complete graphs also show that neighborhood diversity is incomparable with treewidth. In general,
some NP-hard problems (some of which remain hard for treewidth), are rendered tractable for bounded
neighborhood diversity (see e.g., [21]).

We proceed to present algorithms for MHE and MHV for graphs of bounded neighborhood diversity.
Consider a type partition of a graph G with t sets, and an instance of I = (G, k, S, c) of MHE (MHV).
If a set contains both precolored and uncolored vertices, we split the set into two sets: one containing
precisely the precolored vertices and the other precisely the uncolored vertices. After splitting each set,
the number of sets is at most 2t. For convenience, we say a set is uncolored if each vertex in it is
uncolored; otherwise the set is precolored. Let the uncolored sets be P1, P2, . . . , Pt. In what follows, we
discuss how vertices in these sets are colored in an optimal solution. We say a set is monochromatic if
all of its vertices have the same color.

MHE Parameter: neighborhood diversity t
Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial) coloring c : S ⊆
V (G)→ [k].
Output: A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the number of happy edges.

Lemma 28. There is an optimal extended full coloring for an instance I of MHE such that each uncol-
ored set Pi for 1 ≤ i ≤ t is monochromatic.

Proof. Consider any optimal extended full coloring for an instance I. Suppose the vertices in a set Pi
belong to more than one color class. Let Q1 and Q2 be the (disjoint and non-empty) sets of vertices of
Pi belonging to color classes C1 and C2, respectively. Let X1 and X2 be the neighbors of the vertices
in Q1 and Q2 in color classes C1 and C2, respectively, as shown in Figure 3. Without loss of generality,
let us assume that |X1| ≤ |X2|. By recoloring vertices in Q1 with the color of C2, we retain an optimal
solution without disturbing the colors of other vertices. If |E(Q1, Q2)| is the number of edges between
Q1 and Q2, the gain in the number of happy edges by recoloring Q1 is |E(Q1, Q2)|+ |Q1|(|X2| − |X1|),
which is strictly positive if Pi is a clique and non-negative if Pi is an independent set.

In conclusion, we have shown that every optimal extended full coloring makes each Pi inducing a
clique monochromatic. Moreover, there is an optimal extended full coloring making each Pi inducing an
independent set monochromatic.

The previous lemma is combined with the algorithm of Theorem 8 to obtain the following.

Theorem 29. For any k ≥ 1, MHE can be solved in time O∗(2t), where t is the neighborhood diversity
of the input graph.

Proof. First we construct a weighted graph H from G as follows: merge each uncolored set into a single
vertex. Within a precolored set (i.e., a set that is not uncolored), merge vertices of the same color. This
merging operation may create parallel edges and self-loops in H. Discard all self-loops in H. Replace
all parallel edges with a single weighted edge with weight equivalent to the number edges between the

18

corresponding vertices. Edges between the vertices in G that are merged to the same vertex are treated
as happy, as there is an optimal extended full coloring where the merged vertices are colored the same
by Lemma 28. Clearly, H has at most t+ kt vertices in which t vertices are uncolored.

Now, MHE on G is converted to an instance of Weighted MHE on H. By using Theorem 8, we
can solve the instance of MHE on G in time O∗(2t).

Using similar arguments, we get the following results for MHV as well.

MHV Parameter: neighborhood diversity t
Input: A graph G, an integer k, a vertex subset S ⊆ V (G), and a (partial) coloring c : S ⊆
V (G)→ [k].
Output: A coloring c̃ : V (G)→ [k] such that c̃|S = c maximizing the number of happy vertices.

Lemma 30. There is an optimal extended full coloring for an instance I of MHV such that each un-
colored set Pi for 1 ≤ i ≤ t is monochromatic.

Proof. Consider any optimal extended full coloring for an instance I. Suppose the vertices in a set Pi
belong to more than one color class. Let Q1 and Q2 be the (disjoint and non-empty) sets of vertices of
Pi belonging to color classes C1 and C2, respectively. Let X1 and X2 be the neighbors of the vertices
in Q1 and Q2 in color classes C1 and C2, respectively, as shown in Figure 3. Without loss of generality,
let us assume that |X1| ≤ |X2|. By recoloring vertices in Q1 with the color of C2, we retain an optimal
solution without disturbing the colors of other vertices. If |E(Q1, Q2)| is the number of edges between
Q1 and Q2, the gain in the number of happy edges by recoloring Q1 is |E(Q1, Q2)|+ |Q1|(|X2| − |X1|),
which is strictly positive if Pi is a clique and non-negative if Pi is an independent set.

In conclusion, we have shown that every optimal extended full coloring makes each Pi inducing a
clique monochromatic. Moreover, there is an optimal extended full coloring making each Pi inducing an
independent set monochromatic.

Theorem 31. For any k ≥ 1, MHV can be solved in time O∗(2t), where t is the neighborhood diversity
of the input graph.

Proof. First we construct a weighted graph H from G as follows: merge each uncolored set into a single
vertex. Within a precolored set (i.e., a set that is not uncolored), merge vertices of the same color. This
merging operation may create parallel edges and self-loops in H. Discard all self-loops in H. Replace
all parallel edges with a single weighted edge with weight equivalent to the number edges between the
corresponding vertices. Edges between the vertices in G that are merged to the same vertex are treated
as happy, as there is an optimal extended full coloring where the merged vertices are colored the same
by Lemma 28. Clearly, H has at most t+ kt vertices in which t vertices are uncolored.

Now, MHV on G is converted to an instance of Weighted MHV on H. By using Theorem 8, we
can solve the instance of MHV on G in time O∗(2t).

7.3 Distance to Clique

Let us then consider another natural parameter, the distance to clique.

Theorem 32. MHE and MHV are both FPT when parameterized by the size of a clique modulator of
the input graph.

Proof. Let (G, k, S, c) denote an instance of MHV. We will use Q to refer to V (G)\S, the set of vertices
that are not precolored by c. Further, let X ⊆ V (G) such that C = G \ X is a clique. We use d to
denote |X|.

If k > d+ 1, then there exists at least two vertices u and v in C such that c(u) 6= c(v), which implies
that no vertex of C is happy. First we guess the partition (H,U) of X in O(2d) time, where H and U
denote the happy and unhappy vertices of X in an optimal coloring c′.

Let H = (H1, . . . ,Ht) be the partition of H such that all vertices in set Hi, i ∈ [t], are colored with
the same color by c′. We can guess the correct partition in O(dd) time. Note that N(Hi) ∩N(Hj) = ∅.
Indeed, suppose not, and let v ∈ N(Hi) ∩ N(Hj). Then, note that irrespective of how v is colored, at
least one vertex in Hi or Hj is not happy, a contradiction.

19

Since Hi is happy, there are no two vertices u and v in the set Hi ∪N(Hi) such that c(u) 6= c(v). For
each i ∈ [t], if at least one vertex is precolored in Hi ∪N(Hi) then assign the same color to all vertices
of Hi ∪N(Hi). For the sets Hi ∪N(Hi), which do not have any precolored vertices, assign a color which
is not used so far to color any Hi. At the end arbitrarily color the remaining vertices. For each possible
partition H and U of X and each possible partition H1, . . . ,Ht of H, count the number of happy vertices
and the optimal coloring c′ is the coloring which maximizes the number of happy vertices.

If k ≤ d+ 1, then some of the clique vertices can be happy, but this only happens when all the clique
vertices are colored by the same color. Since there are at most k colors we can guess the correct coloring
of the clique in O(k) time. It remains to color the set X. Since k ≤ d+ 1, we can guess the coloring of
X in O(dd+1) time.

We now turn to the MHE problem.

Overall Approach. We begin with an informal discussion of the main steps in our algorithm. First,
we show that if every vertex in the clique G \X is precolored by c, then an optimal coloring c′ can be
found in FPT time by guessing the behavior of c′ on the modulator and then reducing the remaining
problem to finding a maximum-weight matching in an auxiliary bipartite graph. On the other hand,
suppose the clique is not entirely precolored. Then we split into two cases based on whether the uncolored
part is large or small. If the uncolored part is small, then we can combine it with the modulator X and
think of the union as a larger modulator, and we are back to the previous case. The key idea of our
algorithm lies in analyzing the remaining case: here we show that if the uncolored part of the clique is
large enough, then it “makes sense” for any optimal coloring to color all of it with the same color. With
this fact at hand, we can now guess the common color employed on the large uncolored portion of the
clique and then proceed as in the first case. We now turn to a formal description of these ideas.

Precolored Clique. First, we give a procedure to color X when all the vertices in the clique C = G\X
are precolored. Without loss of generality, let no vertex of X be precolored (otherwise we adapt our
argument to work with the uncolored part of X). To begin with, we guess X = (X1, . . . , Xt), which is
the partition of X such that all vertices in Xi are colored in the same way by c′.

Let w[i, j] denote the number of edges in G[Xi∪C] that will be happy if all vertices of Xi are colored j.
Consider an auxiliary weighted bipartite graph, denoted by D = ((A,B), E(G)) with edge weights given
by w : E(G)→ [|E(G)|]. This graph is constructed as follows. The vertex set A contains one vertex for
every set Xi and the vertex set B contains one vertex for every color used in the clique. The weight of
the edge aibj is simply w[i, j]. We find a matching M of maximum weight in D. It is easy to see that
any such matching saturates A, since |B| ≥ |A|, the weights are positive, and all edges are present. We
now color all vertices in Xi based on the matching M . In particular, if M matches ai to bj , then we
color all vertices in Xi with color j. At the end of this phase, all vertices in X have been colored.

Now, we turn to the general situation. Let CU be the set of uncolored vertices in the clique. We
say that a color j is active if there exists a vertex v ∈ X such that c(v) = j, while a color is dormant
otherwise. In other words, a dormant color is a color that is employed only on vertices outside the
modulator. We use q to denote the number of active colors, and define ` = q + 1. Note that ` ≤ d+ 1.

Few Uncolored Vertices. If |CU | ≤ 2d` = O(d2), then X ′ = X ∪ CU is a modulator to clique C ′ of
size at most O(d2), i.e., G\ (X ∪CU) is a clique. Since all the vertices of the clique G\X ′ are precolored,
the vertices of X ′ can be colored using the procedure described above. So without loss of generality we
assume that |CU | > 2d`.

Many Uncolored Vertices. We now argue that if CU is “sufficiently large”, then there exists an
optimal coloring c′ that uses one color among all vertices of CU . We first begin with a technical claim,
which shows how we can modify a coloring using two colors on CU into one that uses just one, while
maintaining at least as many happy edges as the original coloring. This will be useful later.

Claim 4. Let (G, k, S, c,X) be an instance of MHE, and let CU denote the subset of G \X that is not
colored by the precoloring c. Let c? be a coloring extending c that uses two colors amongst the vertices
of CU , and let η denote the number of edges that are happy with respect to c?. If |CU | > 4d, there also
exists an coloring c′ extending c that: (i) assigns the same color to all vertices of CU , and (ii) makes at
least η edges happy.

20

CB CR

DB DR

UB

Blue
UR

Red

Clique
G \X

Pre-colored vertices in the clique G \X

Pre-colored vertices in the modulator X

CB CR

DB DR

UB

Red
UR

Red

CB CR

DB DR

UB

Blue
UR

Blue
CU

Figure 4: A given coloring using two colors in CU (left). The two figures (center, right) show the effect
of switching one of the colors to the others. The solid edges denote happy edges while the dashed edges
are the unhappy ones. The edge set labels have been omitted for clarity.

Proof. We argue by contradiction. Let the two colors employed by c? among the vertices of CU be red
and blue. For the rest of this discussion, assume that all vertices of G are colored according to c?, the
given coloring. We let DR and UR denote the set of red vertices in the modulator X and CU , and use dR
and uR, respectively, to denote their sizes. Further, let CR denote the set of precolored vertices in the
clique that are colored red, and let cR denote the size of CR. We use analogous notation (i.e., DB , UB ,
and CB for the sets; and dB , uB , cB for the sizes) for the blue vertices. See Figure 4 for an illustration.
Finally, let

� eR (respectively, eB) denote the number of edges in G[DR] (respectively, G[DB]);

� eRR denote the number of edges between DR and UR;

� eRB denote the number of edges between DR and UB ;

� eBR denote the number of edges between DB and UR;

� eBB denote the number of edges between DB and UB ;

� fRR denote the number of edges between DR and CR; and

� fBB denote the number of edges between DB and CB .

For convenience, we also set

∆ :=

(
uR
2

)
+

(
uB
2

)
+

(
cR
2

)
+

(
cB
2

)
+ fBB + fRR + eR + eB .

The number of happy edges whose endpoints are either both red or both blue, with respect to the
coloring c?, is given by

α = eRR + eBB + cR · uR + cB · uB + ∆.

Without loss of generality, assume that cR ≥ cB . Further, note that since uR + uB = |CU | ≥ 4d,
either uR > 2d or uB > 2d. We consider these cases individually.

21

Case 1: uR > 2d. Consider an alternate coloring c′, which is identical to c? except that it colors all
vertices in UB red. The number of happy edges with respect to c′ is given by:

β = uR · uB + eRR + eRB + cR · uR + cR · uB + ∆.

Since c? is an optimal coloring and the number of happy edges that do not involve the colors red or
blue are exactly the same between the colorings c? and c′, we must have α ≥ β, which in turn implies

eBB + cB · uB ≥ uR · uB + eRB + cR · uB .
Since cR ≥ cB , we have that

eBB ≥ uR · uB + eRB ,

implying that dB ≥ uR. However, since uB > 2d and dB ≤ d, this is a contradiction.

Case 2: uB > 2d. Consider again the alternate coloring c′ described above, and recall that we had

eBB + uB · cB ≥ uR · uB + eRB + cR · uB .
Note that eBB ≤ d · uB and uR · uB + eRB ≥ 0, we simplify the above to

d · uB + uB · cB ≥ cR · uB ,
implying that cR ≤ cB + d. Now consider an alternate coloring c′′, which is identical to c? except

that it colors all vertices in UR blue. The number of happy edges with respect to c′′ is given by

γ = uR · uB + eBB + eBR + cB · uB + cB · uR + ∆.

Again, by the optimality of c?, we have α ≥ γ, which in turn implies

eRR + cR · uR ≥ uR · uB + eBR + cB · uR.
Note that eRR ≤ d · uR and eBR ≥ 0, so the expression above simplifies to

d · uR + cR · uR ≥ uR · uB + cB · uR,
implying that

d+ cR ≥ uB + cB =⇒ uB ≤ cR − cB + d ≤ cB − cB + 2d = 2d.

The last inequality follows from the conclusion we obtained above just before defining the coloring
c′′. However, note that the situation above, which is that uB ≤ 2d, contradicts the case that we are in,
and this concludes the argument.

We now turn to the main claim regarding the coloring of large cliques.

Claim 5. Let (G, k, S, c,X) be an instance of MHE as described above, and let CU denote the subset of
G \ X that is not colored by the precoloring c. If |CU | > 2d`, then there exists an optimal coloring c′

extending c that assigns the same color to all vertices of CU .

Proof. We argue by induction on `. Recall that ` = q + 1, where q is the number of active colors. The
base case is when ` = 1. Herein, the precoloring only employs dormant colors. Thus the claim is that
there exists an optimal coloring which uses at most one dormant color among vertices in CU . Let c′ be
an optimal coloring extending c. If c′ colors vertices of CU with one color, there is nothing to prove.
On the other hand, suppose the coloring uses two dormant colors on the vertices of CU , say red and
green. Let pr and pg be the number of red and green vertices in the precoloring (note that all of these
vertices belong to the clique), while we use qr and qg to denote the number of red and green vertices in
CU with respect to c′. Without loss of generality, let pr ≥ pg. Let c′′ denote the coloring that is the
same as c′ except that it uses the color red for all vertices in CU that were colored green by c′. In other
words, we started with c′ and “switched” from green to red in CU to obtain c′′. Note that the number of

22

happy edges whose endpoints are either both green or both red are in c′ and c′′ are, respectively, given
by h′ := pr ·qr+pg ·qg and h′′ := pr ·qr+pr ·qg, since there are no red or green vertices in the modulator.
Note that h′′ ≥ h′ since pr ≥ pg. Repeating this argument for any additional dormant colors, we can
overwrite the use dormant colors to a point where we obtain an optimal coloring that uses at most one
dormant color.

We now turn to the induction step. Assume that the induction hypothesis holds for all values `′ < `.
Let c′ be an optimal coloring extending c. If c′ colors vertices of CU with one color, we are done.
Otherwise, let V1, . . . , Vp be the color classes of CU with respect to c′, and let these color classes be listed
in decreasing order of size (i.e., Vp is the smallest color class amongst V1, . . . , Vp). We also use ωi to
denote the color of the vertices in Vi. Note that we may assume that p ≤ `. Indeed, otherwise we are in
a situation where the coloring on CU makes use of more than one dormant color, and we can modify c′

to a coloring that makes use of exactly one dormant color by the argument described for the base case.
Without loss of generality, let p = `.

Now, if |Vp| ≤ 2d, then∣∣∣∣∣
p−1⋃
i=1

Vi

∣∣∣∣∣ ≥ 2d`− 2d = 2d(`− 1), since

∣∣∣∣∣
p⋃
i=1

Vi

∣∣∣∣∣ ≥ 2d`

while if |Vp| > 2d, then ∣∣∣∣∣
p−1⋃
i=1

Vi

∣∣∣∣∣ ≥ 2d(`− 1), since |Vi| ≥ |Vp| ∀i ∈ [p− 1].

In either situation, we apply the induction hypothesis to the subgraph H of G that consists of all
vertices not colored with color ωp according to c′. Let c? be the projection of the precoloring c onto H,
and let k?, S? be defined analogously. Also, let X? := X \ {v ∈ X | c′(v) = ωi}. Note that X? continues
to be a clique modulator for the graph H and that |X?| ≤ d. It is straightforward to check that the
induction hypothesis holds in the instance (H, k?, S?, c?, X?), since the uncolored clique in this instance

is given by
⋃p−1
i=1 Vi, whose size bound was argued above.

By the induction hypothesis, there exists an optimal coloring c? of H? that uses one color on the
uncolored vertices of H? \X?. Now consider the coloring c′′ defined such that

c′′(v) =

{
c?(v) if v? ∈ V (H?),

c′(v) otherwise.

It is easy to verify that c′′ has at least as many happy edges as c′ and has the property that it uses
two colors on the vertices of CU . Using Claim 4 (which applies since ` ≥ 2), we can now adapt c′′ to
arrive at a coloring with at least as many happy edges as c′′ but that uses one color on the vertices of
CU . This completes the argument.

To summarize, the case when |CU | ≤ 2d` = O(d2) is easy, since we can guess optimal coloring of X

in time dO(d2) and then it can be easily extended to color the entire graph. If |CU | > 2d`, from Claim 5
we know that all vertices of CU get the same color, which we guess in O(k) time. Now we need to
color X such that the number of happy edges is maximized. This can be done by simply applying the
procedure described in the first case, where all vertices of the clique are precolored. The running time
of the algorithm is O(k(dd

2

)(m
√
n log n)(n+m)), where O(m

√
n log n) is the time needed to compute a

maximum matching on a bipartite graph [15].

8 Happy Coloring on Special Graph Classes

We begin this section by proving hardness of both DMHE and DMHV for bipartite graphs and split
graphs. Afterwards, we show the vertex-variant can be solved optimally on cographs.

23

8.1 Bipartite and Split Graphs

Theorem 33. DMHE is NP-complete on the class of bipartite and split graphs.

Proof. We first consider the case of bipartite graphs. We reduce from DMHE on general graphs.
We let (G, k, `, S, c) be an instance of DMHE. Construct a bipartite graph (H = (A,B), E(G)) as

follows. For every vertex v ∈ V (G), we introduce a vertex av ∈ A. For every edge e ∈ E(G), we introduce
a vertex be ∈ B, and if e = (u, v), then be is adjacent to au and av. The precoloring function c′ mimics
c on A, that is, for every u ∈ S, c′(au) = c(u). We use X to denote {au | u ∈ S} ⊆ A. Let `′ = m + `.
Thus our reduced instance is (H, k, `′, X, c′).

We now argue the equivalence. First, consider the forward direction. If c̃ is a total coloring of V (G)
that makes ` edges happy, then we define a coloring c? for H as follows: color c?(av) := c̃(v) for all
av ∈ A. For every edge e = (u, v) ∈ E(G), color be ∈ B according to c̃(u). Note that for all edges e
in G that are happy with respect c̃, two edges (namely (be, av) and (be, au)) are happy with respect to
c?. Corresponding to all unhappy edges, H has one happy edge with respect to c?. Therefore, the total
number of happy edges in c? is 2`+ (m− `) = m+ `.

In the reverse direction, let c? be a coloring of H that makes at least m+` edges happy. Now consider
the coloring c̃ obtained as follows: c̃(u) = c?(au). We argue that at least ` edges are happy in G with
respect to c̃. Indeed, suppose not. Without loss of generality, assume that only (`− 1) edges are happy
with respect to c̃. Then in H, there are at most (` − 1) vertices in B that can have two happy edges
incident on them, and therefore the total number of happy edges is at most 2(`−1)+(m−`+1) = m+`−1,
which contradicts our assumption about the total number of happy edges in H with respect to c?.

We now turn to the case of split graphs. The construction is similar to the case of bipartite graphs.
Construct a split graph (H = (A,B), E(G)) as follows. Let (G, k, `, S, c) be an instance of DMHE. Let
T :=

(
m
2

)
+ 1. For every vertex v ∈ V (G), we introduce T copies of the vertex av ∈ A, denoted by

av[1], . . . , av[T]. For every edge e ∈ E(G), we introduce a vertex be ∈ B, and if e = (u, v), then be is
adjacent to all copies of au and av. Finally, we add all edges among vertices in B, thereby making H[B]
a clique.

The precoloring function c′ mimics c on A across all copies, that is, for every u ∈ S, c′(au) = c(u) for all
copies of au. We use X to denote {au[i] | u ∈ S, 1 ≤ i ≤ T} and for 1 ≤ i ≤ T , Ai := {au[i] | u ∈ V (G)}.
Let `′ = T (m+ `). Thus our reduced instance is (H, k, `′, X, c′).

We now argue the equivalence of these instances. First, consider the forward direction. If c̃ is a
total coloring of V (G) that makes ` edges happy, then we define a coloring c? for H as follows: color
c?(av) := c̃(v) for all copies of av ∈ A. For every edge e = (u, v) ∈ E(G), color be ∈ B according to c̃(u).
Note that for all edges e in G that are happy with respect c̃, 2T edges (namely (be, av) and (be, au) across
all copies) are happy with respect to c?. Corresponding to all unhappy edges, H has T happy edges with
respect to c?. Therefore, the total number of happy edges in c? is at least 2T`+T · (m− `) = T · (m+ `).

In the reverse direction, let c? be a coloring of H that makes at least T (m+`) edges happy. We argue
that there must be at least one copy Ai of {av | v ∈ V (G)} for which the number of happy edges with
one endpoint in B and one in Ai is at least (m + `). Indeed, suppose not. Then consider the following
partition of the edges in H: let E0 be all edges with both endpoints in B, and let Ei be all edges with
one endpoint in B and the other endpoint in Ai. For the sake of contradiction, we have assumed that
the number of happy edges in Ei is less than (m+ `) for all i ∈ [T]. Note that the total number of edges
in B is

(
m
2

)
. Therefore, the the number of edges happy with respect to c? is at most:(

m

2

)
+ T · (m+ `− 1) = T · (m+ `) +

(
m

2

)
− T < T (m+ `),

where the last step follows by substituting for T =
(
m
2

)
+ 1. This leads to the desired contradiction.

Having identified one set Ei that has at least (m + `) happy edges, the argument for recovering a
coloring c̃ for G that makes at least ` edges happy is identical to the case of bipartite graphs.

Theorem 34. DMHV is NP-complete on the class of bipartite and split graphs.

Proof. We first consider the case of split graphs. Let I = (G, k, `, S, c) be an instance of DMHE, and let
us in polynomial time construct an instance I ′ = (G′, k, `, S, c′) of DMHV. We can safely (and crucially)
assume at least two vertices of G are precolored (in distinct colors), for otherwise the instance is trivial.
We construct the split graph G′ = (C ∪B,E′ ∪ E′′), where

24

1

2

3

4

e1 e3 e5

e4

e2

ve1 ve2 ve3 ve4 ve5

v1 v2 v3 v4

B

C

Figure 5: (a) A graph G of an instance of DMHE, where white vertices correspond to uncolored vertices.
(b) The graph G transformed into a split graph G′ by the construction of Theorem 34. The edges between
the vertices in C are not drawn.

� C = {vx | x ∈ V (G)},
� B = {ve | e ∈ E(G)},
� E′ = {vevx | e is incident to x in G}, and

� E′′ = {vxvx′ | x, x′ ∈ V (G)}.
That is, C forms a clique and B an independent set in G′, proving G′ is a split graph. In particular,
observe that the degree of each vertex ve is two. To complete the construction, we retain the precoloring,
i.e., set c′(vx) = c(x) for every x ∈ V (G). The construction is illustrated in Figure 5.

We claim that I is a YES-instance of DMHE iff I ′ is a YES-instance of DMHV. Suppose ` edges
can be made happy in G by an extended full coloring of c. Consider an edge e ∈ E(G) whose endpoints
are colored with color i. To make ` vertices happy in G′, we give ve and its two neighbors the color
i. For the other direction, suppose ` vertices are happy under an extended full coloring of c′. As at
least two vertices in C are colored in distinct colors, it follows that all the happy vertices must be in B.
Furthermore, the vertices in B correspond to precisely the edges in E(G), so we are done.

For bipartite graphs, the construction is a modification of the construction for split graphs. Modify
the split graph G′ by deleting the edges between the vertices in C, i.e., let G′ = (C ∪ B,E′). For each
vx ∈ C, add a path Svx = {v1x, v2x, v3x} along with the edges vxv

1
x and v3xvx. In other words, each vx

forms a 4-cycle with the vertices in Svx . Clearly, we have that G′ is bipartite as it contains no odd
cycles. Arbitrarily choose three distinct colors from [k], and map them bijectively to Svx . Observe that
by construction, none of the vertices in Svx can be happy under any c′ extending c. This completes the
construction. Correctness follows by the same argument as in case of split graphs.

8.2 Cographs

We now turn to the MHV problem on the class of cographs. We use the notion of modular decomposition
to solve this problem on cographs.

A set M ⊆ V (G) is called module of G if all vertices of M have the same set of neighbors in V (G)\M .
The trivial modules are V (G), and {v} for all v. A prime graph is a graph in which all modules are trivial.
The modular decomposition of a graph is one of the decomposition techniques which was introduced by
Gallai [20]. The modular decomposition of a graph G is a rooted tree MG that has the following properties:

1. The leaves of MG are the vertices of G.

2. For an internal node h of MG, let M(h) be the set of vertices of G that are leaves of the subtree
of MG rooted at h. (M(h) forms a module in G).

3. For each internal node h ofMG there is a graphGh (representative graph) with V (Gh) = {h1, h2, . . . , hr},
where h1, h2, . . . , hr are the children of h in MG and for 1 ≤ i < j ≤ r, hi and hj are adjacent in
Gh iff there are vertices u ∈M(hi) and v ∈M(hj) that are adjacent in G.

4. Gh is either a clique, an independent set, or a prime graph and h is labeled Series if Gh is clique,
Parallel if Gh is an independent set, and Prime otherwise.

James et al. [22] gave the first polynomial-time algorithm for modular decomposition which runs in O(n4)
time.

25

Theorem 35. MHV is polynomial-time solvable on the class of cographs.

Proof. The modular decomposition tree of cographs has only parallel and series nodes. Let G be a
cograph whose modular decomposition tree is MG. Without loss of generality we assume that the root
r of tree MG is a series node, otherwise G is not connected and the number of happy vertices in G is
equal to the sum of the happy vertices in each connected component. Let the children of r be x and y.
Further, let the cographs corresponding to the subtrees at x and y be Gx and Gy, respectively.

We assume that k ≥ 3, for otherwise we use the polynomial-time algorithm for 2-MHV on general
graphs to find the number of maximum happy vertices. Further, we assume that both Gx and Gy contain
at least two vertices. Suppose, if Gx has only vertex v, then v is the universal (adjacent to all vertices)
vertex in G. It is easy to see that in any optimal coloring c̃ of G, if a vertex u is happy then c̃(u) = c̃(v)
i.e, in any optimal coloring all happy vertices are colored with color of v. We can guess the color of v in
O(k) time.

We have the following three cases based on the number of colors present in Gx and Gy in the partial
coloring c̃ of G.

Number of colors in Gx is zero. Let k ≥ 3 be the number of colors used in Gy by c̃. It is easy to
see that no vertex of Gx is happy as each vertex of Gx is adjacent to at least two vertices of different
colors. Moreover, all the vertices in Gx need to be colored with a single color for otherwise the number
of happy vertices becomes zero. We try over all possible O(k) many ways of coloring Gx. In the end
color all uncolored vertices in Gy with the color used in Gx.

Number of colors in Gx is one. Since k ≥ 3, the number of colors (distinct from the color used
in Gx) used in Gy by c̃ is at least two. An optimal coloring is obtained by coloring all the uncolored
vertices of G with the color used in Gx.

Number of colors in Gx is at least two. We assume that the number of colors in Gy is at least two,
for otherwise we can use one of the previous cases by interchanging Gx and Gy. In this case no vertex
in G is happy, because every vertex of G is adjacent to at least two precolored vertices having different
colors.

9 Concluding Remarks

We studied the parameterized complexity of the main variants of the happy coloring problems. The
results extend considerably our understanding of the complexity of the problems (see Subsection 1.2 for
an overview).

Recent developments build on our results and clarify this landscape even further. In particular, the
following results are established by Bliznets and Sagunov [6], directly extending our understanding of
the problem in the context of structural parameters. The authors show that MHV is W[1]-hard with
respect to parameters pathwidth, treewidth or clique-width, distance to cographs, and feedback vertex set
number. Also, MHE is W[1]-hard with respect to the cluster vertex deletion number (a generalization of
the clique deletion number, and hence a smaller parameter in general), while MHV is FPT with respect
to this parameter. When parameterized by distance to clique, MHV admits a polynomial kernel.

In [5], several algorithmic lower bounds are established for these problems. Among the most relevant
to our work are the following. Under reasonable complexity-theoretic assumptions, it is shown that
there are no polynomial kernels for MHV parameterized by vertex cover, and no polynomial kernels for
MHE under the following parameterizations: number of uncolored vertices, number of happy edges, and
distance to almost any reasonable graph class (see the respective work for a precise definition). On the
other hand, to the best of our knowledge, the question of whether MHV admits a linear kernel when
parameterized by k + `, i.e., the number of colors and solution size remains open.

Acknowledgements We thank the anonymous reviewers for their helpful comments on this work, and
in particular for pointing out a mistake in an earlier proof of Theorem 32.

26

References

[1] A. Agrawal. On the parameterized complexity of happy vertex coloring. In Proceedings of the 28th
International Workshop on Combinatorial Algorithms (IWOCA), volume 10765 of Lecture Notes in
Computer Science, pages 103–115, 2017.

[2] N. R. Aravind, S. Kalyanasundaram, and A. S. Kare. Linear time algorithms for happy vertex
coloring problems for trees. In Proceedings of the 27th International Workshop on Combinatorial
Algorithms (IWOCA), volume 9843 of Lecture Notes in Computer Science, pages 281–292. Springer,
2016.

[3] N. R. Aravind, S. Kalyanasundaram, A. S. Kare, and J. Lauri. Algorithms and hardness results for
happy coloring problems. CoRR, abs/1705.08282, 2017.

[4] A. Björklund, T. Husfeldt, and M. Koivisto. Set Partitioning via Inclusion-Exclusion. SIAM Journal
on Computing, 39(2):546–563, 2009.

[5] I. Bliznets and D. Sagunov. Lower bounds for the happy coloring problems. In Proceedings of
the 25th International Conference on Computing and Combinatorics (COCOON), volume 11653 of
Lecture Notes in Computer Science, pages 490–502, 2019.

[6] I. Bliznets and D. Sagunov. On happy colorings, cuts, and structural parameterizations. In Proceed-
ings of the 45th International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
volume 11789 of Lecture Notes in Computer Science, pages 148–161, 2019.

[7] H. L. Bodlaender, P. S. Bonsma, and D. Lokshtanov. The fine details of fast dynamic programming
over tree decompositions. In Proceedings of the 8th International Symposium on Parameterized and
Exact Computation (IPEC), volume 8246 of Lecture Notes in Computer Science, pages 41–53, 2013.

[8] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. A ck

n 5-approximation algorithm for treewidth. SIAM Journal on Computing, 45(2):317–378, 2016.

[9] H. L. Bodlaender, M. R. Fellows, M. A. Langston, M. A. Ragan, F. A. Rosamond, and M. Weyer.
Quadratic kernelization for convex recoloring of trees. Algorithmica, 61(2):362–388, Oct 2011.

[10] Y. Cao, J. Chen, and J.-H. Fan. An O∗(1.84k) parameterized algorithm for the multiterminal cut
problem. Information Processing Letters, 114(4):167–173, 2014.

[11] S. Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):51–89, 1991.

[12] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[13] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The com-
plexity of multiway cuts (extended abstract). In Proceedings of the 24th Annual ACM Symposium
on Theory of Computing (STOC), pages 241–251. ACM, 1992.

[14] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer,
2012.

[15] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in general graphs. ACM
Trans. Algorithms, 14(1):8:1–8:35, Jan. 2018.

[16] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a Highly Connected
World. Cambridge University Press, 2010.

[17] M. R. Fellows, D. Hermelin, F. A. Rosamond, and S. Vialette. On the parameterized complexity of
multiple-interval graph problems. Theoretical Computer Science, 410(1):53–61, 2009.

[18] F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer Science & Business Media,
2010.

27

[19] F. V. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi. Kernelization: theory of parameterized
preprocessing. Cambridge University Press, 2019.

[20] T. Gallai. Transitiv orientierbare graphen. Acta Mathematica Hungarica, 18(1):25–66, 1967.

[21] R. Ganian. Using neighborhood diversity to solve hard problems. CoRR, abs/1201.3091, 2012.

[22] L. O. James, R. G. Stanton, and D. D. Cowan. Graph decomposition for undirected graphs. In
Proceedings of the 3rd Southeastern Conference on Combinatorics, Graph Theory, and Computing,
pages 281–290, 1972.

[23] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer
Science. Springer, 1994.

[24] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19–37,
2012.

[25] M. Langberg, Y. Rabani, and C. Swamy. Approximation algorithms for graph homomorphism
problems. In Proceedings of the 9th International Conference on Approximation Algorithms for
Combinatorial Optimization Problems, and 10th International Conference on Randomization and
Computation (APPROX-RANDOM), volume 4110 of Lecture Notes in Computer Science, pages
176–187. Springer, 2006.

[26] P. F. Lazarsfeld and R. K. Merton. Friendship as a social process: A substantive and methodological
analysis. Freedom and Control in Modern Society, 18(1):18–66, 1954.

[27] M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a Feather: Homophily in Social Networks.
Annual Review of Sociology, 27(1):415–444, 2001.

[28] N. Misra and I. V. Reddy. The parameterized complexity of happy colorings. In Proceedings of the
28th International Workshop on Combinatorial Algorithms (IWOCA), pages 142–153, 2017.

[29] P. Zhang, T. Jiang, and A. Li. Improved Approximation Algorithms for the Maximum Happy
Vertices and Edges Problems. In Proceedings of the 21st Annual International Conference on Com-
puting and Combinatorics (COCOON), volume 9198 of Lecture Notes in Computer Science, pages
159–170. Springer, 2015.

[30] P. Zhang and A. Li. Algorithmic aspects of homophyly of networks. Theoretical Computer Science,
593:117–131, 2015.

28

