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Trying to Understand Nondeterminism

I One of the fundamental goals is to understand the power
of nondeterminism.

I Is nondeterministic computation really more powerful than
deterministic computation?

I A concrete answer would resolve the P vs. NP question.

I In this paper, we study how fast we can count the number
of accepting paths of an NTM.

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Trying to Understand Nondeterminism

I One of the fundamental goals is to understand the power
of nondeterminism.

I Is nondeterministic computation really more powerful than
deterministic computation?

I A concrete answer would resolve the P vs. NP question.

I In this paper, we study how fast we can count the number
of accepting paths of an NTM.

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

The question

Question

If an NTM N runs in time t = t(n), how fast can we
deterministically count the number of accepting computations?

I We can count using the configuration graph.
I For a graph of size S, this results in an O(S) algorithm.
I Typically S ∼ akt .

Our answer

We show that this can be done in time roughly square root of
the size of the configuration graph.
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Main Result

Theorem

Given an NTM N, which runs in time t, we can count the
number of accepting paths of N on a given input in time

akt/2 Hk
√

t log t
a q2poly(log q, k , t ,a).

Parameters of NTM N Denoted by

Number of tapes k
Alphabet Size a
Number of States q
Running time t = t(n)
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Related Results: What is known already

I Counting variants of different problems behave differently.
I Polynomial time: Kirchhoff’s matrix-tree theorem and

Kasteleyn’s theorem.
I #P-complete: Perfect matchings in an arbitrary graph and

satisfying assignments of a CNF formula.
I FPRAS: Satisfying assignments of a DNF formula and

perfect matchings in a bipartite graph.
I But no result for general nondeterministic machines.
I [vMS 05]: Faster simulation of probabilistic polytime

machines in time o(2t ).
I Model of [vMS 05] restrict the amount of nondeterministic

choices.
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Our approach

I [KLRS 2011] showed that NTM simulation can be
performed in akt/2 time.

I Combined two approaches: BFS and Block Trace.
I We extend the above to the problem of counting the

number of accepting paths.
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Configuration Tree
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The Naive Approach

Parameters of NTM N Denoted by

Number of tapes k
Alphabet Size a
Number of States q
Running time t = t(n)

I The straightforward approach; check each computation
path.

I This approach takes ct time, where c is the maximum
degree of the computation tree.
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BFS on Configuration Graph
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BFS on Configuration Graph

I BFS can be used to count the number of shortest paths.
I But each accepting path need not be a shortest path.

I We modify the configuration graph as follows:
I In place of each configuration ρ, we have (ρ, i).
I For a directed edge ρ −→ ρ′, we have (ρ, i) −→ (ρ′, i + 1).
I All paths are shortest paths.

I Total no. of vertices is S · (t + 1) = akt tkq · (t + 1).
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BFS on Configuration Graph

I Total no. of vertices is akt tkq · (t + 1).
I For each vertex (ρ, i), we compute the number of (shortest)

paths from (ρx ,0).
I Then sum up the number of accepting computation paths.

Theorem

This approach takes akt q2(3at)kpoly(log q, k , t ,a) time.

I The dominant factor above comes from the number of
configurations.
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Block Traces

I A segment of block size d consists of the following over the
next d steps:

I How far to the right do the tape heads go?
I How far to the left do the tape heads go?
I Where do the tape heads end up?
I What are contents of the cells traversed?

I A block trace is a sequence of such segments.
I Each computation path correspond to a distinct block trace

witness.
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Block Traces
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Block Trace Approach

Lemma

The number of accepting computations on a given input that
are compatible with a given block trace witness can be
calculated in time q2a3kdpoly(log q, k , t ,a,d).

I We try all possible block traces and compute the number of
accepting paths.

I Number of block traces = akt32kt/d .
I Optimizing for the block size d , we get the following:

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Block Trace Approach

Lemma

The number of accepting computations on a given input that
are compatible with a given block trace witness can be
calculated in time q2a3kdpoly(log q, k , t ,a,d).

I We try all possible block traces and compute the number of
accepting paths.

I Number of block traces = akt32kt/d .
I Optimizing for the block size d , we get the following:

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Block Trace Approach

Lemma

The number of accepting computations on a given input that
are compatible with a given block trace witness can be
calculated in time q2a3kdpoly(log q, k , t ,a,d).

I We try all possible block traces and compute the number of
accepting paths.

I Number of block traces = akt32kt/d .
I Optimizing for the block size d , we get the following:

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Block Trace Approach

Lemma

The number of accepting computations on a given input that
are compatible with a given block trace witness can be
calculated in time q2a3kdpoly(log q, k , t ,a,d).

I We try all possible block traces and compute the number of
accepting paths.

I Number of block traces = akt32kt/d .
I Optimizing for the block size d , we get the following:

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Block Trace Approach

Theorem

The number of accepting computation paths on a given input
can be computed in time

aktCk
√

t
a · q2poly(log q, k , t ,a),

where Ca is a constant that depends only on a.
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Idea: Combine the approaches

I Two approaches: BFS and Block Traces.
I Both have comparable running time with akt being the

dominant factor.
I The idea is to mix the two cleverly.
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Tape Usage is Less than Half

I In the BFS approach, akt factor was due to number of tape
configurations.

I Maximum possible tape usage is kt .
I If the tape usage is less, then we could save time on the

BFS approach.

First Observation

If the total tape use is ≤ kt/2, then the BFS approach runs in
time roughly akt/2.

I But what if tape usage is more?
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In Figures
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Tape Usage is More than Half

I For every location visited, there is a last visit.
I If the total tape use is ≥ kt/2, over half the visits are last

visits.
I There is no need to write anything during the last visit.
I This saves a factor of akt/2 in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time
roughly akt/2.

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Tape Usage is More than Half

I For every location visited, there is a last visit.
I If the total tape use is ≥ kt/2, over half the visits are last

visits.
I There is no need to write anything during the last visit.
I This saves a factor of akt/2 in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time
roughly akt/2.

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Tape Usage is More than Half

I For every location visited, there is a last visit.
I If the total tape use is ≥ kt/2, over half the visits are last

visits.
I There is no need to write anything during the last visit.
I This saves a factor of akt/2 in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time
roughly akt/2.

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

Tape Usage is More than Half

I For every location visited, there is a last visit.
I If the total tape use is ≥ kt/2, over half the visits are last

visits.
I There is no need to write anything during the last visit.
I This saves a factor of akt/2 in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time
roughly akt/2.

Kalyanasundaram & Regan IITH

Exact count of accepting paths



Problem Statement & Background BFS Approach Block Trace Approach Main Theorem Conclusion

The Whole Algorithm

I List down all possible directional paths.
I Compare the total tape usage to kt/2.
I Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given
input can be computed in time

akt/2 Hk
√

t log t
a q2poly(log q, k , t ,a).
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Concluding Remarks

I This implies a faster deterministic simulation of the
following counting classes:

I Parity classes ⊕P and ModkP.
I Probabilistic classes PP, BPP, ZPP and BQP (an

improvement over [vMS 05]).

I Can we improve the exponent of the running time, to say
kt/3?

I Could we extend this framework to simulate classes higher
up in the polynomial hierarchy, like Σ2P?
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