An optimal algorithm for computing Frieze-Kannan regular partitions

Domingos Dellamonica Jr.*
Subrahmanyam Kalyanasundaram ${ }^{\dagger}$ Daniel Martin ${ }^{\ddagger}$
Vojtěch Rödl ${ }^{\S}$ Asaf Shapira

December 7, 2011

Abstract

In this paper we prove that two local conditions involving the degrees and co-degrees in a graph can be used to determine whether a given vertex partition is Frieze-Kannan-regular. With a more refined version of these two local conditions we provide a deterministic algorithm that obtains a Frieze-Kanan-regular partition of any graph G in time $O\left(|V(G)|^{2}\right)$.

1 Introduction

The celebrated Szemerédi Regularity Lemma 14 is a powerful tool for addressing problems in extremal graph theory and combinatorics. It has many applications in various research areas including combinatorial number theory, discrete geometry and theoretical computer science. A bipartite form of the lemma first appeared in the proof of the well known conjecture of Erdős and Turán 77 stating that sequences of integers of positive upper density must always contain arbitrarily long arithmetic progressions. In essence, the regularity

[^0]lemma states that, for every $\varepsilon>0$, every sufficiently large, dense graph G admits a partition of its vertex set $V(G)=\bigcup_{i=1}^{k} V_{i}$, with $k=k(\varepsilon)$, so that most of the bipartite graphs induced on V_{i}, V_{j} behave like random graphs (where the measure of randomness is controlled by the parameter ε).

More recently, there has been some study of algorithmic applications of the regularity lemma. In order to successfully use the regularity lemma to design good algorithms, one needs to efficiently construct a partition satisfying the conditions of the regularity lemma. This was done by Alon, Duke, Lefmann, Rödl, and Yuster in [1]. The authors provided an algorithm that constructs an ε-regular partition of a graph with n vertices in time $O\left(n^{\omega}\right)$, the same time needed to compute the product of two matrices (the constant ω is known to be less than 2.376 , see $\sqrt{3}$). Later this algorithm was improved by Kohayakawa, Rödl, and Thoma 11 who gave a deterministic algorithm for finding an ε regular partition in time $O\left(n^{2}\right)$.

While Szemerédi's Regularity Lemma gives a fine control over the distribution of the edges across classes, it may also require k, the number of classes, to be huge. Namely, as shown by Gowers 10, k can be a tower of exponents of height $1 / \varepsilon^{16}$. This fact is of particular concern when one desires to use the regularity lemma algorithmically. For this reason, the algorithmic version of a somewhat weaker regularity lemma-which is an extension of the lemma from [13]-was considered in [5]. The advantage of the lemma in [5] in comparison with Szemerédi's regularity lemma 14 is that it requires at most $2^{O\left(1 / \varepsilon^{5}\right)}$ classes. Its disadvantage is that the definition of the regular partition is more complicated. Subsequently, Frieze and Kannan [8, 9] considered an elegant notion of regularity (also weaker than Szemerédi's) which requires only $2^{O\left(1 / \varepsilon^{2}\right)}$ classes.

Answering a question of Willians [15], we provided in 4] a deterministic algorithm for finding Frieze-Kannan-regular partitions in sub-cubic time. In fact, the algorithm in [4] runs in $O\left(n^{\omega} \log \log n\right)$-time. The method used in that paper involved a spectral characterization of vertex partitions satisfying the properties of the Frieze-Kannan regularity lemma. In this paper we give a simpler characterization in terms of degrees and co-degrees of vertices in the graph with respect to the partition. Moreover, such a local characterization gives rise to an $O\left(n^{\omega}\right)$-time deterministic algorithm for computing a Frieze-Kannan regular partition of a graph. We later refine our conditions using similar techniques as in Kohayakawa, Rödl, and Thoma 11], so that testing them requires only $O\left(n^{2}\right)$ deterministic time. This yields an asymptotically optimal algorithm for finding a Frieze-Kannan regular partition of a graph:

Theorem 1. There is a deterministic algorithm which finds, for any $\varepsilon>0$ and graph with n vertices, an ε-regular Frieze-Kannan partition with at most $2^{1 / \operatorname{poly}(\varepsilon)}$ classes in $c(\varepsilon) n^{2}$-time.

The main component of algorithmic regularity lemmas is a decision algorithm which determines whether a given partition is regular. If the partition is not, it produces witnesses to the fact that the partition is not regular. It is quite
standard to use such a decision algorithm in order to construct a regular partition. Therefore most of this paper is devoted to the description and analysis of the decision algorithm.

This paper is organized as follows: in Section 2 we formally introduce the definition of Frieze-Kannan regularity and relevant notation. In Section 3 we present two conditions - a degree and a co-degree condition-which we prove to be equivalent to FK-regularity and which can be tested in matrix multiplication time $O\left(n^{\omega}\right)$. To obtain an $O\left(n^{2}\right)$ algorithm we refine these conditions in Section 4 by introducing a linear-sized expander graph. In effect, we show that one only needs to check the co-degree condition for pairs of vertices which form an edge in the auxiliary expander graph. (This idea was used in 11 for an $O\left(n^{2}\right)$ algorithmic version of Szemerédi's regularity lemma.) Our deterministic $O\left(n^{2}\right)$ algorithm is described in Section 8 .

Sections $5 \cdot 7$ contain the proof of the main technical result, Theorem 13 , which establishes the equivalence of the refined degree/co-degree conditions to FK-regularity.

2 Preliminaries

Let H be a graph of order n with vertex set V. We will denote by $N_{H}(v)$ the neighborhood of a vertex v in the graph H, and by $d_{H}(v)=\left|N_{H}(v)\right|$ its degree. For a pair of vertices $u \neq v$, we denote by $N_{H}(u, v)$ the set of vertices adjacent to both u and v, namely $N_{H}(u, v)=N_{H}(u) \cap N_{H}(v)$. The size of $N_{H}(u, v)$ is called the co-degree of u and v and it is denoted by $d_{H}(u, v)$. For a set $U \subset V$ we denote by $e_{H}(U)$ the number of edges in H which are contained in U. Similarly, for sets $U, W \subset V$, we denote by $e_{H}(U, W)$ the number of edges with one endpoint in U and the other in W, where the edges in $U \cap W$ are counted twice. The subscript H is omitted when the graph is clear from context. For $S \subset V$ we denote by $H[S]$ the subgraph of H induced by S.

We will make use of equation numbers on top of relation signs (like $\underset{\leq}{\text {) to }}$ indicate that the we use the referenced equation in order to derive the relation.

The density between sets $U, W \subset V$ is defined as

$$
d(U, W)=\frac{e(U, W)}{|U||W|}
$$

We will frequently use a partition $\mathcal{P}=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of the vertex set V. The order of such a partition is the number of parts V_{i} (frequently denoted by k). A partition is equitable if all parts have sizes $\lceil n / k\rceil$ or $\lfloor n / k\rfloor$. As a shorthand for the densities across parts, we set $d_{i j}=d\left(V_{i}, V_{j}\right)$ whenever $i \neq j$. Also, for convenience, we set $d_{i i}=0$ for all i (in effect, we delete all edges induced by the sets $\left.V_{i}\right)$. It will be convenient to assume that n is a multiple of k and regard $m=n / k$ as the cardinality of the classes in the equitable partition \mathcal{P}. Denote by U_{i} and $W_{j}, 1 \leq i, j \leq k$, the subsets

$$
U_{i}=U \cap V_{i}, \quad W_{j}=W \cap V_{j}
$$

We are now ready to introduce the key regularity concept in this paper.
Definition 2 (Frieze-Kannan Regularity). Given $\varepsilon>0$, an equitable partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ is said to be ε-FK-regular if

$$
\begin{equation*}
\text { for all } U, W \subset V, \quad\left|e(U, W)-\sum_{i, j} d_{i j}\right| U_{i}| | W_{j}| | \leq \varepsilon n^{2} \tag{1}
\end{equation*}
$$

If U and W are subsets violating (1), we say U and W are witnesses to the fact that the partition \mathcal{P} is not ε-FK-regular.

3 Local conditions

In this section we present two families of conditions that will be necessary and sufficient for an equitable partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ of the vertex set V of a graph H to be ε-FK-regular. These conditions are based on the simple observation that, when a partition satisfies FK-regularity, most vertices have the "expected" degree, and moreover most vertices have the "expected" co-degree with any other fixed vertex. More precisely, we will show that the two following conditions are equivalent to FK-regularity (Definition 2). As before, $m=n / k$ is the cardinality of the classes in \mathcal{P}.
(i) Degree Condition: For all but at most $\varepsilon_{1} n$ vertices $v \in V$, we have

$$
\begin{equation*}
d_{H}(v)=\sum_{\ell=1}^{k} d_{j \ell} m \pm \varepsilon_{1} n \tag{2}
\end{equation*}
$$

where j is the index satisfying $v \in V_{j}$.
(ii) Co-degree Condition: For all $u \in V$, all but at most $\varepsilon_{2} n$ vertices $v \in V$ are such that

$$
\begin{equation*}
d_{H}(u, v)=\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right| \pm \varepsilon_{2} n \tag{3}
\end{equation*}
$$

where j is the index satisfying $v \in V_{j}$.

The following theorem establishes the equivalence.
Theorem 3. The FK-regularity condition in Definition 2 is equivalent to Conditions (i) and (ii).

More formally, for every $\varepsilon_{1}, \varepsilon_{2}>0$ there exists $\varepsilon>0$ such that Definition 2 $\Rightarrow(i)$ and (ii) and for every $\varepsilon>0$ there exist $\varepsilon_{1}, \varepsilon_{2}>0$ such that (i) and (ii)
\Rightarrow Definition 2 .

3.1 FK-regularity implies Conditions (i) and (ii)

In this section we will show that FK-regularity (Def. 22 implies Conditions (i) and (ii). We assume $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ is an equitable partition of the vertex set V of a given graph H. We may also assume the cardinality of V is a sufficiently large number n which is a multiple of k. We set m to be the size of each part V_{i}, namely

$$
m=\frac{n}{k} .
$$

Recall that $d_{i j}$ denotes the density $d\left(V_{i}, V_{j}\right)$ when $i \neq j$ and that $d_{i i}=0$. It will also be convenient to abuse notation in the following way: for a vertex $u \in V_{i}$, let $d_{u j}$ denote the density $d_{i j}$. Namely, we set

$$
d_{u j}=d_{j u}=d_{i j}
$$

where i is the index satisfying $u \in V_{i}$. Also, recall that for a subset $U \subseteq V$ we set $U_{i}=U \cap V_{i}$.

Claim 4. If the partition $\left\{V_{1}, \ldots, V_{k}\right\}$ fails Condition (i), then there is a set U satisfying

$$
\left|e(U, V)-\sum_{j, \ell} d_{j \ell}\right| U \cap V_{j}| | \underbrace{V \cap V_{\ell}}_{=V_{\ell}}| |>\frac{\varepsilon_{1}^{2} n^{2}}{2}
$$

Proof. Let

$$
\begin{aligned}
& U^{+}=\left\{v \in V:\left|N_{H}(v)\right|>\sum_{\ell=1}^{k} d_{v \ell} m+\varepsilon_{1} n\right\} \\
& U^{-}=\left\{v \in V:\left|N_{H}(v)\right|<\sum_{\ell=1}^{k} d_{v \ell} m-\varepsilon_{1} n\right\} .
\end{aligned}
$$

By assumption $\left|U^{-}\right|+\left|U^{+}\right|>\varepsilon_{1} n$. Set U to be the larger of the sets U^{-} and U^{+}. It follows that $|U|>\varepsilon_{1} n / 2$. We now look at the edges between the set U and the whole set of vertices V. By definition

$$
\begin{aligned}
\left|e(U, V)-\sum_{j, \ell} d_{j \ell}\right| U \cap V_{j}| | V \cap V_{\ell}| | & =\left|\sum_{u \in U}\right| N_{H}(u)\left|-\sum_{j=1}^{k} \sum_{\ell=1}^{k} d_{j \ell} m\right| U_{j}| | \\
& =\left|\sum_{j=1}^{k} \sum_{u \in U_{j}}\left(\left|N_{H}(u)\right|-\sum_{\ell=1}^{k} d_{j \ell} m\right)\right| \\
& >\varepsilon_{1} n|U| .
\end{aligned}
$$

Since $|U|>\varepsilon_{1} n / 2$, the claim follows.
Claim 5. If the partition $\left\{V_{1}, \ldots, V_{k}\right\}$ fails Condition fii) for some $u \in V$, then there exists $W \subset V$ such that

$$
\left|e\left(W, N_{H}(u)\right)-\sum_{j, \ell} d_{j \ell}\right| W_{j}| | N_{H}(u) \cap V_{\ell}| |>\frac{\varepsilon_{2}^{2} n^{2}}{2}
$$

Proof. Let

$$
W^{+}=\left\{v \in V: d_{H}(u, v)>\sum_{\ell=1}^{k} d_{v \ell}\left|N_{H}(u) \cap V_{\ell}\right|+\varepsilon_{2} n\right\} .
$$

Similarly define W^{-}. Notice that $\left|W^{-}\right|+\left|W^{+}\right|>\varepsilon_{2} n$ by assumption. Take W to be the larger of the sets W^{-}and W^{+}. It follows that $|W|>\varepsilon_{2} n / 2$. As in the previous claim, we consider

$$
\begin{aligned}
& \left|e\left(W, N_{H}(u)\right)-\sum_{j, \ell} d_{j \ell}\right| W \cap V_{j}| | N_{H}(u) \cap V_{\ell}| | \\
= & \left|\sum_{w \in W} d_{H}(u, w)-\sum_{j=1}^{k} \sum_{\ell=1}^{k} d_{j \ell}\right| W_{j}| | N_{H}(u) \cap V_{\ell}| | \\
= & \left|\sum_{j=1}^{k} \sum_{w \in W_{j}} d_{H}(u, w)-\sum_{j=1}^{k} \sum_{w \in W_{j}} \sum_{\ell=1}^{k} d_{j \ell}\right| N_{H}(u) \cap V_{\ell}| | \\
= & \left|\sum_{j=1}^{k} \sum_{w \in W_{j}}\left(d_{H}(u, w)-\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|\right)\right| \\
> & |W| \varepsilon_{2} n .
\end{aligned}
$$

Since $|W| \geq \varepsilon_{2} n / 2$, the claim follows.
The first part of Theorem 3. namely, that Conditions (i) and (ii) are necessary for FK-regularity follows by combining Claims 4 and 5 and setting $\varepsilon=\min \left\{\varepsilon_{1}^{2} / 2, \varepsilon_{2}^{2} / 2\right\}$. In the next subsection we will show that the conditions are also sufficient for FK-regularity.

3.2 Conditions (i) and (ii) imply FK-regularity

We now show that Conditions (i) and (ii) imply FK-regularity (Def. 2). Throughout this subsection we assume that $\overline{\mathcal{P}}=\left\{V_{1}, \ldots, V_{k}\right\}$ satisfies Conditions (i) and (ii).

We say a pair of vertices $\{u, v\}$ is corrupted if either (u, v) or (v, u) violate (3). Note that, as a consequence of Condition (ii), there are at most $\varepsilon_{2} n^{2}$ corrupted pairs in total. We say that a pair of indices $\{i, j\}$ is defective if more than $\varepsilon_{2}^{1 / 2} m^{2}$ pairs $\{u, v\}$, for $u \in V_{i}$ and $v \in V_{j}$, are corrupted. Hence, at most $\varepsilon_{2}^{1 / 2} k^{2}$ pairs $\{i, j\}$ can be defective.

Claim 6. For a non-defective pair $\{i, j\}$ the following holds: all but at most $\varepsilon_{2}^{1 / 4} m$ vertices $u \in V_{i}$ satisfy

$$
\begin{equation*}
\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|=\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m \pm 2 \varepsilon_{2}^{1 / 4} n \tag{4}
\end{equation*}
$$

The proof of Claim 6 will be postponed to Subsection 3.3 . Note that if the bipartite graphs $H\left[V_{i} \cup V_{j}\right]$ were all random (with densities $d_{i j}$) then the expected co-degree of $u \in V_{i}$ and $v \in V_{j}$ would be precisely $\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m$. Combining Claim 6 with Condition (ii) yields that co-degrees in H are typically close to what is expected in a random graph with the same densities.

We now follow the approach taken in $[6]$ and use linear algebra to help us obtain (1). Let us define an $n \times n$ matrix $\Delta=\left(\Delta_{u v}\right)_{u, v \in V}$ as follows:

$$
\Delta_{u v}= \begin{cases}\left(1-d_{i j}\right) & \text { if } u \in V_{i}, v \in V_{j},\{u, v\} \in H \tag{5}\\ -d_{i j} & \text { if } u \in V_{i}, v \in V_{j},\{u, v\} \notin H\end{cases}
$$

Note that this matrix is symmetric and admits at most $1+2\binom{k}{2}$ entry values (recall that we assume $H\left[V_{i}\right]$ has no edges and thus $d_{i i}=0$). For a vertex $u \in V$, we refer to the row (or column) associated with u by Δ_{u}. We shall use properties of this matrix to show that the partition $V=V_{1} \cup \cdots \cup V_{k}$ is ε-FK-regular, i.e. satisfy (1) for any subsets $U, W \subseteq V$.

The following inequality connects the definition of FK-regularity (Def. 24) to the matrix Δ. After proving the claim we will estimate the inner products $\left\langle\Delta_{u}, \Delta_{v}\right\rangle, u, v \in V$, and thus bound the R-H-S of (6).

Claim 7. For arbitrary subsets $U, W \subseteq V$ we have

$$
\begin{equation*}
\left|e(U, W)-\sum_{i, j} d_{i j}\right| U \cap V_{i}| | W \cap V_{j}| | \leq|W| \sum_{u, v \in U}\left\langle\Delta_{u}, \Delta_{v}\right\rangle \tag{6}
\end{equation*}
$$

Proof. First we argue that

$$
\begin{equation*}
e(U, W)-\sum_{i, j} d_{i j}\left|U \cap V_{i}\right|\left|W \cap V_{j}\right|=\sum_{u \in U} \sum_{w \in W} \Delta_{u w} . \tag{7}
\end{equation*}
$$

Indeed, the sum on the R-H-S can be partitioned into sums as follows

$$
\sum_{i, j} \sum_{u \in U_{i}} \sum_{w \in W_{j}} \Delta_{u w}=\sum_{i, j}\left\{\left(1-d_{i j}\right) e\left(U_{i}, W_{j}\right)-d_{i j}\left(\left|U_{i}\right|\left|W_{j}\right|-e\left(U_{i}, W_{j}\right)\right)\right\}
$$

which simplifies to

$$
\sum_{i, j}\left(e\left(U_{i}, W_{j}\right)-d_{i j}\left|U_{i}\right|\left|W_{j}\right|\right)=e(U, W)-\sum_{i, j} d_{i j}\left|U \cap V_{i}\right|\left|W \cap V_{j}\right|
$$

thus (7) is proved.
We will now bound $\left|\sum_{u \in U} \sum_{w \in W} \Delta_{u w}\right|$ from above using the CauchySchwarz inequality:

$$
\left(\sum_{u \in U} \sum_{w \in W} \Delta_{u w}\right)^{2} \leq|W| \sum_{w \in W}\left(\sum_{u \in U} \Delta_{u w}\right)^{2} \leq|W| \sum_{w \in V}\left(\sum_{u \in U} \Delta_{u w}\right)^{2}
$$

Observe the identity
$\sum_{w \in V}\left(\sum_{u \in U} \Delta_{u w}\right)^{2}=\sum_{w \in V} \sum_{u, v \in U} \Delta_{u w} \Delta_{v w}=\sum_{u, v \in U} \sum_{w \in V} \Delta_{u w} \Delta_{v w}=\sum_{u, v \in U}\left\langle\Delta_{u}, \Delta_{v}\right\rangle$,
which completes the proof of this claim.
In view of (6) we need to estimate the inner products $\left\langle\Delta_{u}, \Delta_{v}\right\rangle, u, v \in V$. To this end we will first define a set \mathscr{D} of pairs $\{u, v\}$ for which we will use the trivial bound $\left\langle\Delta_{u}, \Delta_{v}\right\rangle \leq n$. This set \mathscr{D} will be shown to be quite small. For all the pairs not in \mathscr{D} we will show that the inner product is very small. This will provide an upper bound on the R-H-S of (6) and allow us to conclude the proof of the theorem.

Denote by \mathscr{D} the set of all pairs $\{u, v\}$ that fail one of the conditions below:
(a) $u \in V_{i}, v \in V_{j}$, with $\{i, j\}$ a non-defective pair;
(b) both u and v satisfy equations (2) and (4);
(c) The pair $\{u, v\}$ is not corrupted, i.e., both (u, v) and (v, u) satisfy equation (3).

We will now bound the number of pairs in \mathscr{D}. Recall that there are at most $\varepsilon_{2}^{1 / 2} k^{2}$ defective pairs, hence at most $\varepsilon_{2}^{1 / 2} n^{2}$ pairs of vertices fail (a). There are at most $\varepsilon_{1} n^{2}$ pairs $\{u, v\}$ in which one of the vertices fails 22 . From Claim 6 it follows that, for each non-defective pair $\{i, j\}$, the number of pairs $\{u, v\}$ (with $u \in V_{i}, v \in V_{j}$) where u or v (or both) fail (4) is at most $2 \varepsilon_{2}^{1 / 4} \mathrm{~m}^{2}$. By Condition (ii), at most $\varepsilon_{2} n^{2}$ pairs $\{u, v\}$ are corrupted and thus fail (c) Therefore, for small enough $\varepsilon_{2}>0$,

$$
\begin{equation*}
|\mathscr{D}| \leq\left(\varepsilon_{2}^{1 / 2}+\varepsilon_{1}+2 \varepsilon_{2}^{1 / 4}+\varepsilon_{2}\right) n^{2} \leq\left(\varepsilon_{1}+3 \varepsilon_{2}^{1 / 4}\right) n^{2} \tag{8}
\end{equation*}
$$

Claim 8. For all pairs $\{u, v\} \notin \mathscr{D}$ we have the inner product

$$
\left\langle\Delta_{u}, \Delta_{v}\right\rangle= \pm 3 \varepsilon_{2}^{1 / 4} n
$$

Proof. Let $\{u, v\}$ be a pair of vertices not in \mathscr{D}, say $u \in V_{i}$ and $v \in V_{j}$. By the definition of Δ, we have

$$
\begin{aligned}
\left\langle\Delta_{u}, \Delta_{v}\right\rangle & =\sum_{\ell=1}^{k}\left(\left(1-d_{i \ell}\right)\left(1-d_{j \ell}\right)\left|N_{H}(u, v) \cap V_{\ell}\right|-\left(1-d_{i \ell}\right) d_{j \ell}\left|\left(N_{H}(u) \cap V_{\ell}\right) \backslash N_{H}(u, v)\right|\right. \\
& \left.-d_{i \ell}\left(1-d_{j \ell}\right)\left|\left(N_{H}(v) \cap V_{\ell}\right) \backslash N_{H}(u, v)\right|+d_{i \ell} d_{j \ell}\left|V_{\ell} \backslash\left(N_{H}(u) \cup N_{H}(v)\right)\right|\right)
\end{aligned}
$$

By regrouping the terms of the sum according to the contribution of $\mid N_{H}(u, v) \cap$ $V_{\ell}\left|,\left|N_{H}(u) \cap V_{\ell}\right|\right.$, and $| N_{H}(v) \cap V_{\ell} \mid$, we obtain

$$
\begin{align*}
\left\langle\Delta_{u}, \Delta_{v}\right\rangle & =\sum_{\ell=1}^{k}\left|N_{H}(u, v) \cap V_{\ell}\right|-\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|-\sum_{\ell=1}^{k} d_{i \ell}\left|N_{H}(v) \cap V_{\ell}\right|+\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m \\
& =\left(d_{H}(u, v)-\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|\right)-\left(\sum_{\ell=1}^{k} d_{i \ell}\left|N_{H}(v) \cap V_{\ell}\right|-\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right) \tag{9}
\end{align*}
$$

Since $\{u, v\} \notin \mathscr{D}$, the pair $\{u, v\}$ satisfies (3), and v satisfies equation (4). Hence we have

$$
\begin{equation*}
\left\langle\Delta_{u}, \Delta_{v}\right\rangle= \pm\left(\varepsilon_{2}+2 \varepsilon_{2}^{1 / 4}\right) n \tag{10}
\end{equation*}
$$

The claim follows.
We now have the tools to achieve the goal of this subsection and prove that under Conditions (i) and (ii) \mathcal{P} is FK-regular.

Lemma 9. For arbitrary subsets $U, W \subseteq V$ we have

$$
\begin{equation*}
\left|e(U, W)-\sum_{i, j} d_{i j}\right| U \cap V_{i}| | W \cap V_{j}| | \leq\left(\varepsilon_{1}+6 \varepsilon_{2}^{1 / 4}\right)^{1 / 2} n^{2} \tag{11}
\end{equation*}
$$

In other words, $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ is $\left(\varepsilon_{1}+6 \varepsilon_{2}^{1 / 4}\right)^{1 / 2}$-FK-regular.
Proof. Recall that we already established the upper bound $\left\langle\Delta_{u}, \Delta_{v}\right\rangle \leq 3 \varepsilon_{2}^{1 / 4} n$ when $\{u, v\} \notin \mathscr{D}$ (see Claim 8) and for the case $\{u, v\} \in \mathscr{D}$ we have the trivial upper bound

$$
\left\langle\Delta_{u}, \Delta_{v}\right\rangle \leq n
$$

which holds because every entry in Δ has absolute value at most 1.
Consequently, by Claim 7, the L-H-S of (11) is upper bounded by

$$
|W|\left(3 \varepsilon_{2}^{1 / 4} n|U|^{2}+n|\mathscr{D}|\right) \stackrel{\sqrt[8]{8}}{\leq}\left(\varepsilon_{1}+6 \varepsilon_{2}^{1 / 4}\right) n^{4},
$$

where the inequality follows by using the bound on $|\mathscr{D}|$ obtained in (8), and the trivial bound of n on the sizes of U and W. Thus the lemma is now proved.

From Lemma 9 it follows that for every $\varepsilon>0$ one can choose $\varepsilon_{1}, \varepsilon_{2}>0$ small enough so that $\left(\varepsilon_{1}+6 \varepsilon_{2}^{1 / 4}\right)^{1 / 2} \leq \varepsilon$ and thus (1) holds. The proof of Theorem 3 is now complete.

3.3 Proof of auxiliary Claim 6

Fix a non-defective pair $\{i, j\}$. For such a pair, by definition, all but at most $\varepsilon_{2}^{1 / 2} m^{2}$ pairs $\{u, v\}$ are not corrupted (i.e., both (u, v) and (v, u) satisfy (3)). It follows that, for all but at most $\varepsilon_{2}^{1 / 4} m$ vertices $u \in V_{i}$, the set

$$
W_{j}(u)=\left\{v \in V_{j}:\{u, v\} \text { is corrupted }\right\}
$$

satisfies $\left|W_{j}(u)\right| \leq \varepsilon_{2}^{1 / 4} m$. Now fix an arbitrary $u \in V_{i}$ with $\left|W_{j}(u)\right| \leq \varepsilon_{2}^{1 / 4} m$. Set $W_{j}=W_{j}(u)$ and $\bar{W}_{j}=V_{j} \backslash W_{j}$. Since $N_{H}(u, v)=N_{H}(v, u)$, it follows from (3) that for every $v \in \bar{W}_{j}$

$$
\begin{equation*}
\sum_{\ell=1}^{k} d_{i \ell}\left|N_{H}(v) \cap V_{\ell}\right|=\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right| \pm 2 \varepsilon_{2} n \tag{12}
\end{equation*}
$$

Observe that
$\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m^{2}=\sum_{\ell=1}^{k} d_{i \ell} e\left(V_{j}, V_{\ell}\right)=\sum_{\ell=1}^{k} d_{i \ell} \sum_{v \in V_{j}}\left|N_{H}(v) \cap V_{\ell}\right|=\sum_{v \in V_{j}} \sum_{\ell=1}^{k} d_{i \ell}\left|N_{H}(v) \cap V_{\ell}\right|$.
Since $V_{j}=\bar{W}_{j} \cup W_{j}$, we may write

$$
\begin{equation*}
\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m^{2}=\sum_{v \in \bar{W}_{j}} \sum_{\ell=1}^{k} d_{i \ell}\left|N_{H}(v) \cap V_{\ell}\right|+\sum_{v \in W_{j}} \sum_{\ell=1}^{k} d_{i \ell}\left|N_{H}(v) \cap V_{\ell}\right|, \tag{13}
\end{equation*}
$$

Using $\sqrt[12]{2}$, we can bound the R-H-S of $\sqrt{13}$ from above by

$$
\left|\bar{W}_{j}\right|\left(\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|+2 \varepsilon_{2} n\right)+\left|W_{j}\right| n
$$

which, in turn, is at most

$$
\begin{equation*}
m\left(\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|+2 \varepsilon_{2} n\right)+\varepsilon_{2}^{1 / 4} m n \tag{14}
\end{equation*}
$$

Consequently, we obtain

$$
\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right| \geq \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m-2 \varepsilon_{2}^{1 / 4} n
$$

We can obtain a lower-bound on the R-H-S of (13) using (12); thus we get

$$
\left|\bar{W}_{j}\right|\left(\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right|-2 \varepsilon_{2} n\right)
$$

Since $\left|\bar{W}_{j}\right| \geq\left(1-\varepsilon_{2}^{1 / 4}\right) m$, it follows that

$$
\sum_{\ell=1}^{k} d_{j \ell}\left|N_{H}(u) \cap V_{\ell}\right| \leq \frac{1}{1-\varepsilon_{2}^{1 / 4}} \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m+2 \varepsilon_{2} n \leq \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m+2 \varepsilon_{2}^{1 / 4} n
$$

Hence (4) is proved.

4 Refined local conditions

In Section 8 we shall describe a deterministic $O\left(n^{2}\right)$-time algorithm for finding a Frieze-Kannan partition of the vertex set of a given graph on n vertices. While Conditions (i) and (ii) from the previous section are very simple to state, testing Condition (ii) for a given partition requires deterministic $O\left(n^{\omega}\right)$-time. In order to devise an algorithm with the desired running time (i.e. $O\left(n^{2}\right)$), it is necessary to use a set of more refined local conditions.

Similarly as in [11], the main technique is to consider an expander graph Γ on the vertex set of H and test only the co-degrees along the edges of the expander (i.e. test an analog of Condition (ii) only for pairs of vertices u, v that are edges of Γ). For technical reasons we have to modify Condition (i) as well.

In this section, we first state the expander construction from [11] in a convenient form for our analysis. We then list Conditions (I) and (II) which will resemble Conditions (i) and (ii). Since (II) is weaker than (ii), more work will be necessary to show the equivalence of (I) and $(I I)$ with the Frieze-Kannan regularity Condition (1). This equivalence will be shown in Sections 5, 6, and 7 . It will be convenient to denote by $|\Gamma|$ the number of edges of the graph Γ.

Lemma 2.5 of [11] can be presented in the following convenient form:
Lemma 10. There exists an algorithm \mathcal{E} satisfying the following properties.
For every $\gamma>0$ there exist $n_{0}=n_{0}(\gamma)$ and $d=d(\gamma)$ such that for all $n \geq n_{0}$, $\varrho=\frac{d}{n}$, the algorithm \mathcal{E} constructs in $O\left(n(\log n)^{2}\right)$ time a graph Γ on n vertices such that for all $U, W \subset V(\Gamma)=V$,

$$
e_{\Gamma}(U, W)=\varrho|U||W| \pm \gamma|\Gamma| ;
$$

if $|U|,|W| \geq \gamma n$ then

$$
e_{\Gamma}(U, W)=(1 \pm \gamma) \varrho|U||W| .
$$

Remark 11. Note that $2|\Gamma|=e_{\Gamma}(V, V)=\varrho n^{2} \pm \gamma|\Gamma|$ and thus $|\Gamma|=\frac{\varrho n^{2}}{2 \pm \gamma}$. Moreover, our choice of $\rho=O(1 / n)$ yields a constant degree expander, which means that Condition $(I I)$ needs to be checked for a linear number of pairs.

In this paper, we take an extremely small $\gamma>0$ with the effect of increasing the size of Γ, and hence requiring more time to check Condition $(I I)$ below (in other words, the $O(\cdot)$ bound on the complexity of the algorithm hides the dependency on γ). In fact, we take γ smaller than any of the regularity constants (see (16) below). To simplify the exposition, we replace γ by $o(1)$.

Recall that our goal is to decide whether a partition \mathcal{P} of the vertex set of a graph H is ε-FK-regular. For the remainder of the paper, we shall assume $\mathcal{P}=$ $\left\{V_{1}, \ldots, V_{k}\right\}$ is an equitable partition of the vertex set V of a graph H on n vertices with $\left|V_{i}\right|=m$ for all $i \in[k]$.

We assume that $V(\Gamma)=V(H)=V$. Also, for all $1 \leq i<j \leq k$, denote by

$$
\Gamma_{i j}=\Gamma\left[V_{i}, V_{j}\right]=\Gamma\left[V_{i} \cup V_{j}\right] \backslash\left(\Gamma\left[V_{i}\right] \cup \Gamma\left[V_{j}\right]\right)
$$

the bipartite subgraphs of Γ induced by pairs of classes V_{i}, V_{j} from the partition \mathcal{P}. From now on, Γ is a fixed graph constructed using Lemma 10 with the following property.

Property 12. The graph Γ has the edge-uniformity property:

$$
\begin{align*}
|\Gamma| & =(1+o(1)) \varrho \frac{n^{2}}{2} \\
\left|\Gamma_{i j}\right| & =(1+o(1)) \varrho m^{2} \tag{15}\\
e_{\Gamma}(U, W) & =\varrho|U||W|+o(|\Gamma|)
\end{align*}
$$

The following is a chart of constants that will be useful throughout the rest of the paper:

$$
\begin{equation*}
\varepsilon \gg \delta_{2}=\frac{\varepsilon^{2}}{2} \gg c=\frac{\delta_{2}^{4}}{2^{9}} \gg \varepsilon^{\prime}=\frac{c^{2}}{2^{7}} \gg \varepsilon_{1}=\Theta\left(\sqrt{\delta_{1}}\right) \gg \delta_{1}=\delta_{2}^{40} \gg \frac{1}{k^{2}} \gg \gamma . \tag{16}
\end{equation*}
$$

It will be convenient to set ε_{1} so that $1 / \varepsilon_{1} \in \mathbb{Z}$ and $6 \delta_{1} \leq \varepsilon_{1}^{2} \leq 12 \delta_{1}$. Also define, for every $i \in[k]$ and $h \in\left\{0,1, \ldots, 1 / \varepsilon_{1}\right\}$, the sets

$$
\begin{equation*}
S_{i h}=\left\{\ell \in[k]: \varepsilon_{1} h \leq d_{i \ell}<\varepsilon_{1}(h+1)\right\} . \tag{17}
\end{equation*}
$$

We are now ready to describe the refined local conditions. In Condition (I) we denote by V_{S} the set $\bigcup_{j \in S} V_{j}$.
(I) Degree Condition: For all sets $S \subseteq[k]$, all but at most $\delta_{1} n$ vertices $v \in V$ satisfy

$$
\begin{equation*}
\left|\left|N_{H}(v) \cap V_{S}\right|-\sum_{j \in S} d_{j v} m\right|<\delta_{1} n . \tag{18}
\end{equation*}
$$

(II) Co-degree Condition: All but at most $\delta_{2}|\Gamma|$ edges $\left\{u, u^{\prime}\right\} \in \Gamma$ satisfy

$$
\begin{equation*}
\left|d_{H}\left(u, u^{\prime}\right)-\sum_{\ell=1}^{k} d_{u \ell} d_{u^{\prime} \ell} m\right|<\delta_{2} n \tag{19}
\end{equation*}
$$

Theorem 13. Conditions (I) and (II) hold for $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ iff \mathcal{P} is an FK-regular partition for H. More precisely,
(a) for every $\varepsilon>0$ there exist $\delta_{1}, \delta_{2}>0$ such that if Conditions (I) and (II) hold then \mathcal{P} is ε-FK-regular;
(b) if Condition (I) fails than \mathcal{P} is not $\left(\delta_{1}^{2} / 2\right)$-FK-regular;
(c) if Condition (I) holds but Condition (II) fails then \mathcal{P} is not ε^{\prime}-FK-regular. In the next three sections we prove the three parts of Theorem 13 .

5 Proof of Theorem $13 \mid(a)$

Suppose that Conditions (I) and (II) hold for some small values of δ_{1}, δ_{2}. We will show that for arbitrary subsets $U, W \subseteq V$:

$$
\begin{equation*}
\left|e_{H}(U, W)-\sum_{i, j} d_{i j}\right| U \cap V_{i}| | W \cap V_{j}| | \leq\left(2 \delta_{2}+3 \varepsilon_{1}+o(1)\right)^{1 / 2} n^{2} \tag{20}
\end{equation*}
$$

Since $\varepsilon_{1}=\Theta\left(\sqrt{\delta_{1}}\right)$, for any $\varepsilon>0$, we can choose δ_{1} and δ_{2} small enough so that the R-H-S of (20) is at most εn^{2}. Hence, Theorem 13 (a a) follows from (20).

Recall that Claim 7 establishes an upper bound on the L-H-S of (20) in terms of the inner products of the matrix Δ (which was defined in (5)). Therefore our goal is to find a suitable upper bound to $\sum_{u, u^{\prime} \in U}\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle$ for arbitrary $U \subset V$. We will obtain such a bound by means of the following claims:

Claim 14. For any given set $U \subseteq V$ the following holds.

$$
\begin{equation*}
\sum_{\left(u, u^{\prime}\right) \in U^{2}}\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle=2 \varrho^{-1} \sum_{\left\{u, u^{\prime}\right\} \in \Gamma[U]}\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle+o\left(n^{3}\right) . \tag{21}
\end{equation*}
$$

Claim 15. If Conditions (I) and (II) hold, then any subset $U \subseteq V$ satisfies

$$
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma[U]}\left|\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle\right| \leq\left(2 \delta_{2}+3 \varepsilon_{1}\right) n|\Gamma| .
$$

Before proving Claims 14 and 15 we apply them together with Claim 7 to obtain the following upper bound on the L-H-S of 20):

$$
|W|\left(2 \varrho^{-1}\left(\delta_{2}+3 \varepsilon_{1}\right) n|\Gamma|+o\left(n^{3}\right)\right) \stackrel{15}{\leq}\left(2 \delta_{2}+3 \varepsilon_{1}+o(1)\right) n^{4}
$$

thus establishing (20) and proving Theorem 13) (a).

5.1 Proof of auxiliary claims for Theorem $13 \mid(a)$

Proof of Claim 14. Expanding the L-H-S of (21) we obtain

$$
\begin{equation*}
\sum_{v \in V} \sum_{\left(u, u^{\prime}\right) \in U^{2}} \Delta_{u v} \Delta_{u^{\prime} v} \tag{22}
\end{equation*}
$$

Now fix an arbitrary $v \in V$. From the definition of the matrix Δ, each of the entries $\Delta_{u v}, u \in U$, attains one of $2 k$ possible values:

$$
1-d_{1 v}, \quad-d_{1 v}, \quad 1-d_{2 v}, \quad-d_{2 v}, \quad \ldots, \quad 1-d_{k v}, \quad-d_{k v}
$$

Let these values be called $\alpha^{(1, v)}, \ldots, \alpha^{(2 k, v)}$.

Let $\mathcal{P}^{(v)}=\left\{U^{(1, v)}, U^{(2, v)}, \ldots, U^{(2 k, v)}\right\}$ be a partition of U according to the possible values of $\Delta_{u v}$, that is $\Delta_{u v}=\alpha^{(i, v)}$ if $u \in U^{(i, v)}$. Splitting the sum in (22) according to the possible values of the summand, we obtain

$$
\begin{equation*}
\sum_{v \in V} \sum_{i=1}^{2 k} \sum_{j=1}^{2 k} \alpha^{(i, v)} \alpha^{(j, v)}\left|U^{(i, v)}\right|\left|U^{(j, v)}\right| \tag{23}
\end{equation*}
$$

The fact that Γ has the edge-uniformity property (see 15) allows us to express the value of $e_{\Gamma}\left(U^{(i, v)}, U^{(j, v)}\right)$ only in terms of the sizes of $U^{(i, v)}$ and $U^{(j, v)}$. Indeed, for fixed (v, i, j) :

$$
e_{\Gamma}\left(U^{(i, v)}, U^{(j, v)}\right) \stackrel{15}{=} \varrho\left|U^{(i, v)}\right|\left|U^{(j, v)}\right|+o(|\Gamma|)
$$

Using the above equation, we rewrite 23 as

$$
\varrho^{-1} \sum_{v \in V} \sum_{i=1}^{2 k} \sum_{j=1}^{2 k} \alpha^{(i, v)} \alpha^{(j, v)}\left(e_{\Gamma}\left(U^{(i, v)}, U^{(j, v)}\right)+o(|\Gamma|)\right) .
$$

Distributing the sums yields

$$
\begin{equation*}
\varrho^{-1} \sum_{v \in V} \sum_{i=1}^{2 k} \sum_{j=1}^{2 k} \alpha^{(i, v)} \alpha^{(j, v)} e_{\Gamma}\left(U^{(i, v)}, U^{(j, v)}\right)+o\left(\varrho^{-1}|\Gamma| n k^{2}\right) \tag{24}
\end{equation*}
$$

For a fixed triple (v, i, j), the summand $\alpha^{(i, v)} \alpha^{(j, v)} e_{\Gamma}\left(U^{(i, v)}, U^{(j, v)}\right)$ above can be written as

$$
\sum_{\substack{u \in U^{(i, v)}, u^{\prime} \in U^{(j, v)} \\\left\{u, u^{\prime}\right\} \in \Gamma}} \alpha^{(i, v)} \alpha^{(j, v)}=\sum_{\substack{u \in U^{(i, v)}, u^{\prime} \in U^{(j, v)} \\\left\{u, u^{\prime}\right\} \in \Gamma}} \Delta_{u v} \Delta_{u^{\prime} v} .
$$

Since $\mathcal{P}^{(v)}$ is a partition of U, rearranging the triple sum in 24 yields:

$$
\begin{equation*}
\varrho^{-1} \sum_{v \in V} \sum_{\substack{\left.u, u^{\prime}\right) \in U^{2} \\\left\{u, u^{\prime}\right\} \in \Gamma}} \Delta_{u v} \Delta_{u^{\prime} v}=2 \varrho^{-1} \sum_{\substack{\left\{u, u^{\prime}\right\} \in \Gamma[U]}}\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle, \tag{25}
\end{equation*}
$$

which is the desired expression on the R-H-S of 21, while the error term from (24) is $o\left(n^{3}\right)$ since $|\Gamma|=(1+o(1)) \varrho n^{2} / 2$ and because the term k^{2} is absorbed by the $o(\cdot)$.

Before proving Claim 15 we establish the inequality given by Claim 16 below.
Claim 16. If Condition (I) is satisfied then the following holds:

$$
\begin{equation*}
\sum_{\substack{\left(u, u^{\prime}\right) \\\left\{u, u^{\prime}\right\} \in \Gamma}}\left|\sum_{\ell=1}^{k}\left(d_{u \ell} d_{u^{\prime} \ell} m-d_{u \ell}\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right)\right| \leq 3 \varepsilon_{1} n|\Gamma| . \tag{26}
\end{equation*}
$$

Proof. Set $A\left(\ell, u, u^{\prime}\right)=d_{u \ell} d_{u^{\prime} \ell} m-d_{u \ell}\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|$. Recalling the definition of the sets $S_{i h}$ (c.f. 17) , we now rewrite the sum (26) as

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{u \in V_{i}} \sum_{u^{\prime} \in \Gamma(u)}\left|\sum_{h=0}^{1 / \varepsilon_{1}} \sum_{\ell \in S_{i h}} A\left(\ell, u, u^{\prime}\right)\right| \tag{27}
\end{equation*}
$$

Notice that by the definition of $S_{i h}$ and because $u \in V_{i}$ we have $d_{u \ell}=\varepsilon_{1} h \pm \varepsilon_{1}$ for all $\ell \in S_{i h}$. Hence, for fixed $u \in V_{i}, u^{\prime} \in \Gamma(u)$,

$$
\begin{align*}
\sum_{\ell \in S_{i h}} A\left(\ell, u, u^{\prime}\right) & =\left(\varepsilon_{1} h \pm \varepsilon_{1}\right) \sum_{\ell \in S_{i h}}\left(d_{u^{\prime} \ell} m-\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right) \tag{28}\\
& =\varepsilon_{1} h \sum_{\ell \in S_{i h}}\left(d_{u^{\prime} \ell} m-\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right) \pm \varepsilon_{1} m\left|S_{i h}\right|
\end{align*}
$$

Combining (27) with (28) and applying the triangle inequality yields the following upper bound to the sum (26):

$$
\begin{equation*}
\left\{\sum_{i=1}^{k} \sum_{u \in V_{i}} \sum_{u^{\prime} \in \Gamma(u)} \sum_{h=0}^{1 / \varepsilon_{1}} \varepsilon_{1} h\left|\sum_{\ell \in S_{i h}}\left(d_{u^{\prime} \ell} m-\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right)\right|\right\}+2 \varepsilon_{1} n|\Gamma| \tag{29}
\end{equation*}
$$

where the error term $2 \varepsilon_{1} n|\Gamma|$ is obtained from

$$
\sum_{i=1}^{k} \sum_{u \in V_{i}} \sum_{u^{\prime} \in \Gamma(u)} \sum_{h=0}^{1 / \varepsilon_{1}} \varepsilon_{1} m\left|S_{i h}\right|=\sum_{i=1}^{k} \sum_{u \in V_{i}} \sum_{u^{\prime} \in \Gamma(u)} \varepsilon_{1} n=(2|\Gamma|) \varepsilon_{1} n
$$

Notice that the summand in (29) depends on u^{\prime}, i, and h but not on u. Moreover, for each u^{\prime}, i, and h we are adding $e_{\Gamma}\left(\left\{u^{\prime}\right\}, V_{i}\right)$ equal terms. Therefore, we may express the sum in (29) as

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{h=0}^{1 / \varepsilon_{1}} \varepsilon_{1} h \sum_{u^{\prime} \in V} e_{\Gamma}\left(\left\{u^{\prime}\right\}, V_{i}\right)\left|\sum_{\ell \in S_{i h}}\left(d_{u^{\prime} \ell} m-\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right)\right| \tag{30}
\end{equation*}
$$

For fixed i, h, Condition (I) implies that there is a set $B_{i h}$ with at most $\delta_{1} n$ vertices such that whenever $u^{\prime} \in V \backslash B_{i h}$,

$$
\sum_{\ell \in S_{i h}}\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|=\sum_{\ell \in S_{i h}} d_{u^{\prime} \ell} m \pm \delta_{1} n
$$

Consequently, for i, h fixed, we have

$$
\sum_{u^{\prime} \in V} e_{\Gamma}\left(\left\{u^{\prime}\right\}, V_{i}\right)\left|\sum_{\ell \in S_{i h}}\left(d_{u^{\prime} \ell} m-\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right)\right| \leq e_{\Gamma}\left(V \backslash B_{i h}, V_{i}\right) \delta_{1} n+e_{\Gamma}\left(B_{i h}, V_{i}\right) n
$$

which, in view of (15), is bounded by

$$
\varrho\left(n-\left|B_{i h}\right|\right) m \cdot \delta_{1} n+\varrho\left|B_{i h}\right| m \cdot n+o(|\Gamma| n) \leq 4 \delta_{1} m|\Gamma|+o(|\Gamma| n) \leq 5 \delta_{1} m|\Gamma| .
$$

Hence it follows that (30) is at most

$$
5 \delta_{1} m|\Gamma| \sum_{i=1}^{k} \sum_{h=0}^{1 / \varepsilon_{1}} \varepsilon_{1} h \leq 5 \delta_{1} m|\Gamma| \cdot \frac{k}{\varepsilon_{1}}=\frac{5 \delta_{1}}{\varepsilon_{1}} n|\Gamma|
$$

Accounting for the error term in (29) and observing that by $(16), \frac{5 \delta_{1}}{\varepsilon_{1}}+2 \varepsilon_{1} \leq 3 \varepsilon_{1}$, the claim follows.

We are now ready to prove Claim 15
Proof of Claim 15. First recall from (9) that the inner product of Δ_{u} and $\Delta_{u^{\prime}}$ can be expressed as

$$
\begin{align*}
\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle & =d_{H}\left(u, u^{\prime}\right)+\sum_{\ell=1}^{k} d_{u \ell} d_{u^{\prime} \ell} m-\sum_{\ell=1}^{k} d_{u \ell}\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|-\sum_{\ell=1}^{k} d_{u^{\prime} \ell}\left|N_{H}(u) \cap V_{\ell}\right| \\
& =\left(d_{H}\left(u, u^{\prime}\right)-\sum_{\ell=1}^{k} d_{u \ell} d_{u^{\prime} \ell} m\right)+\sum_{\ell=1}^{k}\left(d_{u \ell} d_{u^{\prime} \ell} m-d_{u \ell}\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right) \\
& +\sum_{\ell=1}^{k}\left(d_{u \ell} d_{u^{\prime} \ell} m-d_{u^{\prime} \ell}\left|N_{H}(u) \cap V_{\ell}\right|\right) \tag{31}
\end{align*}
$$

Notice that the last two sums on the R-H-S of the equation above have the roles of u and u^{\prime} reversed, hence

$$
\begin{aligned}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma[U]}\left|\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle\right| \leq & \sum_{\left\{u, u^{\prime}\right\} \in \Gamma[U]}\left|d_{H}\left(u, u^{\prime}\right)-\sum_{\ell=1}^{k} d_{u \ell} d_{u^{\prime} \ell} m\right| \\
& +\sum_{\substack{\left(u, u^{\prime}\right) \\
\left\{u, u^{\prime}\right\} \in \Gamma}}\left|\sum_{\ell=1}^{k}\left(d_{u \ell} d_{u^{\prime} \ell} m-d_{u \ell}\left|N_{H}\left(u^{\prime}\right) \cap V_{\ell}\right|\right)\right| .
\end{aligned}
$$

We shall bound the first sum on the right using Condition (II) and the second using Claim 16 . Each summand in the first sum is at most n and, by Condition (II), all but at most $\delta_{2}|\Gamma|$ such summands are larger than $\delta_{2} n$. Therefore the first sum is at most $\delta_{2}|\Gamma| \cdot n+|\Gamma| \cdot\left(\delta_{2} n\right)$. Hence, it follows that

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma[U]}\left|\left\langle\Delta_{u}, \Delta_{u^{\prime}}\right\rangle\right| \leq 2 \delta_{2} n|\Gamma|+3 \varepsilon_{1} n|\Gamma| . \tag{32}
\end{equation*}
$$

The claim follows.

6 Proof of Theorem 13 (b)

Theorem $13(b)$ follows immediately from Claim 17 below.

Claim 17. If Condition (I) fails, then there exist sets U and W witnessing that the graph H is not $\left(\delta_{1}^{2} / 2\right)-F K$-regular. In particular, we show that

$$
\begin{equation*}
\left|e_{H}(U, W)-\sum_{i, j} d_{i j}\right| U_{i}| | W_{j}| |>\frac{\delta_{1}^{2} n^{2}}{2} \tag{33}
\end{equation*}
$$

Proof. If (I) fails to hold, then there is $S \subseteq[k]$ such that more than $\delta_{1} n$ vertices violate 18). Let $W=V_{S}$, and define

$$
U^{+}=\left\{v \in V:\left|N_{H}(v) \cap V_{S}\right|>\sum_{j \in S} d_{v j} m+\delta_{1} n\right\}
$$

Similarly define U^{-}and let U denote the larger of the two sets. Notice that, by construction, $|U| \geq\left(\left|U^{+}\right|+\left|U^{-}\right|\right) / 2>\delta_{1} n / 2$. Because $W=V_{S}$ the set $W_{j}=W \cap V_{j}$ satisfies $\left|W_{j}\right|=\left|V_{j}\right|=m$ if $j \in S$ and $\left|W_{j}\right|=0$ otherwise. Hence,

$$
\begin{aligned}
\left|e_{H}(U, W)-\sum_{i, j} d_{i j}\right| U_{i}| | W_{j}| | & =\left|\sum_{i=1}^{k} \sum_{u \in U_{i}}\right| N_{H}(u) \cap V_{S}\left|-\sum_{i=1}^{k} \sum_{u \in U_{i}} \sum_{j \in S} d_{i j} m\right| \\
& =\left|\sum_{i=1}^{k} \sum_{u \in U_{i}}\left(\left|N_{H}(u) \cap V_{S}\right|-\sum_{j \in S} d_{i j} m\right)\right| \\
& >|U| \delta_{1} n .
\end{aligned}
$$

Since $|U|>\delta_{1} n / 2$, inequality (33) follows, and the claim is proved.

7 Proof of Theorem 13 (c)

In this proof we will state several auxiliary claims whose proofs are postponed until Subsection 7.1. The strategy of the proof is outlined by Figure 1. The constant c below was defined in 16.

Claim 18. Suppose that the assumptions of Theorem $1 \$(c)$ hold, that is, Condition (I) is satisfied but Condition (II) is not. Then

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma} d_{H}\left(u, u^{\prime}\right)^{2} \geq \sum_{i<j}\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i j}\right|+c|\Gamma| n^{2} \tag{34}
\end{equation*}
$$

Because of Claim 18 we may assume 34 holds. By double counting over triples $\left(u u^{\prime}, v, v^{\prime}\right)$ with $u u^{\prime} \in \Gamma$ and $v, v^{\prime} \in N_{H}\left(u, u^{\prime}\right)$-see Figure 2 the L-H-S of (34) is given by

$$
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma} d_{H}\left(u, u^{\prime}\right)^{2}=\sum_{v \in V} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right|=\sum_{i=1}^{k} \sum_{v \in V_{i}} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right| .
$$

Figure 1: Our goal is to show that there exists a "well-behaved" vertex v_{0} and sets $W_{j} \subset V_{j}$ such that for every $v \in W_{j}(1 \leq j \leq k)$ the graph Γ has many edges in $N_{H}\left(v_{0}, v\right)$. Since Γ has the edge-uniformity property, this means that $d_{H}\left(v_{0}, v\right)$ is large, and this allows us to prove that the sets $U=N_{H}\left(v_{0}\right)$ and $W=\bigcup_{j=1}^{k} W_{j}$ are witnesses to the fact that H is not ε^{\prime}-regular.

Figure 2: The sum on the left of (34) counts triples $\left(e=u u^{\prime}, v, v^{\prime}\right)$, where $e \in \Gamma$, and $v, v^{\prime} \in N_{H}\left(u, u^{\prime}\right)$.

Moreover, the R-H-S of (34) may be expressed as

$$
\frac{1}{2} \sum_{i=1}^{k} \sum_{j \neq i}\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i j}\right|+c n^{2}|\Gamma| .
$$

Therefore,

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{v \in V_{i}} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right| \geq \frac{1}{2} \sum_{i=1}^{k} \sum_{j \neq i}\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i j}\right|+c n^{2}|\Gamma| \tag{35}
\end{equation*}
$$

Definition 19. Let BAD be a weighted bipartite graph with classes V and $[k] \times$ $\left\{0,1, \ldots, 1 / \varepsilon_{1}\right\}$ where for each $v \in V$ and $j h \in[k] \times\left\{0,1, \ldots, 1 / \varepsilon_{1}\right\}$ such that

$$
\begin{equation*}
\left|\left|N_{H}(v) \cap V_{S_{j h}}\right|-\sum_{\ell \in S_{j h}} d_{v \ell} m\right| \geq \delta_{1} n \tag{36}
\end{equation*}
$$

we include the edge $(v, j h)$ with weight $\left|S_{j h}\right|$. We denote by $\operatorname{BAD}(v), v \in V$, the set of all neighbors of v in the graph BAD. Moreover, we let $\|\operatorname{BAD}(v)\|$ be the sum of the weights of the edges incident to v.

Set

$$
\begin{equation*}
B:=\left\{v \in V:\|\operatorname{BAD}(v)\|>\sqrt{\delta_{1}} k^{2}\right\} . \tag{37}
\end{equation*}
$$

Note that because Condition (I) holds, each $S_{j h}, 1 \leq j \leq k, 0 \leq h \leq 1 / \varepsilon_{1}$, admits at most $\delta_{1} n$ vertices $v \in V$ that satisfy (36). Hence, the degree of any $j h$ is at most $\delta_{1} n$. It follows that the total weight of the edges of BAD is at most

$$
\delta_{1} n \sum_{j} \sum_{h}\left|S_{j h}\right|=\delta_{1} n \sum_{j} k=\delta_{1} n k^{2} .
$$

This immediately implies that

$$
|B|<\sqrt{\delta_{1}} n
$$

Therefore,

$$
\sum_{v \in B} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right| \leq \sum_{v \in B} \sum_{v^{\prime} \in V}|\Gamma| \leq \sqrt{\delta_{1}} n^{2}|\Gamma| \stackrel{16}{<} \frac{c}{2} n^{2}|\Gamma|
$$

Subtracting the previous inequality from (35), we obtain

$$
\sum_{i=1}^{k} \sum_{v \in V_{i} \backslash B} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right| \geq \frac{1}{2} \sum_{i=1}^{k} \sum_{j \neq i}\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i j}\right|+\frac{c}{2} n^{2}|\Gamma|
$$

Since both sides of the inequality above are sums over $i \in[k]$, it follows that there must exist $i_{0} \in[k]$ such that

$$
\begin{equation*}
\sum_{v \in V_{i_{0}} \backslash B} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right| \geq \frac{1}{2} \sum_{j \neq i_{0}}\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i_{0} j}\right|+\frac{c}{2} n m|\Gamma| . \tag{38}
\end{equation*}
$$

After averaging over $v \in V_{i_{0}} \backslash B$, we conclude there must be some $v_{0} \in V_{i_{0}} \backslash B$ such that

$$
\begin{equation*}
\sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v_{0}, v^{\prime}\right)\right]\right| \geq \frac{1}{2} m \sum_{j \neq i_{0}}\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell}\right)^{2}\left|\Gamma_{i_{0} j}\right|+\frac{c}{2} n|\Gamma| \tag{39}
\end{equation*}
$$

Set $W_{i_{0}}=\emptyset$ and, for every $j \neq i_{0}$, set

$$
\begin{equation*}
W_{j}:=\left\{w \in V_{j}:\left|\Gamma\left[N_{H}\left(v_{0}, w\right)\right]\right| \geq \frac{1}{2}\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell}\right)^{2}\left|\Gamma_{i_{0} j}\right|+\frac{c}{4}|\Gamma|\right\} \tag{40}
\end{equation*}
$$

and let $W=\bigcup_{j=1}^{k} W_{j}$. Notice that the definition of W_{j} 's coincides with our convention that $W_{j}=W \cap V_{j}$.

We will show that the sets

$$
\begin{equation*}
U=N_{H}\left(v_{0}\right) \text { and } W=\bigcup_{j=1}^{k} W_{j} \tag{41}
\end{equation*}
$$

form a witness pair to the fact that H is not ε^{\prime}-regular (recall Figure 1). The following claims (which are proved in Subsection 7.1) will be used to estimate a large lower bound for $e_{H}(U, W)$.
Claim 20. The set W has more than $\frac{c}{4} n$ elements.
Due to the edge-uniformity of the graph Γ (see 15) and the definition of W_{j} we can show that the co-degrees $d_{H}\left(v_{0}, w\right), w \in W_{j}$, are large.

Claim 21. For every j and every $w \in W_{j}$ we have

$$
d_{H}\left(v_{0}, w\right) \geq \sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell} m+\frac{c n}{16}
$$

The following claim immediately implies Theorem $13(c)$,
Claim 22. The sets U and W defined in 41) satisfy

$$
e_{H}(U, W)>\sum_{j=1}^{k} \sum_{\ell=1}^{k} d_{j \ell}\left|W \cap V_{j}\right|\left|U \cap V_{\ell}\right|+\varepsilon^{\prime} n^{2}
$$

for $\varepsilon^{\prime}=c^{2} / 2^{7}$.
Proof. Observe that since $U=N_{H}\left(v_{0}\right)$, Claims 20 and 21 imply that

$$
\begin{align*}
e_{H}(U, W) & =\sum_{j} \sum_{w \in W_{j}} d_{H}\left(v_{0}, w\right) \\
& \geq \sum_{j}\left|W_{j}\right| \sum_{\ell=1}^{k} d_{j \ell}\left(d_{i_{0} \ell} m\right)+\frac{c n}{16}|W| \tag{42}\\
& \geq \sum_{j}\left|W_{j}\right| \sum_{h=0}^{1 / \varepsilon_{1}}\left\{\left(\varepsilon_{1} h-\varepsilon_{1}\right) \sum_{\ell \in S_{j h}} d_{i_{0} \ell} m\right\}+\frac{c^{2} n^{2}}{64} .
\end{align*}
$$

We now consider the terms $\sum_{\ell \in S_{j h}} d_{i_{0} \ell} m$ in the inequality above. For every $j h \notin \operatorname{BAD}\left(v_{0}\right)$ (recall Definition 19), we have

$$
\begin{equation*}
\sum_{\ell \in S_{j h}} d_{i_{0} \ell} m>\left|N_{H}\left(v_{0}\right) \cap V_{S_{j h}}\right|-\delta_{1} n=\sum_{\ell \in S_{j h}}\left|N_{H}\left(v_{0}\right) \cap V_{\ell}\right|-\delta_{1} n \tag{43}
\end{equation*}
$$

On the other hand, for $j h \in \operatorname{BAD}\left(v_{0}\right)$ we trivially have

$$
\begin{equation*}
\sum_{\ell \in S_{j h}} d_{i_{0} \ell} m \geq 0>\left(\sum_{\ell \in S_{j h}}\left|N_{H}\left(v_{0}\right) \cap V_{\ell}\right|-\delta_{1} n\right)-\left|S_{j h}\right| \cdot m \tag{44}
\end{equation*}
$$

Since $v_{0} \notin B$, it follows that $\left\|\operatorname{BAD}\left(v_{0}\right)\right\| \leq \sqrt{\delta_{1}} k^{2}$, that is

$$
\sum_{j h \in \operatorname{BAD}\left(v_{0}\right)}\left|S_{j h}\right| \leq \sqrt{\delta_{1}} k^{2} .
$$

Consequently, replacing the term $\sum_{\ell \in S_{j h}} d_{i_{0} \ell} m$ on the R-H-S of 42 with the lower bounds (43) and (44) yields

$$
\begin{align*}
e_{H}(U, W) & \geq \sum_{j}\left|W_{j}\right| \sum_{h=0}^{1 / \varepsilon_{1}}\left(\varepsilon_{1} h-\varepsilon_{1}\right)\left(\sum_{\ell \in S_{j h}}\left|N_{H}\left(v_{0}\right) \cap V_{\ell}\right|-\delta_{1} n\right)+\frac{c^{2} n^{2}}{64} \\
& -\underbrace{\sum_{j h \in \operatorname{BAD}\left(v_{0}\right)}\left|W_{j}\right|\left|S_{j h}\right| m}_{\leq m^{2}\left\|\operatorname{BAD}\left(v_{0}\right)\right\| \leq \sqrt{\delta_{1}} n^{2}} . \tag{45}
\end{align*}
$$

We may bound the negative contribution of the error terms $\delta_{1} n$ above by

$$
\delta_{1} n \sum_{j}\left|W_{j}\right| \sum_{h=0}^{1 / \varepsilon_{1}}\left(\varepsilon_{1} h-\varepsilon_{1}\right) \leq \delta_{1} n \sum_{j} m \frac{1}{\varepsilon_{1}} \leq \frac{\delta_{1}}{\varepsilon_{1}} n^{2}
$$

while the negative contribution of all the $j h \in \operatorname{BAD}\left(v_{0}\right)$ is at most $\sqrt{\delta_{1}} n^{2}$. It follows that

$$
\begin{align*}
e_{H}(U, W) & \geq \sum_{j}\left|W_{j}\right| \sum_{h=0}^{1 / \varepsilon_{1}} \sum_{\ell \in S_{j h}} \underbrace{\left(\varepsilon_{1} h-\varepsilon_{1}\right)}_{\geq d_{j \ell}-2 \varepsilon_{1}}\left|N_{H}\left(v_{0}\right) \cap V_{\ell}\right|+\left(\frac{c^{2}}{64}-\frac{\delta_{1}}{\varepsilon_{1}}-\sqrt{\delta_{1}}\right) n^{2} \\
& \geq \sum_{j}\left|W_{j}\right| \sum_{h=0}^{1 / \varepsilon_{1}} \sum_{\ell \in S_{j h}} d_{j \ell}|\underbrace{N_{H}\left(v_{0}\right)}_{=U} \cap V_{\ell}|+\left(\frac{c^{2}}{64}-2 \varepsilon_{1}-\frac{\delta_{1}}{\varepsilon_{1}}-\sqrt{\delta_{1}}\right) n^{2} \\
& =\sum_{j=1}^{k} \sum_{\ell=1}^{k} d_{j \ell}\left|W \cap V_{j}\right|\left|U \cap V_{\ell}\right|+\left(\frac{c^{2}}{64}-2 \varepsilon_{1}-\frac{\delta_{1}}{\varepsilon_{1}}-\sqrt{\delta_{1}}\right) n^{2} . \tag{46}
\end{align*}
$$

From the definition of our constants (see chart (16), Claim 22 follows.
Theorem 13)(c) follows directly from Claim 22 .

7.1 Proof of auxiliary claims for Theorem $13 \|(c)$

Definition 23. Let us call a pair $\{i, j\} \in\binom{[k]}{2}$ poor if

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right) \leq \varrho m^{3} \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell}-4\left|\Gamma_{i j}\right| \sqrt{\delta_{1}} n \tag{47}
\end{equation*}
$$

A pair will be called rich otherwise.

Claim 24. Assuming Condition (I), the following holds: For all $i \in[k]$ there are at most $\sqrt{\delta_{1}} k$ values $j \in[k]$ such that $\{i, j\}$ is a poor pair.

Proof. Fix an arbitrary $i \in[k]$ and let $S=S_{i}$ be the set of all j for which $\{i, j\}$ is a poor pair. Our goal is to show that $|S| \leq \sqrt{\delta_{1}} k$.

Observe that

$$
\begin{align*}
{[*] } & :=\sum_{j \in S} \sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)=\sum_{v \in V} e_{\Gamma}\left(N_{H}(v) \cap V_{S}, N_{H}(v) \cap V_{i}\right) \tag{48}\\
& =\sum_{v \in V}\left\{\varrho\left|N_{H}(v) \cap V_{S}\right|\left|N_{H}(v) \cap V_{i}\right|+o(|\Gamma|)\right\},
\end{align*}
$$

where the first equality follows by double counting and the second by the edgeuniformity of Γ (see 15).

For $v \in V$, define

$$
D(v)=\left|N_{H}(v) \cap V_{S}\right|-\sum_{j \in S} d_{v j} m
$$

With this definition, we have

$$
\begin{align*}
{[*]+o(|\Gamma| n) } & =\sum_{\ell=1}^{k} \sum_{v \in V_{\ell}} \varrho\left|N_{H}(v) \cap V_{S}\right|\left|N_{H}(v) \cap V_{i}\right| \\
& =\sum_{\ell=1}^{k} \sum_{v \in V_{\ell}} \varrho\left(D(v)+\sum_{j \in S} d_{j \ell} m\right)\left|N_{H}(v) \cap V_{i}\right| \tag{49}\\
& =\sigma_{1}+\sigma_{2},
\end{align*}
$$

where

$$
\begin{aligned}
\sigma_{1} & :=\sum_{\ell=1}^{k} \sum_{v \in V_{\ell}} \varrho\left(\sum_{j \in S} d_{j \ell} m\right)\left|N_{H}(v) \cap V_{i}\right|=\varrho \sum_{\ell=1}^{k}\left(\sum_{j \in S} d_{j \ell} m\right) \underbrace{\sum_{v \in V_{\ell}}\left|N_{H}(v) \cap V_{i}\right|}_{e_{H}\left(V_{i}, V_{\ell}\right)=d_{i \ell} m^{2}} \\
& =\varrho \sum_{\ell=1}^{k} \sum_{j \in S} d_{i \ell} d_{j \ell} m^{3}=\sum_{j \in S} \varrho m^{3} \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell},
\end{aligned}
$$

and

$$
\sigma_{2}:=\sum_{\ell=1}^{k} \sum_{v \in V_{\ell}} \varrho D(v)\left|N_{H}(v) \cap V_{i}\right| .
$$

Applying Condition (I) to the set S yields that there is a set $B \subset V$ with at most $\delta_{1} n$ vertices such that for all $v \in V \backslash B$ we have $|D(v)| \leq \delta_{1} n$. Due to the
definition of B and the fact that $|D(v)| \leq|S| m$ for all v, we can observe that

$$
\begin{align*}
\left|\sigma_{2}\right| & =\left|\sum_{\ell=1}^{k} \sum_{v \in V_{\ell}} \varrho D(v)\right| N_{H}(v) \cap V_{i}| | \\
& \leq \sum_{\ell=1}^{k} \sum_{v \in V_{\ell} \cap B} \varrho|D(v)|\left|N_{H}(v) \cap V_{i}\right|+\varrho \delta_{1} n \sum_{\ell=1}^{k} \sum_{v \in V_{\ell} \backslash B}\left|N_{H}(v) \cap V_{i}\right| \tag{50}\\
& \leq \sum_{v \in B} \varrho(|S| m) m+\varrho \delta_{1} n \sum_{\ell=1}^{k} \sum_{v \in V_{\ell} \backslash B} m \\
& \leq \varrho\left(\delta_{1} m|S|+\delta_{1} n\right) m n .
\end{align*}
$$

On the other hand, by the definition of S (the set of all j for which $\{i, j\}$ is poor), we must have

$$
\begin{align*}
\sigma_{1}+\sigma_{2}+o(|\Gamma| n) & \stackrel{49}{=}[*] \stackrel{48}{=} \sum_{j \in S} \sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right) \\
& \stackrel{47}{=} \sum_{j \in S}\left\{\varrho m^{3} \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell}-4\left|\Gamma_{i j}\right| \sqrt{\delta_{1}} n\right\} \tag{51}\\
& =\sigma_{1}-\sum_{j \in S} 4\left|\Gamma_{i j}\right| \sqrt{\delta_{1}} n .
\end{align*}
$$

Hence,

$$
\begin{equation*}
\left|\sigma_{2}\right| \geq o(|\Gamma| n)+\sum_{j \in S} 4\left|\Gamma_{i j}\right| \sqrt{\delta_{1}} n \stackrel{\boxed{15} \mid}{=} o(|\Gamma| n)+4 \varrho m^{2} \sqrt{\delta_{1}} n|S| . \tag{52}
\end{equation*}
$$

It follows from the inequalities 50 and 52 that

$$
|S| \leq \frac{o(|\Gamma| / \varrho)+\delta_{1} m n}{\left(4 \sqrt{\delta}_{1}-\delta_{1}\right) m^{2}} \stackrel{\boxed{15}}{=} \frac{o\left(k^{2}\right)+\delta_{1} k}{4 \sqrt{\delta_{1}}-\delta_{1}}<\sqrt{\delta_{1}} k
$$

where we recall that k^{2} is easily absorbed by $o(\cdot)$. Therefore the claim is proved.

The following defect form of the Cauchy-Schwarz inequality will be applied several times in the proof that follows.
Lemma 25. Let $x_{1}, x_{2}, \ldots, x_{t}$ be real numbers and $\mu=\frac{1}{t} \sum_{i=1}^{t} x_{i}$ be their average. Suppose there are s numbers x_{j} satisfying $x_{j} \leq \mu-\eta$, for some $\eta>0$ and $s<t$. Then

$$
\sum_{i=1}^{t} x_{i}^{2} \geq t \mu^{2}+s \eta^{2}+\frac{s^{2} \eta^{2}}{t-s} \geq t \mu^{2}+s \eta^{2}
$$

Similarly, if $x_{j} \geq \mu+\eta$ for s numbers x_{j} the same inequality holds.

Proof. Without loss of generality, assume that $x_{j} \leq \mu-\eta$ for all $j=1, \ldots, s$. Let

$$
S=\sum_{i=1}^{s} x_{i}, \quad L=\sum_{i=s+1}^{t} x_{i}=t \mu-S
$$

It follows by the Cauchy-Schwarz inequality that

$$
\sum_{i=1}^{t} x_{i}^{2}=\sum_{i=1}^{s} x_{i}^{2}+\sum_{i=s+1}^{t} x_{i}^{2} \geq \frac{S^{2}}{s}+\frac{L^{2}}{t-s}=S^{2} \frac{t}{s(t-s)}-S \frac{2 t \mu}{t-s}+\frac{t^{2} \mu^{2}}{t-s}
$$

The R-H-S of the above inequality is a quadratic minimized at $S^{*}=s \mu$. However, we know that $S \leq s(\mu-\eta)<s \mu$ and therefore

$$
\frac{S^{2}}{s}+\frac{L^{2}}{t-s} \geq \frac{(s \mu-s \eta)^{2}}{s}+\frac{(\mu(t-s)+s \eta)^{2}}{t-s}=t \mu^{2}+s \eta^{2}+\frac{s^{2} \eta^{2}}{t-s}
$$

which establishes the inequality of the lemma. The case when there are s numbers x_{j} satisfying $x_{j} \geq \mu+\eta$ is symmetric.

For the next proof, recall the definition of poor pairs given in Def. 23 .
Proof of Claim 18. Let us partition the pairs $\{i, j\} \subset[k]$ into classes as follows:
\mathcal{A} : class of rich pairs $\{i, j\}$ with at least $\delta_{2}\left|\Gamma_{i j}\right| / 4$ edges $\left\{u, u^{\prime}\right\} \in \Gamma_{i j}$ violating 19) in (II),
\mathcal{B} : class of remaining rich pairs, and
\mathcal{C} : class of poor pairs.
We shall analyze the summation on the L-H-S of (34) by splitting it according to the above partition of the pairs $\{i, j\}$. In particular, we will show that

- For pairs $\{i, j\} \in \mathcal{A}$,

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)^{2} \geq\left|\Gamma_{i j}\right|\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}+\left|\Gamma_{i j}\right| \cdot \delta_{2}^{3} n^{2} / 64 \tag{53}
\end{equation*}
$$

- For pairs $\{i, j\} \in \mathcal{B}$,

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)^{2} \geq\left|\Gamma_{i j}\right|\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}-\left|\Gamma_{i j}\right| \cdot 10 \sqrt{\delta_{1}} n^{2} \tag{54}
\end{equation*}
$$

- For pairs $\{i, j\} \in \mathcal{C}$, we trivially have

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)^{2} \geq 0 \geq\left|\Gamma_{i j}\right|\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}-\left|\Gamma_{i j}\right| \cdot n^{2} \tag{55}
\end{equation*}
$$

Before proving (53) and (54), we will show how the above inequalities imply this claim. Note that the pairs in \mathcal{A} are contributing positively toward (34), while the pairs in \mathcal{B} and \mathcal{C} are contributing negatively. Hence, in order to establish (34), we need to bound the number of pairs in each of the classes \mathcal{A}, \mathcal{B}, and \mathcal{C}. By Claim 24, $|\mathcal{C}| \leq \sqrt{\delta_{1}} k^{2} / 2$. Trivially, $|\mathcal{B}| \leq k^{2} / 2$. We will show that the number of pairs in \mathcal{A} is bounded from below by $\delta_{2} k^{2} / 8$. In fact, if there were fewer then $\delta_{2} k^{2} / 8$ pairs in \mathcal{A}, the total number of pairs $\left\{u, u^{\prime}\right\} \in \Gamma$ violating 19 would be at most

$$
\begin{aligned}
\sum_{\{i, j\} \in \mathcal{B}}\left(\frac{\delta_{2}\left|\Gamma_{i j}\right|}{4}\right)+\sum_{\{i, j\} \in \mathcal{A} \cup \mathcal{C}}\left|\Gamma_{i j}\right| & \leq \frac{\delta_{2}|\Gamma|}{4}+(1+o(1))(|\mathcal{A}|+|\mathcal{C}|) \varrho m^{2} \\
& \leq \frac{\delta_{2}|\Gamma|}{4}+(1+o(1))\left(\frac{\delta_{2} k^{2}}{8}+\frac{\sqrt{\delta_{1}} k^{2}}{2}\right) \varrho m^{2} \\
& <\delta_{2}|\Gamma|
\end{aligned}
$$

This is a contradiction since we are assuming (II) does not hold. Hence $|\mathcal{A}| \geq$ $\delta_{2} k^{2} / 8$.

Let $\Gamma_{\mathcal{A}}=\bigcup_{\{i, j\} \in \mathcal{A}} \Gamma_{i j}$. Similarly, define $\Gamma_{\mathcal{B}}$ and $\Gamma_{\mathcal{C}}$. We are now ready to obtain (34). Combining (53), 54) and (55), we obtain

$$
\begin{align*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma} d_{H}\left(u, u^{\prime}\right)^{2} & \geq \sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{\mathcal{A}} \cup \Gamma_{\mathcal{B}} \cup \Gamma_{\mathcal{C}}} d_{H}\left(u, u^{\prime}\right)^{2} \\
& \geq \sum_{i<j}\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i j}\right|+\beta n^{2} \tag{56}
\end{align*}
$$

where

$$
\beta:=\left|\Gamma_{\mathcal{A}}\right| \cdot \frac{\delta_{2}^{3}}{64}-\left|\Gamma_{\mathcal{B}}\right| \cdot 10 \sqrt{\delta_{1}}-\left|\Gamma_{\mathcal{C}}\right|
$$

Using the edge-uniformity of Γ (cf. 15) and the above estimates on the sizes of \mathcal{A}, \mathcal{B} and \mathcal{C}, we have

$$
\begin{aligned}
\beta & =\left(|\mathcal{A}| \cdot \frac{\delta_{2}^{3}}{64}-|\mathcal{B}| \cdot 10 \sqrt{\delta_{1}}-|\mathcal{C}|\right) \varrho m^{2}(1+o(1)) \\
& \geq\left(\frac{\delta_{2}^{3}}{64} \cdot \frac{\delta_{2} k^{2}}{8}-\frac{k^{2}}{2} \cdot 10 \sqrt{\delta_{1}}-\frac{\sqrt{\delta_{1}} k^{2}}{8}\right) \varrho m^{2}(1+o(1)) \\
& \geq\left(\frac{\delta_{2}^{4}}{512}-\frac{41}{8} \sqrt{\delta_{1}}\right)(2+o(1))|\Gamma|
\end{aligned}
$$

Since $\delta_{2} \gg \delta_{1}^{1 / 8}$, we may rewrite (56) as

$$
\begin{equation*}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma} d_{H}\left(u, u^{\prime}\right)^{2} \geq \sum_{i<j}\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}\left|\Gamma_{i, j}\right|+\underbrace{\frac{\delta_{2}^{4}}{512}|\Gamma|}_{<\beta} n^{2} . \tag{57}
\end{equation*}
$$

Taking $c=\delta_{2}^{4} / 512$, the claim follows. It remains to show that 53) and (54) hold.

For a pair $\{i, j\}$, it will be convenient to define

$$
\mu_{i j}:=\frac{1}{\left|\Gamma_{i j}\right|} \sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)
$$

Fact 26. For any rich pair $\{i, j\}$,

$$
\begin{align*}
\mu_{i j} & \geq \frac{1}{\left|\Gamma_{i j}\right|}\left(\varrho m^{3} \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell}-4\left|\Gamma_{i j}\right| \sqrt{\delta_{1}} n\right) \\
& \geq(1+o(1)) \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m-4 \sqrt{\delta_{1}} n \tag{58}\\
& \geq \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m-5 \sqrt{\delta_{1}} n .
\end{align*}
$$

Indeed, 58 follows since 47) does not hold for a rich pair $\{i, j\}$.
Now let us prove (53) for an arbitrary $\{i, j\} \in \mathcal{A}$ (which is by definition rich). Notice that if

$$
\begin{equation*}
\mu_{i j} \geq \sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m+\frac{\delta_{2} n}{2} \tag{59}
\end{equation*}
$$

a direct application of the Cauchy-Schwarz inequality yields (53) (in fact, an even stronger bound holds). Hence, let us suppose that 59 does not hold. In this case, in view of Fact $26,\left|\mu_{i j}-\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right| \leq \max \left\{5 \sqrt{\delta_{1}} n, \delta_{2} n / 2\right\}=$ $\delta_{2} n / 2$.

For any $\left\{u, u^{\prime}\right\} \in \Gamma_{i j}$ that violates 19 we have, by the triangle inequality,

$$
\delta_{2} n \leq\left|d_{H}\left(u, u^{\prime}\right)-\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right| \leq\left|d_{H}\left(u, u^{\prime}\right)-\mu_{i j}\right|+\left|\mu_{i j}-\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right|
$$

and it follows that

$$
\left|d_{H}\left(u, u^{\prime}\right)-\mu_{i j}\right| \geq \delta_{2} n / 2
$$

Consequently, by the definition of \mathcal{A}, there must be either at least $\delta_{2}\left|\Gamma_{i j}\right| / 8$ edges $\left\{u, u^{\prime}\right\} \in \Gamma_{i j}$ with $d_{H}\left(u, u^{\prime}\right) \leq \mu_{i j}-\delta_{2} n / 2$ or at least $\delta_{2}\left|\Gamma_{i j}\right| / 8$ edges $\left\{u, u^{\prime}\right\} \in \Gamma_{i j}$ with $d_{H}\left(u, u^{\prime}\right) \geq \mu_{i j}+\delta_{2} n / 2$. In either case, we may apply Lemma 25 to the numbers $d_{H}\left(u, u^{\prime}\right)$, for $\left\{u, u^{\prime}\right\} \in \Gamma_{i j}$, with $t=\left|\Gamma_{i j}\right|, s=$
$\delta_{2}\left|\Gamma_{i j}\right| / 8, \mu=\mu_{i j}$ and $\eta=\delta_{2} n / 2$. Therefore, the following inequality holds:

$$
\begin{aligned}
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)^{2} & \geq\left|\Gamma_{i j}\right| \mu_{i j}^{2}+\frac{\delta_{2}\left|\Gamma_{i j}\right|}{8}\left(\frac{\delta_{2} n}{2}\right)^{2} \\
& \stackrel{55}{\geq}\left|\Gamma_{i j}\right|\left\{\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m-5 \sqrt{\delta_{1}} n\right)^{2}+\frac{\delta_{2}}{8}\left(\frac{\delta_{2} n}{2}\right)^{2}\right\} \\
& \geq\left|\Gamma_{i j}\right|\left\{\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}-10 \sqrt{\delta_{1}} n^{2}+\frac{\delta_{2}^{3} n^{2}}{32}\right\}
\end{aligned}
$$

Since $\delta_{2} \gg \delta_{1}^{1 / 6}$, we conclude that 53 holds.
We will now prove that 54 holds for an arbitrary $\{i, j\} \in \mathcal{B}$. By the Cauchy-Schwarz inequality and Fact 26, this pair must satisfy

$$
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma_{i j}} d_{H}\left(u, u^{\prime}\right)^{2} \geq\left|\Gamma_{i j}\right| \mu_{i j}^{2} \stackrel{58}{\geq}\left|\Gamma_{i j}\right|\left\{\left(\sum_{\ell=1}^{k} d_{i \ell} d_{j \ell} m\right)^{2}-10 \sqrt{\delta_{1}} n^{2}\right\}
$$

We conclude that all pairs $\{i, j\} \in \mathcal{B}$ satisfy 54 .
Proof of Claim 20. By the definition of W in 41,

$$
\begin{align*}
\sum_{v^{\prime} \in V \backslash W}\left|\Gamma\left[N_{H}\left(v_{0}, v^{\prime}\right)\right]\right| & =\sum_{j=1}^{k} \sum_{v^{\prime} \in V_{j} \backslash W_{j}}\left|\Gamma\left[N_{H}\left(v_{0}, v^{\prime}\right)\right]\right| \tag{60}\\
& <\frac{1}{2} m \sum_{j=1}^{k}\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell}\right)^{2}\left|\Gamma_{i_{0} j}\right|+\frac{c}{4} n|\Gamma| .
\end{align*}
$$

In view of (39), that implies

$$
\begin{equation*}
\sum_{v^{\prime} \in W}\left|\Gamma\left[N_{H}\left(v_{0}, v^{\prime}\right)\right]\right|>\frac{c}{4} n|\Gamma| . \tag{61}
\end{equation*}
$$

Since each term of the sum on the L-H-S is at most $|\Gamma|$, it follows that $|W|>$ $\frac{c}{4} n$.

Proof of Claim 21. Since $W_{i_{0}}=\emptyset$ there is nothing to prove for $j=i_{0}$ so let us assume that $j \neq i_{0}$ and $w \in W_{j}$ are arbitrary. Because of the edge-uniformity of Γ (see 15),

$$
\left|\Gamma\left[N_{H}\left(v_{0}, w\right)\right]\right|=\varrho \frac{d_{H}\left(v_{0}, w\right)^{2}}{2}+o(|\Gamma|)
$$

It follows, by the definition of W_{j} in 40 , that

$$
\begin{align*}
d_{H}\left(v_{0}, w\right)^{2} & \geq \frac{2}{\varrho}\left(\left|\Gamma\left[N_{H}\left(v_{0}, w\right)\right]\right|-o(|\Gamma|)\right) \\
& \geq\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell}\right)^{2} \frac{\left|\Gamma_{i_{0} j}\right|}{\varrho}+\frac{|\Gamma|}{\varrho}\left(\frac{c}{2}-o(1)\right) \\
& \geq\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell}\right)^{2} \frac{\varrho m^{2}(1-o(1))}{\varrho}+\frac{(1-o(1)) \varrho \frac{n^{2}}{2}}{\varrho}\left(\frac{c}{2}-o(1)\right) \tag{62}\\
& \geq\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell}\right)^{2} m^{2}+\frac{c n^{2}}{8} .
\end{align*}
$$

For $x_{0}, h>0$, taking the derivative of the concave function $f(x)=\sqrt{x}$ at $x_{0}+h$ provides the inequality

$$
\sqrt{x_{0}+h} \geq \sqrt{x_{0}}+\frac{h}{2 \sqrt{x_{0}+h}}
$$

Taking the square root of the R-H-S of 62 and using the inequality above with $x_{0}=\left(\sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell} m\right)^{2}$ and $h=c n^{2} / 8$, we obtain

$$
d_{H}\left(v_{0}, w\right) \geq \sum_{\ell=1}^{k} d_{i_{0} \ell} d_{j \ell} m+\frac{c n^{2}}{16 \sqrt{x_{0}+h}}
$$

Since $\sqrt{x_{0}+h} \leq d_{H}\left(v_{0}, w\right)<n$, the claim follows.

8 Finding the partition in time $O\left(n^{2}\right)$

In this section we present an algorithmic version of Theorem 13 . More precisely, we have the following theorem (see $\sqrt{16}$ for the chart of constants).

Theorem 27. There is an $O\left(n^{2}\right)$ algorithm that takes as input:

- the expander graph Γ satisfying the conclusions of Lemma 10;
- a graph H and a partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{k}\right\}$ of $V=V(H)$;
and either
(a) asserts that Conditions (I) and (II) hold for \mathcal{P} (and thus \mathcal{P} is ε-FKregular);
(b) asserts that Condition (I) fails for \mathcal{P} and constructs a witness pair (U, W) for the fact that \mathcal{P} is not $\left(\delta_{1}^{2} / 2\right)$-FK-regular;
(c) asserts that Condition (I) holds but Condition (II) fails and constructs a witness pair (U, W) for the fact that \mathcal{P} is not $\varepsilon^{\prime}-F K$-regular.

Proof. The input graph H is represented by its adjacency matrix. With this representation it is simple to obtain the value of $d_{H}\left(u, u^{\prime}\right)$ in $O(n)$-time for any pair $u, u^{\prime} \in V$.

We will assume that the densities $d_{i j}$ have been precomputed (this can be done in $O\left(n^{2}\right)$-time). It will be convenient to assume that the representation of the input \mathcal{P} allows for a constant-time function that computes, for any vertex $v \in$ V, the index $i \in[k]$ such that $v \in V_{i}$.

Part (a). To test whether Condition (I) is satisfied we enumerate all subsets $S \subset[k]$ (there are only $2^{k}=O(1)$ such sets) and compute for every $v \in V$ the value of $\left|N_{H}(v) \cap V_{S}\right|$. Clearly, this can be done in $O(n)$-time by listing each neighbor of v and checking whether this neighbor belongs to some $V_{i}, i \in S$. Since there are n vertices to check, the total cost of checking Condition (I) is $O\left(n^{2}\right)$.

The inequality (19) in Condition (II) can be checked in $O(n)$-time for each $\left\{u, u^{\prime}\right\} \in \Gamma$. Hence, the total time is $O(n|\Gamma|)=O\left(n^{2}\right)$. It will be convenient to store the computed values of $d_{H}\left(u, u^{\prime}\right),\left\{u, u^{\prime}\right\} \in \Gamma$, in a random-access array to later find a witness pair (U, W) in case the condition is not satisfied.

Consequently, if both conditions are satisfied, the algorithm can assert that the conditions are valid in $O\left(n^{2}\right)$-time.
$\operatorname{PaRT}(b)$. While testing that Condition (I) holds for a particular set $S \subset[k]$ we maintain a list U_{S} of vertices which fail (18); if the list U_{S} becomes larger than $\delta_{1} n$, we can easily obtain a witness pair $\left(U, W=V_{S}\right)$ with $|U| \geq\left|U_{S}\right| / 2$ by defining sets U^{+}, U^{-}, and $U \in\left\{U^{+}, U^{-}\right\}$(with $U_{S}=U^{+} \cup U^{-}$) exactly like in the proof of Claim 17 .

Part (c). In case Condition (I) holds but Condition (II) fails, the algorithm:
(1) computes the graph BAD and the set B of (37);
(2) finds $i_{0} \in[k]$ such that 38 holds;
(3) finds $v_{0} \in V_{i_{0}}$ satisfying (39);
(4) obtains the sets W_{j} defined by (40).

Since the sets $U=N_{H}\left(v_{0}\right)$ and $W=\bigcup_{j} W_{j}$ we obtain from this algorithm are the same as the ones defined in (41), by Claim 22 it follows that (U, W) is a witness to the fact that \mathcal{P} is not ε^{\prime}-FK-regular.

Step (1) is quite simple since BAD is an $n \times k / \varepsilon_{1}$ weighted bipartite graph and therefore has at most $O(n)$ edges. First the sets $S_{j h}$ are obtained in $O(1)$ time (see 17). Then each possible edge can be determined in $O(n)$ time (this amounts to checking whether (36) holds in $O(n)$-time). The set B can be obtained in time $O(n)$ once the graph BAD is computed.

For Step (2) we have to compute, for $i=1, \ldots, m$,

$$
\sum_{v \in V_{i} \backslash B} \sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right| .
$$

The naïve way of computing this sum is $\Omega\left(n^{3}\right)$ since there are $\Omega\left(n^{2}\right)$ pairs $\left(v, v^{\prime}\right)$ and the summand can be computed in linear time. Using double counting (see Figure 24 we can instead compute the sum

$$
\sum_{\left\{u, u^{\prime}\right\} \in \Gamma}\left|N_{H}\left(u, u^{\prime}\right) \cap\left(V_{i} \backslash B\right)\right| d_{H}\left(u, u^{\prime}\right)
$$

in $O\left(n^{2}\right)$. The R-H-S of (38) is clearly computable in $O\left(n^{2}\right)$-time and therefore we can perform the second step in time $O\left(n^{2}\right)$.

To find the vertex v_{0} of $\operatorname{Step}(3)$, we first define an auxiliary vector $\left(x_{v}\right)_{v \in V_{i_{0}}}$ where each x_{v} is initially set to zero and in the end will have value

$$
x_{v}=\sum_{\left\{u, u^{\prime}\right\} \in \Gamma} \mathbf{1}\left[v \in N_{H}\left(u, u^{\prime}\right)\right] \cdot d_{H}\left(u, u^{\prime}\right)=\sum_{v^{\prime} \in V}\left|\Gamma\left[N_{H}\left(v, v^{\prime}\right)\right]\right|,
$$

which is precisely the L-H-S of (39) (with v_{0} in place of v).
To compute the final values of the x_{v} 's we iterate over every edge $\left\{u, u^{\prime}\right\} \in \Gamma$ and update each x_{v}, with $v \in N_{H}\left(u, u^{\prime}\right) \cap V_{i_{0}}$, by adding the quantity $d_{H}\left(u, u^{\prime}\right)$ which was already precomputed and is stored in an array. The time it takes to perform this computation is $O(|\Gamma| n)=O\left(n^{2}\right)$.

To find the desired vertex v_{0} the algorithm just scans the vector x until some $x_{v_{0}}, v_{0} \notin B$, satisfying the inequality 33 is found.

For the final Step (4) we perform a computation similar to Step (3). Indeed, define an auxiliary vector $\left(y_{w}\right)_{w \in V_{j}}$ where each y_{w} is initially set to zero and in the end will have value

$$
y_{w}=\sum_{\left\{u, u^{\prime}\right\} \in \Gamma} \mathbf{1}\left[\left\{u, u^{\prime}\right\} \subset N_{H}\left(v_{0}, w\right)\right]=\left|\Gamma\left[N_{H}\left(v_{0}, w\right)\right]\right| .
$$

To compute the final values of the y_{w} 's we iterate over every edge $\left\{u, u^{\prime}\right\} \in \Gamma$ such that $u, u^{\prime} \in N_{H}\left(v_{0}\right)$ and increment by one each y_{w} with $w \in N_{H}\left(u, u^{\prime}\right) \cap V_{j}$. Clearly, it takes $O(|\Gamma| n)=O\left(n^{2}\right)$ time to compute the vector $\left(y_{w}\right)_{w \in V_{j}}$.

To obtain the set W_{j} we only need to select the vertices $w \in V_{j}$ satisfying the inequality given by the set definition 40 . Note that the L-H-S of that inequality equals y_{w}. Moreover, the R-H-S is a constant (only depending on j) that can be computed in linear time. Consequently, after $\left(y_{w}\right)_{w \in V_{j}}$ is obtained, the membership $w \in W_{j}$ can be determined in constant time for each $w \in V_{j}$, and thus the total time it takes to construct the set W_{j} is $O\left(n^{2}\right)$.

The algorithm in Theorem 27 is the main component of a deterministic algorithm to compute a Frieze-Kannan regular partition. The rest of the algorithm
is fairly standard and its idea was already implicitly contained in the proof of Szemerédi's regularity lemma. For full details on this standard algorithm, see [1] in the context of Szemerédi's regularity, and [4] in the context of FK-regularity. Here we will only briefly outline this standard approach.

Given a partition \mathcal{P}, the algorithm in Theorem 27 either proves that \mathcal{P} is ε-FK-regular or provides a witness pair (U, W). From such a witness pair, we can obtain an initial refinement of $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ by replacing each P_{i} by the four sets $P_{i} \backslash(U \cup W), P_{i} \cap(U \backslash W), P_{i} \cap(W \backslash U)$, and $P_{i} \cap(U \cap W)$, for $i=1, \ldots, k$. This initial refinement is then altered so that the obtained partition is equitable (for this, we further split the large sets and merge the sets which are too small).

Iterating the algorithm in Theorem 27 we produce a sequence of equitable partitions $\mathcal{P}_{0}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{r}$, where \mathcal{P}_{r} is ε-FK-regular. Considering the standard index given by $\operatorname{ind}(\mathcal{P})=\frac{1}{k^{2}} \sum_{1 \leq i, j \leq k} d_{i j}^{2} \leq 1$ one can show in a standard way (see, e.g. [2, 8, 12] and 4, Theorem 5]) that $\operatorname{ind}\left(\mathcal{P}_{\ell+1}\right) \geq \operatorname{ind}\left(\mathcal{P}_{\ell}\right)+\operatorname{poly}(\varepsilon)$ for $\ell=0, \ldots, r-1$, and thus $r \leq 1 / \operatorname{poly}(\varepsilon)$. Consequently, the number of parts is exponential in $1 / \operatorname{poly}(\varepsilon)$.

Finally, we observe that in Definition 2, the estimate for $e(U, W)$ only considers edges across different classes of \mathcal{P}. In order to ensure that there is a negligible number of edges with both ends in the same vertex class of the partition, we start with an arbitrary equitable partition $\mathcal{P}_{0}=\left\{P_{1}, \ldots, P_{k_{0}}\right\}$ with $k_{0} \gg 1 / \varepsilon$ (for this choice, there are at most $n^{2} / k_{0} \ll \varepsilon n$ edges with both ends in some P_{i}).

References

[1] N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster, "The algorithmic aspects of the regularity lemma," J. Algorithms, vol. 16, no. 1, pp. 80-109, 1994, ISSN: 0196-6774. DOI: $10.1006 /$ jagm. 1994.1005. [Online]. Available: http://dx.doi.org/10.1006/jagm.1994.1005
[2] D. Conlon and J. Fox, "Bounds for graph regularity and removal lemmas."
[3] D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic progressions," J. Symbolic Comput., vol. 9, no. 3, pp. 251-280, 1990, ISSN: 0747-7171.
[4] D. Dellamonica, S. Kalyanasundaram, D. Martin, V. Rödl, and A. Shapira, "A deterministic algorithm for the frieze-kannan regularity lemma," to appear in SIAM J. on Discrete Math.
[5] R. A. Duke, H. Lefmann, and V. Rödl, "A fast approximation algorithm for computing the frequencies of subgraphs in a given graph," SIAM J. Comput., vol. 24, no. 3, pp. 598-620, 1995, ISSN: 0097-5397. DOI: 10.113 7/S0097539793247634. [Online]. Available: http://dx.doi.org/10.113 7/S0097539793247634.
[6] -, "A fast approximation algorithm for computing the frequencies of subgraphs in a given graph," SIAM J. Comput., vol. 24, no. 3, pp. 598620,1995, ISSN: 0097-5397. DOI: $10.1137 /$ S0097539793247634. [Online]. Available: http://dx.doi.org/10.1137/S0097539793247634.
[7] P. Erdős and P. Turán, "On some sequences of integers," Journal of the London Mathematical Society, vol. s1-11, no. 4, pp. 261-264, 1936. DOI: 10.1112/jlms/s1-11.4.261, eprint: http://jlms.oxfordjournal s. org/content/s1-11/4/261.full.pdf+html. [Online]. Available: http://jlms.oxfordjournals.org/content/s1-11/4/261.short.
[8] A. Frieze and R. Kannan, "Quick approximation to matrices and applications," Combinatorica, vol. 19, no. 2, pp. 175-220, 1999, ISSN: 0209-9683. DOI: $10.1007 /$ s004930050052. [Online]. Available: http://dx.doi.org/ 10.1007/s004930050052.
[9] -, "The regularity lemma and approximation schemes for dense problems," in 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), Los Alamitos, CA: IEEE Comput. Soc. Press, 1996, pp. 12-20. DOI: 10.1109/SFCS. 1996.548459. [Online]. Available: http://dx.doi.org/10.1109/SFCS.1996.548459,
[10] W. T. Gowers, "Lower bounds of tower type for Szemerédi's uniformity lemma," Geom. Funct. Anal., vol. 7, no. 2, pp. 322-337, 1997, ISSN: 1016443X. Doi: 10.1007/PL00001621. [Online]. Available: http://dx.doi.o rg/10.1007/PL00001621.
[11] Y. Kohayakawa, V. Rödl, and L. Thoma, "An optimal algorithm for checking regularity," SIAM J. Comput., vol. 32, no. 5, 1210-1235 (electronic), 2003, ISSN: 0097-5397. DOI: $10.1137 /$ S0097539702408223. [Online]. Available: http://dx.doi.org/10.1137/S0097539702408223
[12] M. Schacht and V. Rödl, "Fete of combinatorics and computer science," in, G. Katona, A. Schrijver, and T. Szönyi, Eds. Springer, 2010, ch. Regularity Lemmas for Graphs, pp. 287-326.
[13] E. Szemerédi, "On sets of integers containing no k elements in arithmetic progression," Acta Arith., vol. 27, pp. 199-245, 1975, Collection of articles in memory of Juriĭ Vladimirovič Linnik, ISSN: 0065-1036.
[14] E. Szemerédi, "Regular partitions of graphs," in Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), vol. 260, ser. Colloq. Internat. CNRS, Paris: CNRS, 1978, pp. 399-401.
[15] R. Willians, Private communication, 2009.

[^0]: *Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322. E-mail: ddellam@mathcs.emory.edu.
 ${ }^{\dagger}$ Department of Computer Science and Engineering, IIT Hyderabad, India. Email: subruk@iith.ac.in. Part of this work was done while being a student in School of Computer Science, Georgia Institute of Technology, Atlanta, GA 30332.
 \ddagger Center for Mathematics, Computer Science and Cognition, Universidade Federal do ABC, Santo André, SP 09210-170 Brazil. E-mail: daniel.martin@ufabc.edu.br. Supported in part by CNPq 475064/2010-0.
 ${ }^{\S}$ Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322. E-mail: rodl@mathcs.emory.edu. Supported in part by NSF grant DMS0800070.
 ${ }^{\text {I S School of Mathematics, Tel-Aviv University, Tel-Aviv, Israel 69978, and School of Math- }}$ ematics and Computer Science, Georgia Institute of Technology, Atlanta, GA 30332. Email: asafico@math.gatech.edu. Supported in part by NSF Grant DMS-0901355 and ISF Grant 224/11.

