
Improved Simulation of Nondeterministic Turing
Machines

Subrahmanyam Kalyanasundaram1, Richard J. Lipton1,
Kenneth W. Regan2, Farbod Shokrieh3

1 College of Computing, Georgia Tech
{subruk,rjl}@cc.gatech.edu

2 Department of Computer Science and Engg., University at Buffalo
regan@buffalo.edu

3 School of Electrical and Computer Engg., Georgia Tech
farbod@ece.gatech.edu

Abstract. The standard simulation of a nondeterministic Turing ma-
chine (NTM) by a deterministic one essentially searches a large bounded-
degree graph whose size is exponential in the running time of the NTM.
The graph is the natural one defined by the configurations of the NTM.
All methods in the literature have required time linear in the size S of this
graph. This paper presents a new simulation method that runs in time
Õ(
√
S). The search savings exploit the one-dimensional nature of Turing

machine tapes. In addition, we remove most of the time-dependence on
nondeterministic choice of states and tape head movements.

1 Introduction

How fast can we deterministically simulate a nondeterministic Turing machine
(NTM)? This is one of the fundamental problems in theoretical computer sci-
ence. Of course, the famous P ∕= NP conjecture, as most believe, would an-
swer that we cannot hope to simulate nondeterministic Turing machines very
fast. However, the best known result to date is the famous theorem of Paul,
Pippenger, Szemerédi, and Trotter [11] that NTIME(O(n)) is not contained in
DTIME(o((n log∗ n)1/4)). This is a beautiful result, but it is a long way from
the current belief that the deterministic simulation of a nondeterministic Turing
machine should in general take exponential time.

We look at NTM simulations from the opposite end: rather than seeking
better lower bounds, we ask how far can one improve the upper bound? We
suspect even the following could be true:

For any " > 0,

NTIME(t(n)) ⊆ DTIME(2"t(n)).

To our knowledge, this does not contradict any of the current strongly held
beliefs. This interesting question has been raised before, see e.g., [3].

Our main theorem is:



Theorem 1. Any k-tape NTM N with tape alphabet size a that runs in time
t(n), can be simulated by a deterministic Turing machine in time

akt(n)/2 ⋅H
√
t(n) log t(n)

N ,

up to polynomial factors, and where HN is a constant that depends only on a.

Our bound has two key improvements. First, all nondeterminism arising from
the choice of the next state or tape head movements is subsumed into the fac-

tor H

√
t(n) log t(n)

N with much smaller time dependence, compared to the main
exponential term. Second, while N may write any of S = akt(n) strings non-
deterministically on its k tapes, our simulator needs to search only

√
S of that

space. Thus, we search the NTM graph in the square-root of its size.
There is no general deterministic procedure that can search a graph of size

S in
√
S time, even if the graph has a simple description. Hence to prove our

theorem we must use the special structure of the graph: we must use that the
graph arises from an NTM. We use several simple properties of the operation
of Turing tapes and the behavior of guessing to reduce the search time by the
square root.

We believe that while the actual theorem is interesting, the techniques that
are used to prove the theorem may be of use in other problems. We speculate
that our methods may be extended to lower the exponent further.

In section 5, we consider NTMs with limited nondeterminism, and prove:

Theorem 2. Suppose t(n) = nr(n), where r(n) is constructible in unary in
O(n) time, and fix an input alphabet of size b. Then for any NTM N that runs
in time t(n) with o(n) nondeterminism and computes a function f , there exist
circuits Cn of size O(t(n) log r(n)) that compute f correctly on bn−o(n) inputs.

2 Model & Problem Statement

We use a standard model of a nondeterministic multitape Turing machine, in
which nondeterminism may arise through characters written, head motions on
the tapes, and/or the choice of next state. Heads may stay stationary as well
as move one cell left or right in any step. We stipulate that an NTM N runs
in time t(n) if all branches of computations on inputs of length n halt within
t(n) steps. Since our results involve bounds t(n) that are fully time and space
constructible, this is equivalent to definitions that apply the time bound only
to accepting computations. Throughout this paper, we use q for the number of
states, k for the number of tapes, and a for the alphabet size of N . Our results
hold for all sufficiently large input lengths n.

Our question is, in terms of a, k, q, what is the most efficient simulation of N
by a deterministic Turing machine (DTM)? We identify three basic strategies:

1. Tracing the computation tree: Since we do not limit N to be binary-
branching, individual nodes of the tree may have degree as high as v = ak3kq,



where the “3” allows each head on each tape to move left, right, or stationary.
This is reflected in classic theorem statements of the form

Theorem 3. Any NTM N with time complexity t(n) can be simulated by a
DTM M in time c(N)t(n), where c(N) is a constant depending on N .

According to proofs such as that in [10], c(N) depends on q as well as k and
a. There is thus a factor qt in the running time of M . It will be our goal to
eliminate such a factor.

2. Enumerating a witness predicate: That is, one finds a predicate R(x, y) that
is deterministically efficient to decide, such that for all x, N accepts x iff
for some y of a given length, R(x, y) holds. Then one tries all possible y.
This may be specific to the language L(N) rather than simulate N in the
direct sense of strategy 1. However, when R(x, y) is the predicate “y codes
an accepting path in the computation tree” it is the same as strategy 1.

3. Searching the configuration graph: A configuration of a Turing machine is
an encoding of the current state, the non-blank contents of the tapes, and
current position of the tape heads. Configurations form a directed graph
where there are directed edges from a configuration to a valid successor con-
figuration, with sources being the initial configurations Ix on given inputs x
and sinks being accepting configurations Ia (perhaps including non-accepting
halting configurations too). When N uses at most space s on any one tape,
the number S of nodes in the graph (below Ix) is at most

S = qakssk.

Notice that s ≤ t holds trivially, where t is the running time of N . Using a
look up table for simulating the transition function of the machine N , the
dominant term in the running time is

O(Sv ⋅ log(Sv) ⋅ logS) = q2(3at)kaktpoly(log q, k, t, a).

Note that the dependence on q is at most q2, not qt.

The classic tradeoff between strategy 1 and strategy 3 concerns the space
requirement. Tracing the tree requires storing only the current path from the
root and some local information, though it may waste time by re-computing
nodes that are reached by multiple paths when the computation is treated as
a graph. Breadth-first search of the graph avoids redundant expansion at the
expense of storing the whole list of visited nodes. In this paper we find that
by judicious mixing-in of strategy 2, there is also mileage to be gained on the
running time alone. The following preliminary result illustrates the basic idea:

Proposition 1. Any NTM N with time complexity t(n) can be simulated by a
DTM M in time c(N)t(n), where the constant c(N) depends on the alphabet size
a and the number of tapes k of N , but is independent of q.



Proof. We define a weak trace as comprising the move labels on an accepting
path in the computation tree, but omitting the next-state information. There are
only (ak3k)t such potential witnesses to enumerate. We call a path “compatible
with the weak trace y” if it adds states q0, . . . , qt to the parts specified by y to
make a legal computation. Below, we show that each of these weak traces can
be verified in time q2a2k3kpoly(log q, a, k, t).

For each step j in the computation, define Qj to be the set of states N can
be in at step j on some full path that is compatible with y. Initially Q0 = { q0 },
the start state of N . Given Qj−1, to compute Qj we take each state r in Qj−1
and look up all possible next states r′ in a pre-computed lookup table based
on the transition relation of N . After computing each Qj , M needs to sort and
remove the duplicate states in Qj , else the size could explode by the end of the
simulation. The simulation finally accepts if and only if Qt contains the accepting
state qa, which we may suppose persists for each step once it is entered.

Our deterministic machine M has k + 3 tapes, k to re-create the tapes of N
guided by the weak trace, one to code the transition function of N serially as a
lookup table, plus two for bookkeeping. The lookup table rows are indexed by
the current state, the k symbols currently read, the k symbols that would be
written, and movements left, right or stay for each tape head. The entries give all
possible next-states for N in such a transition. There are q(3a2)k rows, and each
row can have at most q states. The cost of a serial lookup is upper-bounded4 by
q(3a2)k ⋅ [k log(3a2) + log q + q log q].

After the lookups, we need to sort and remove duplicates from a set (of states)
which could be potentially q2 in size. This takes q2 log q comparisons, where each
comparison costs log q, yielding a running time of q2 log2 q. Multiplying the whole
expression by t, we get that the running time per weak trace is

[q(3a2)k ⋅ [k log(3a2) + log q + q log q] + q2 log2 q] ⋅ t,

which can be upper bounded by

ℎ(a, q, k, t) = q2a2k3kpoly(log q, a, k, t).

The overall running time is (3kak)t multiplied by the function ℎ. The factor
ℎ is majorized by (1 + �)t for any � > 0 as t becomes sufficiently large. The
whole time is thus bounded by (3kak + �′)t, where �′ = 3kak�. Note that �′

is independent of q and can likewise be made arbitrarily small when a and k
are fixed. Hence the deterministic simulation time is asymptotically bounded by
c(N)t(n) where c(N) is independent of q. ⊓⊔

Our further improvements come from (a) slimming witnesses y further,
(b) more-sophisticated precomputation, and (c) trading off strategies 1 and 3
according to the space actually used by N on the one-dimensional Turing tapes.

4 One can remove the q log q inside the brackets by organizing the rows in canonical
order of the subsets of states they produce, and having M count special aliased
dividers up to 2q in binary as it scans serially, to determine which subset goes with
a given row. A final q log q outside the brackets can be for wriings out the indexed
subset as a list of states. However, this extra efficiency does not matter to our results.



3 Block-Trace Simulation

We begin the push for faster simulations by breaking computations by NTMs N
into “blocks” of d steps, where d will be specified later.

Definition 1. A segment of size d for a k-tape NTM N with alphabet of size a
is a sequence of 4-tuples

� = [(r1, f1, ℓ1, u1), . . . , (rk, fk, ℓk, uk)]

where for each tape j, 1 ≤ j ≤ k:

– rj ∈ { 0, . . . , d } stands for the maximum number of cells to the right of its
starting position the tape head will ever be over the next d steps,

– fj ∈ { 0, . . . , d− rj } is the number of cells left of the position of rj that the
tape head ends up after the d-th step, and

– ℓj ∈ { 1, . . . , d } is the number of distinct cells that shall be changed over
the next d steps on tape j. For a given rj and fj we have the bound ℓj ≤
d+ 1−min{ rj , fj }.

– uj is a string of length ℓj, which is interpreted as the final contents of those
cells.

Technically ℓj can always be set to the stated bound, but we keep it separate
for clarity.

Definition 2. A block trace of block-size d, for an NTM N , is a sequence of
segments of size d.

Definition 3. An accepting full path is compatible with a block trace if the latter
has ⌈t/d⌉ blocks where t is the total number of steps in the path, and in every
block each 4-tuple (rj , fj , ℓj , uj) correctly describes the head locations after the
corresponding d steps of the full path, and every character in uj is the correct
final content of its cell after the d steps.

Our witness predicate now asserts the existence of a block trace y with which
some accepting computation is compatible. Clearly every accepting computation
gives rise to such a y, so the predicate is correct. The running time of the
resulting simulation is a consequence of the following lemmas. Notice that the
above definition includes all the possible head movements of N over the next d
steps.

Lemma 1. The number B of valid segments is at most (32ad)k. Hence the num-
ber of potential block trace witnesses is at most Bt/d = akt32kt/d.

Proof. We first bound the number of 4-tuples per each tape. We note that for ℓ
cells affected for a particular segment, there are aℓ possible strings u. We sum
over all the possible values of ℓ – ranging from d to 1. Direct calculation gives
us that for ℓ = d, there are at most 6 possible sets of (r, f), for ℓ = d−1 at most



14, etc. The bound on number of possible sets for ℓ = d+ 1− i is i2 + 5i. A total
number of distinct 4-tuples is upper bounded by

1∑
ℓ=d

[(d+ 1− ℓ)2 + 5(d+ 1− ℓ)]aℓ = ad ⋅
d∑
i=1

(i2 + 5i)/ai−1 ≤ 32ad

where the last inequality follows by the worst case value a = 2. Since we have k
tapes, we obtain B ≤ (32ad)k. (In fact, we can get B ≤ (Caa

d)k where Ca −→ 6
as a −→∞, but we do not need this tighter counting.) ⊓⊔

Lemma 2. Whether there is an accepting computation that is compatible with
a given block trace witness can be decided by a deterministic Turing machine in
time q2a3kdpoly(log q, k, t, a, d).

Proof. We generalize the ideas in Proposition 1. We are given a block trace
witness, i.e., t/d segments of size d each. The idea is to maintain the set Qi of
states that N on input x can possibly be in, this time after the i-th segment of d
steps in some computation path. We precompute a lookup table Td whose values
are sets of states, and whose rows are indexed by the following information:

– An initial state p entering the segment of d steps.
– Strings wj of length at most 2d− 1 indicating the true contents in the cells

surrounding the head on tape j. The cases where a segment of cells on the
right or left are blank (through never having been visited before) are handled
by adjoining integers bj indicating such cells.

– The string uj and integers rj , fj for each tape j, representing a segment in
a block trace.

The lookup table is the d-length segment equivalent of the lookup table in Propo-
sition 1. There are qa(3d−1)kd2 rows of the table, the length of each index in bi-
nary being thus asymptotic to log2 q+(3d−1)k log2 a+2 log2 d. The cost of each
lookup is thus upper bounded by qa3kdd2(log q+ 3kd log a+ 2 log d) + q log q. By
including the time for sorting the states, and multiplying by the running time
of t/d segments, we get

[qa3kdd2(log q + 3kd log a+ 2 log d) + q log q + q2 log2 q] ⋅ t/d.

which is upper bounded by

q2a3kdpoly(log q, k, t, a, d).

⊓⊔

Theorem 4. A nondeterministic k-tape TM with q states and alphabet size a
can be simulated by a multi-tape deterministic TM in time

aktC
√
t

N ⋅ q
2poly(log q, k, t, a),

where CN is a constant that depends only on a and k.



Proof. This follows from Lemmas 1 and 2. The simulator machine tries out all
the possible block witnesses, with a running time

q2akt+3kd32kt/dpoly(log q, k, t, a, d).

The two factors in the above expression that depend on d in a big way are
a3kd and 32kt/d. We can choose d to be such that these the product of these
two factors are minimized. Direct calculation gives us that this happens when

d =
√

5t/(3 log2 a). Setting CN = 22k
√

15 log2 a, we get a running time of

aktC
√
t

N ⋅ q
2poly(log q, k, t, a).

⊓⊔

4 Main Theorem

We have seen two simulations of an NTM where the dominant term in the run-
ning time is akt. One is strategy 3, searching the configuration graph, discussed
in Section 2, with a running time of q2(3at)kaktpoly(log q, k, t, a). The other is

the block trace method, with a running time of aktC
√
t

N ⋅ q2poly(log q, k, t, a).
Even though the time bounds seem similar, the approaches are quite different –
a difference that we shall exploit in this section.

Our goal in this section is to reduce the exponent of the simulation time by
half. In the graph search method, the dominating part in the running time is
caused by the number of configurations. There are at most qakttk of them. If the
NTM used only a tape space of kt/2 over all the k tapes, then the dominating
part in counting the number of configurations would have reduced. We have only
a maximum possible akt/2 combinations of tape contents. This would lead to a
simulation which requires q2(3at)kakt/2poly(log q, k, t, a) time.

But of course, not all NTM simulations use less than kt/2 tape space. Here
we will use the block trace method to exploit an interesting property of the
Turing machines. We make the following observation: the last time we visit a
location in the NTM tape, we need not write any character there. This is because
the tape head is not going to return to that position. If the NTM visits at least
kt/2 locations on all tapes together, then there are at least kt/2 locations visited
for a last time. Now, when we consider block traces, we do not need to have a
symbol to write down, if we are visiting a tape location for a last time. We could
potentially save on a factor of akt/2 on the running time. This brings down the
main factor in the running time in Theorem 4 to akt/2 as well.

For the final theorem, we need one more definition.

Definition 4. A directional segment of size d for a k-tape NTM N with alphabet
size a is a segment of size d, omitting the strings uj, that is

� = [(r1, f1, ℓ1), . . . , (rk, fk, ℓk)]

where rj , fj , ℓj are defined as in Definition 1.



A directional trace of block size d, is a sequence of directional segments of
size d.

Lemma 3. The number of segments of block size d is upper bounded by d3. The
number of potential directional trace witnesses is at most (d3)t/d.

Proof. The calculations are similar to those in the proof of Lemma 1. The dif-
ference here is that we do not need to count the number of possible strings u for
each tape. This bounds the number of directional segments to

∑d
i=1(i2 + 5i) =

1
3d(d + 1)(d + 8) ≤ d3, for d large enough. The bound on directional traces fol-
lows. ⊓⊔

We are now ready to prove the main theorem.

Theorem 1. (Restated.) A nondeterministic k-tape TM N with q states and
alphabet size a can be simulated by a multi-tape deterministic TM in time

akt(n)/2H

√
t(n) log t(n)

N ⋅ q2poly(log q, k, t(n), a),

where t(n) is the running time of N and HN is a constant that depends only on
a.

Proof. We assume that we know an upper bound t = t(n) as a function of the
input length n. (If not, one can run the simulations for t = 1, 2, 3, ⋅ ⋅ ⋅, and this
will introduce a multiplicative factor t(t−1)/2, which is polynomial in t anyway.)

The simulation consists of three parts. First, preprocessing the directional
traces. Second, running the block trace simulation for those traces which have
tape usage ≥ kt/2. And third, running the graph search simulation restricting
the tape usage to kt/2.

1. In the preprocessing stage, the simulator lists down all the possible di-
rectional traces. There are d3t/d such traces by Lemma 3. For d =√

5t/(3 log2 a), as optimized in Theorem 4, we get that the number of traces

is (
√
t)O(

√
t) or H

√
t log t

N , where HN is a constant that depends on only a.
Using the directional trace, the simulator calculates the total tape usage of
N . In particular, the simulator decides if the total tape usage is ≤ kt/2 or
≥ kt/2. The simulator also calculates the time of the last visit to each of
the tape locations. This data is stored in a lookup table, which is stored in
another tape of the simulator. All of the above operations can be performed
in time poly(k, t) per directional trace.

2. If the total tape usage is ≥ kt/2 for a given directional trace, the block trace
simulation is performed. All the block traces which match the (r, f, ℓ) parts
of the directional trace are generated—with a twist. For those time instances
for which the tape head is visiting the location for the last time, the block
trace is generated with a character in the corresponding location. The
preprocessed data from the directional traces would be used to determine if
the location is being visited for the last time or not.



There are at least kt/2 locations visited for the last time, so the number of
block traces that correspond to a given directional trace is ≤ akt/2. So the

total number of relevant block traces here is upper bounded by H
√
t log t

N akt/2.
The running time in the Lemma 2 holds essentially by the following ob-
servation. The lookup table could be expanded (slightly) to accommodate
one more symbol in the alphabet, the ‘ ’ symbol. The set of states that are
possible in the lookup table after a doing block trace move with a are the
union of the set possible states after a move with the block trace with one
of the original a characters in place of the .

The running time contribution of this stage is akt/2H
√
t log t

N ⋅
q2poly(log q, k, t, a).

3. For the cases when the total tape usage is ≤ kt/2, the directional trace is
discarded. For all such cases combined, one call to the graph search simula-
tion is enough. The simulator needs to keep track of the configurations, and
reject a branch as soon as the tape usage exceeds kt/2. This gives a running
time of akt/2q2(3at)kpoly(log q, k, t, a).

The theorem follows by observing that if the NTM has an accepting computation
path, at least one of the two simulations, the block trace, or the graph search
method would yield an accepting path. The running time is

T (n) = akt/2H
√
t log t

N ⋅ q2poly(log q, k, t, a).

⊓⊔

We remark that a similar bound applies in a uniform simulation, meaning a
single DTM M that takes an NTM N and its input x as arguments. Reducing
from the k tapes of N to the fixed tapes of M via [14] incurs a factor of log T (n)
penalty, but it gets absorbed into the poly(log q, k, t, a) term. The program size
of N is bounded by 3q2a2 log q, and even if the largest value n′ = n+ 3q2a2 log q
is used for the length of the input ⟨N, x⟩ to M , expressing the bound T (n) in
terms of n′ does not change its nature much.

5 Sub-linear nondeterminism and small circuits

Now we consider NTMs N that have o(n) nondeterministic steps in any com-
putation path on inputs of length n, where the inputs are over an alphabet �
of size b. For each n, it follows that some nondeterministic choice string �n is
used for a set of at least bn−o(n) strings. When N is a language acceptor, the
computation on �n also gives the correct answer for all rejected strings, so we
add them when defining S to be the set of inputs on which N -with-�n works
correctly. When N computes a partial multi-valued function f , S includes all
strings not in the domain of f , and for all other x ∈ S, N with �n outputs a
legal value of f(x). We can hard-wire �n into deterministic circuits Cn that work
correctly on S. The main theorem of [14] gives Cn size O(t(n) log t(n)). We show
that for t(n) near linear time we can improve the size of Cn considerably.



Theorem 2. (Restated.) Suppose t(n) = nr(n), where r(n) is constructible
in unary in O(n) time. Then for any NTM N that runs in time t(n) with
o(n) nondeterminism and computes a function f , there exist circuits Cn of size
O(t(n) log r(n)) that compute f correctly on bn−o(n) inputs.

The size improves on [14] when r(n) = no(1). When r(n) = (log n)O(1), meaning
t(n) is quasi-linear time, this reduces the size of Cn to t(n) log log t(n). When
t(n) = O(n), this says we can reduce the overhead to any constructible slow-
growing unbounded function, in a sense getting the circuit size as close to linear
as desired. Of course the circuits Cn work only on a sizable fraction of the
inputs—on other x ∈ dom(f) they may incorrectly fail to output a legal value.

The proof employs Wolfgang Paul’s notion of a block respecting Turing Ma-
chine, from his paper with Hopcroft and Valiant [4] separating time and space.
The result of [4] were later extended to multi-dimensional and tree-structured
tapes in [13] and [12]. The notion of block-respecting Turing machines has been
used a number of times to prove other results, e.g. in [8]. We refer the reader to
[15] for a discussion on the results of [4].

Proof. Given n, take B = r(n)2. Let the Turing machine N computing f have
k tapes, and regard those tapes as segmented into “blocks” of length B. By the
block-respecting construction in [4], we can modify N into N ′ computing f in
time t′(n) = O(t(n)) such that on all inputs of length n, all tape heads of N ′(x)
cross a block boundary only at time-steps that are multiples of B.

For all length-n strings x, and nondeterministic choice strings �n, we define
the “block-respecting graph” Gx,� to have vertices Vℓ,i standing for the ith block
on tape ℓ, and Wj for 0 ≤ j < t′(n)/B—note also i < t′(n)/B since N ′ runs
in t′(n) space. We use the notation i(j, ℓ) to denote the block that N is on the
ℓth tape, during the time block from (j − 1)B to jB. For all time steps jB, if
the heads before that step were in blocks Vℓ,i(j−1,ℓ) and are in blocks Vℓ,i(j,ℓ)
afterward, then Gx,� has edges from all Vℓ,i(j−1,ℓ) to Wj and from Wj to the
nodes Vℓ,i(j,ℓ). Because there are at most 3 choices of next-block per tape at any

j, there are at most R(n) = (3k)t
′(n)/B different block-respecting graphs. By

the choice of B, R(n) = bO(n/r(n)). There are also A(n) = ∣A∣o(n)-many possible
�n. Hence, by the pigeonhole principle, there is some block-respecting graph Gn
that equals Gx,�n for at least bn/R(n)A(n) = bn−O(n/r(n))−o(n) = bn−o(n)-many
x’s.

Now from Gn we define the circuits gn as a cascade of t′(n)/B-many segments
Sj . Each Sj represents a time-B computation whose input xj is the current
contents of the r-many blocks Vℓ,i(j,ℓ), with output written to those blocks. By
the result of [14], Sj needs circuit size only O(B logB). So the entire circuit has

size O
(
t′(n)
B

)
B logB = O(t(n) log r(n)).

To finish the proof, we note that there are also junctures between segments
that represent any cases head on tape crossing a block boundary at time jB. If
in fact the head does not cross the boundary, then the juncture generates a null
value ‘∗’, which then propagates through all remaining segments to produce a



rejecting output. The sizes for the junctures are negligible, so the above bound
on the size of the circuits holds. ⊓⊔

6 Conclusions

We have shown techniques by which we can search the computation tree of an
NTM in time square root of the size of the graph. It would be interesting to see
if these techniques can be used to push the running time even lower. Also, it
would be interesting to see lower bounds for the problem, i.e., to understand the
limitations of determinism as compared to nondeterminism.

6.1 Some related work

The only separation of nondeterministic from deterministic time known is
DTIME(n) ∕= NTIME(n) proved in [11], which is also specific to the multi-
tape Turing machine model. It is also known that nondeterministic two-tape
machines are more powerful than deterministic one-tape machines [6], and non-
deterministic multi-tape machines are more powerful than deterministic multi-
tape machines with additional space bound [7]. Limited nondeterminism was
analyzed in [3], which showed that achieving it for certain problems implies a
general subexponential simulation of nondeterministic computation by determin-
istic computation. In [18] an unconditional simulation of time-t(n) probabilistic
multi-tape Turing machines Turing machines operating in deterministic time
o(2t) is given.

For certain NP-complete problems, improvements over exhaustive search that
involve the constant in the exponent were obtained in [17], [16], and [1], while
[9] and [5] also found NP-complete problems for which exhaustive search is not
the quickest solution. Williams [19] showed that having such improvements in
all cases would collapse other complexity classes. Drawing on [18], Williams [19]
showed that the exponent in the simulation of NTM by DTM can be reduced
by a multiplicative factor smaller than 1. The NTMs there are allowed only the
string-writing form of nondeterminism, but may run for more steps; since the
factor is not close to 1/2, the result in [19] is incomparable with ours.

Finally there remains the question asked at the beginning: Is

NTIME(t(n)) ⊆ DTIME(2"t(n))

for all " > 0? We have not found any “dire” collapses of complexity classes that
would follow from a ‘yes’ answer, but it would show that nondeterminism is
weaker than we think. David Doty [2] showed that there is an oracle relative to
which the answer is no. Our techniques do not resolve this question as yet, but
may provide new leads.

Acknowledgments. We thank David Doty, Bart de Keijzer, Ryan Williams,
and the anonymous referees for suggestions and helpful comments.



References

1. Richard Beigel and David Eppstein. 3-coloring in time O(1.3289n). J. Algorithms,
54(2):168–204, 2005.

2. David Doty. An oracle a such that NTIMEA(t(n)) ∕⊆ DTIMEA(2"t(n)), via Kol-
mogorov complexity. private communication, 2009.

3. Uriel Feige and Joe Kilian. On limited versus polynomial nondeterminism. Chicago
J. Theoret. Comput. Sci., pages Article 1, approx. 20 pp. (electronic), 1997.

4. John Hopcroft, Wolfgang J. Paul, and Leslie Valiant. On time versus space. J.
Assoc. Comput. Mach., 24(2):332–337, 1977.

5. Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J.
Comput., 7(4):413–423, 1978.

6. Ravi Kannan. Towards separating nondeterministic time from deterministic time.
In Foundations of Computer Science, 1981. SFCS ’81. 22nd Annual Symposium
on, pages 235–243, Oct. 1981.

7. Ravi Kannan. Alternation and the power of nondeterminism. In STOC ’83: Pro-
ceedings of the fifteenth annual ACM symposium on Theory of computing, pages
344–346, New York, NY, USA, 1983. ACM.

8. Richard J. Lipton and Anastasios Viglas. Non-uniform depth of polynomial time
and space simulations. In Fundamentals of computation theory, volume 2751 of
Lecture Notes in Comput. Sci., pages 311–320. Springer, Berlin, 2003.

9. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph prob-
lem. Comment. Math. Univ. Carolin., 26(2):415–419, 1985.

10. Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing
Company, Reading, MA, 1994.

11. Wolfgang J. Paul, Nicholas Pippenger, Endre Szemeredi, and William T. Trotter.
On determinism versus non-determinism and related problems. In Foundations of
Computer Science, 1983., 24th Annual Symposium on, pages 429–438, Nov. 1983.

12. Wolfgang J. Paul and Rüdiger Reischuk. On time versus space. II. J. Comput.
System Sci., 22(3):312–327, 1981. Special issued dedicated to Michael Machtey.

13. Nicholas Pippenger. Probabilistic simulations (preliminary version). In STOC ’82:
Proceedings of the fourteenth annual ACM symposium on Theory of computing,
pages 17–26, New York, NY, USA, 1982. ACM.

14. Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures.
J. Assoc. Comput. Mach., 26(2):361–381, 1979.

15. Rahul Santhanam. Relationships among time and space complexity classes.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.5170, 2001.

16. Richard Schroeppel and Adi Shamir. A T ⋅ S2 = O(2n) time/space tradeoff for
certain NP-complete problems. In 20th Annual Symposium on Foundations of
Computer Science (San Juan, Puerto Rico, 1979), pages 328–336. IEEE, New
York, 1979.

17. Robert Endre Tarjan and Anthony E. Trojanowski. Finding a maximum indepen-
dent set. SIAM J. Comput., 6(3):537–546, 1977.

18. Dieter van Melkebeek and Rahul Santhanam. Holographic proofs and derandom-
ization. SIAM J. Comput., 35(1):59–90 (electronic), 2005.

19. Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In STOC ’10: Proceedings of the fortysecond annual ACM symposium
on Theory of computing, 2010. To appear.


