Exact computation of the number of accepting paths of an NTM

Subrahmanyam Kalyanasundaram¹ Kenneth W. Regan²

> ¹Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

> ²Department of Computer Science and Engineering University at Buffalo

> > Feburary 16, 2018 CALDAM 2018, IIT Guwahati

Exact computation of the number of accepting paths of an NTM

Subrahmanyam Kalyanasundaram¹ Kenneth W. Regan²

¹Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

²Department of Computer Science and Engineering University at Buffalo

> Feburary 16, 2018 CALDAM 2018, IIT Guwahati

- 1 Problem Statement & Background
- 2 BFS Approach
- Block Trace Approach
- Main Theorem
- Conclusion

- 1 Problem Statement & Background
- 2 BFS Approach
- 3 Block Trace Approach
- 4 Main Theorem
- 5 Conclusion

Trying to Understand Nondeterminism

- One of the fundamental goals is to understand the power of nondeterminism.
- Is nondeterministic computation really more powerful than deterministic computation?
- A concrete answer would resolve the P vs. NP question.
- ▶ In this paper, we study how fast we can count the number

Problem Statement & Background

- One of the fundamental goals is to understand the power of nondeterminism.
- Is nondeterministic computation really more powerful than deterministic computation?
- A concrete answer would resolve the P vs. NP question.
- In this paper, we study how fast we can count the number of accepting paths of an NTM.

Problem Statement & Background

Problem Statement & Background

Question

- We can count using the configuration graph.
- \triangleright For a graph of size S, this results in an O(S) algorithm.
- ▶ Typically $S \sim a^{kt}$.

Question

- We can count using the configuration graph.
- \triangleright For a graph of size S, this results in an O(S) algorithm.
- ▶ Typically $S \sim a^{kt}$.

Problem Statement & Background

Question

- We can count using the configuration graph.
- \triangleright For a graph of size S, this results in an O(S) algorithm.
- ▶ Typically $S \sim a^{kt}$.

Problem Statement & Background

Question

- We can count using the configuration graph.
- \triangleright For a graph of size S, this results in an O(S) algorithm.
- ▶ Typically $S \sim a^{kt}$.

Question

If an NTM N runs in time t = t(n), how fast can we deterministically count the number of accepting computations?

- We can count using the configuration graph.
- ▶ For a graph of size S, this results in an O(S) algorithm.
- ▶ Typically $S \sim a^{kt}$.

Our answer

We show that this can be done in time roughly *square root* of the size of the configuration graph.

Main Result

Problem Statement & Background

Theorem

Given an NTM N, which runs in time t, we can count the number of accepting paths of N on a given input in time

$$a^{kt/2} H_a^{k\sqrt{t}\log t} q^2 \text{poly}(\log q, k, t, a).$$

Parameters of NTM N	Denoted by
Number of tapes	k
Alphabet Size	а
Number of States	q
Running time	t=t(n)

Theorem

Given an NTM N, which runs in time t, we can count the number of accepting paths of N on a given input in time

$$a^{kt/2} H_a^{k\sqrt{t} \log t} q^2 \text{poly}(\log q, k, t, a).$$

Parameters of NTM N	Denoted by
Number of tapes	k
Alphabet Size	а
Number of States	q
Running time	t = t(n)

- Counting variants of different problems behave differently.
 - Polynomial time: Kirchhoff's matrix-tree theorem and Kasteleyn's theorem.
 - #P-complete: Perfect matchings in an arbitrary graph and satisfying assignments of a CNF formula.
 - FPRAS: Satisfying assignments of a DNF formula and perfect matchings in a bipartite graph.
- But no result for general nondeterministic machines.
- ▶ [vMS 05]: Faster simulation of probabilistic polytime machines in time $o(2^t)$.
 - Model of [vMS 05] restrict the amount of nondeterministic choices.

Our approach

- [KLRS 2011] showed that NTM simulation can be performed in $a^{kt/2}$ time.
- Combined two approaches: BFS and Block Trace.
- We extend the above to the problem of counting the number of accepting paths.

Outline

- 1 Problem Statement & Background
- 2 BFS Approach
- Block Trace Approach
- Main Theorem

Parameters of NTM N	Denoted by
Number of tapes	k
Alphabet Size	а
Number of States	q
Running time	t=t(n)

- The straightforward approach; check each computation
- \triangleright This approach takes c^t time, where c is the maximum

Parameters of NTM N	Denoted by
Number of tapes	k
Alphabet Size	а
Number of States	q
Running time	t=t(n)

- The straightforward approach; check each computation path.

Parameters of NTM N Denoted by Number of tapes k Alphabet Size а Number of States Running time t = t(n)

- The straightforward approach; check each computation path.
- \triangleright This approach takes c^t time, where c is the maximum degree of the computation tree.

- BFS can be used to count the number of shortest paths.
 - But each accepting path need not be a shortest path.
- We modify the configuration graph as follows:
 - ▶ In place of each configuration ρ , we have (ρ, i) .
 - ▶ For a directed edge $\rho \longrightarrow \rho'$, we have $(\rho, i) \longrightarrow (\rho', i + 1)$.
 - All paths are shortest paths.
- ▶ Total no. of vertices is $S \cdot (t+1) = a^{kt} t^k q \cdot (t+1)$.

BFS on Configuration Graph

- BFS can be used to count the number of shortest paths.
 - But each accepting path need not be a shortest path.
- We modify the configuration graph as follows:
 - ▶ In place of each configuration ρ , we have (ρ, i) .
 - ▶ For a directed edge $\rho \longrightarrow \rho'$, we have $(\rho, i) \longrightarrow (\rho', i + 1)$.
 - All paths are shortest paths.
- ▶ Total no. of vertices is $S \cdot (t+1) = a^{kt} t^k q \cdot (t+1)$.

BFS on Configuration Graph

- BFS can be used to count the number of shortest paths.
 - But each accepting path need not be a shortest path.
- We modify the configuration graph as follows:
 - ▶ In place of each configuration ρ , we have (ρ, i) .
 - ▶ For a directed edge $\rho \longrightarrow \rho'$, we have $(\rho, i) \longrightarrow (\rho', i + 1)$.
 - All paths are shortest paths.
- ▶ Total no. of vertices is $S \cdot (t+1) = a^{kt} t^k q \cdot (t+1)$.

- ▶ Total no. of vertices is $a^{kt} t^k q \cdot (t+1)$.
 - For each vertex (ρ, i) , we compute the number of (shortest)
 - ▶ Then sum up the number of accepting computation paths.

- ▶ Total no. of vertices is $a^{kt} t^k q \cdot (t+1)$.
 - For each vertex (ρ, i) , we compute the number of (shortest) paths from $(\rho_x, 0)$.

- ▶ Total no. of vertices is $a^{kt} t^k q \cdot (t+1)$.
 - For each vertex (ρ, i) , we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

- ▶ Total no. of vertices is $a^{kt} t^k q \cdot (t+1)$.
 - For each vertex (ρ, i) , we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

Theorem

This approach takes $a^{kt} q^2(3at)^k poly(\log q, k, t, a)$ time.

- ▶ Total no. of vertices is $a^{kt} t^k g \cdot (t+1)$.
 - For each vertex (ρ, i) , we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

Theorem

This approach takes a^{kt} $q^2(3at)^k$ poly $(\log q, k, t, a)$ time.

The dominant factor above comes from the number of configurations.

Outline

- 1 Problem Statement & Background
- 2 BFS Approach
- **Block Trace Approach**
- Main Theorem

- A segment of block size d consists of the following over the next d steps:
 - How far to the right do the tape heads go?
 - How far to the left do the tape heads go?
 - Where do the tape heads end up?
 - What are contents of the cells traversed?
- A block trace is a sequence of such segments.
- Each computation path correspond to a distinct block trace witness.

- A segment of block size d consists of the following over the next *d* steps:
 - How far to the right do the tape heads go?
 - How far to the left do the tape heads go?
 - Where do the tape heads end up?
 - What are contents of the cells traversed?
- A block trace is a sequence of such segments.
- Each computation path correspond to a distinct block trace witness.

Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd}$ poly(log q, k, t, a, d).

We try all possible block traces and compute the number of

Block Trace Approach

- Number of block traces = a^{kt}32^{kt/d}
- ▶ Optimizing for the block size d, we get the following:

Block Trace Approach

Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd}$ poly(log q, k, t, a, d).

We try all possible block traces and compute the number of accepting paths.

Block Trace Approach

- Number of block traces = $a^{kt}32^{kt/d}$.
- ▶ Optimizing for the block size d, we get the following:

Block Trace Approach

Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd}$ poly(log q, k, t, a, d).

We try all possible block traces and compute the number of accepting paths.

Block Trace Approach

- Number of block traces = $a^{kt}32^{kt/d}$.
- ▶ Optimizing for the block size d, we get the following:

Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd}$ poly(log q, k, t, a, d).

We try all possible block traces and compute the number of accepting paths.

Block Trace Approach

- Number of block traces = $a^{kt}32^{kt/d}$.
- Optimizing for the block size d, we get the following:

Block Trace Approach

Theorem

The number of accepting computation paths on a given input can be computed in time

$$a^{kt}C_a^{k\sqrt{t}}\cdot q^2$$
 poly $(\log q, k, t, a),$

where C_a is a constant that depends only on a.

Theorem

The number of accepting computation paths on a given input can be computed in time

$$\mathbf{a}^{kt}C_a^{k\sqrt{t}}\cdot q^2$$
 poly $(\log q, k, t, a),$

where C_a is a constant that depends only on a.

Outline

- 1 Problem Statement & Background
- 2 BFS Approach
- Block Trace Approach
- Main Theorem

- Two approaches: BFS and Block Traces.
- ▶ Both have comparable running time with *a*^{kt} being the dominant factor.
- The idea is to mix the two cleverly.

- In the BFS approach, a^{kt} factor was due to number of tape configurations.
- Maximum possible tape usage is kt.
- If the tape usage is less, then we could save time on the BFS approach.

But what if tape usage is more?

- In the BFS approach, a^{kt} factor was due to number of tape configurations.
- Maximum possible tape usage is kt.
- If the tape usage is less, then we could save time on the BFS approach.

First Observation

If the total tape use is $\leq kt/2$, then the BFS approach runs in time roughly $a^{kt/2}$.

▶ But what if tape usage is more?

- In the BFS approach, a^{kt} factor was due to number of tape configurations.
- Maximum possible tape usage is kt.
- If the tape usage is less, then we could save time on the BFS approach.

First Observation

If the total tape use is $\leq kt/2$, then the BFS approach runs in time roughly $a^{kt/2}$.

But what if tape usage is more?

Main Theorem

- For every location visited, there is a last visit.
- There is no need to write anything during the last visit.
- ▶ This saves a factor of $a^{kt/2}$ in the block trace approach.

- For every location visited, there is a last visit.
- If the total tape use is $\geq kt/2$, over half the visits are last visits.
- There is no need to write anything during the last visit.
- ▶ This saves a factor of $a^{kt/2}$ in the block trace approach.

Tape Usage is More than Half

- For every location visited, there is a last visit.
- If the total tape use is $\geq kt/2$, over half the visits are last visits.
- There is no need to write anything during the last visit.
- ▶ This saves a factor of $a^{kt/2}$ in the block trace approach.

- For every location visited, there is a last visit.
- ▶ If the total tape use is $\geq kt/2$, over half the visits are last visits.
- ► There is no need to write anything during the last visit.
- ▶ This saves a factor of $a^{kt/2}$ in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time roughly $a^{kt/2}$.

The Whole Algorithm

- List down all possible directional paths.

$$a^{kt/2} H_a^{k\sqrt{t}\log t} q^2 \text{poly}(\log q, k, t, a)$$

List down all possible directional paths.

- Compare the total tape usage to kt/2.

$$a^{kt/2} H_a^{k\sqrt{t}\log t} q^2 \text{poly}(\log q, k, t, a)$$

- List down all possible directional paths.
- Compare the total tape usage to kt/2.
- Depending on the comparison, choose the approach.

$$a^{kt/2} H_a^{k\sqrt{t}\log t} q^2 \text{poly}(\log q, k, t, a).$$

- List down all possible directional paths.
- Compare the total tape usage to kt/2.
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

$$a^{kt/2} H_a^{k\sqrt{t}\log t} q^2 \text{poly}(\log q, k, t, a).$$

The Whole Algorithm

- List down all possible directional paths.
- Compare the total tape usage to kt/2.
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

$$a^{kt/2} H_a^{k\sqrt{t}\log t} q^2 \text{poly}(\log q, k, t, a).$$

Outline

- 1 Problem Statement & Background
- 2 BFS Approach
- Block Trace Approach
- Main Theorem
- 5 Conclusion

Concluding Remarks

- This implies a faster deterministic simulation of the following counting classes:
- Can we improve the exponent of the running time, to say
- Could we extend this framework to simulate classes higher

- This implies a faster deterministic simulation of the following counting classes:
 - Parity classes ⊕P and Mod_kP.
- Can we improve the exponent of the running time, to say
- Could we extend this framework to simulate classes higher

- This implies a faster deterministic simulation of the following counting classes:
 - Parity classes ⊕P and Mod_kP.
 - Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).
- Can we improve the exponent of the running time, to say
- Could we extend this framework to simulate classes higher

- This implies a faster deterministic simulation of the following counting classes:
 - Parity classes ⊕P and Mod_kP.
 - Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).
- Can we improve the exponent of the running time, to say kt/3?
- Could we extend this framework to simulate classes higher

- This implies a faster deterministic simulation of the following counting classes:
 - Parity classes ⊕P and Mod_kP.
 - Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).
- Can we improve the exponent of the running time, to say kt/3?
- Could we extend this framework to simulate classes higher up in the polynomial hierarchy, like $\Sigma_2 P$?

Thank You

"Rite of Passage": Abstruse Goose Comic, available at http://abstrusegoose.com/206 with minor changes.