Combinatorial Bounds for Conflict-free Coloring on Open Neighborhoods

Sriram Bhyravarapu Subrahmanyam Kalyanasundaram

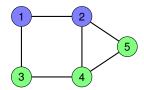
Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

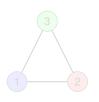
Conflict-free coloring problem - Open neighborhood

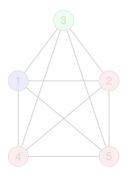
CFON problem

- Given a graph G = (V, E), a conflict-free coloring w.r.t. open neighborhoods is an assignment of colors to V(G) such that
 - Every vertex in G has a uniquely colored vertex in its open neighborhood.
 - Open Neighborhood of a vertex v is $N(v) = \{w : \{v, w\} \in E(G)\}$.
- The minimum number of colors required for such a coloring is denoted by \(\chi_{ON}(G)\).

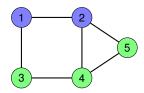
CFON Coloring Problem

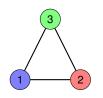


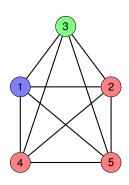




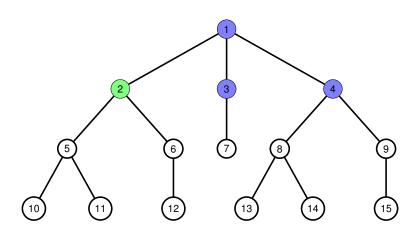
CFON Coloring Problem





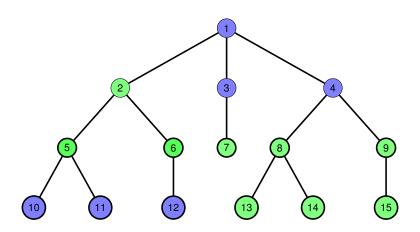


CFON Coloring a Tree

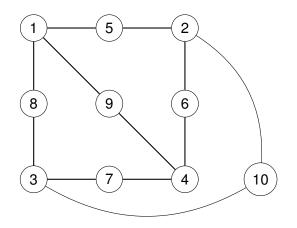


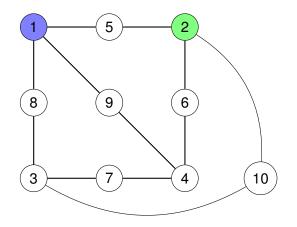
- We start with the first 2 levels.
- Every other vertex is assigned the color different from its grandparent's color.

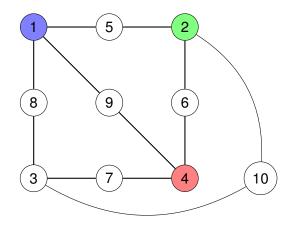
CFON Coloring a Tree

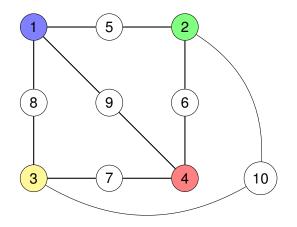


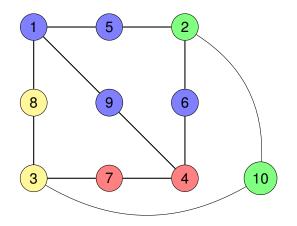
- We start with the first 2 levels.
- Every other vertex is assigned the color different from its grandparent's color.











Motivation & History

- Introduced by Even, Lotker, Ron and Smorodinsky in 2002, motivated by the Frequency Assignment Problem.
- The problem has been studied with respect to both the open neighborhoods and the closed neighborhoods.
- Pach and Tardos (2009) showed that $\chi_{ON}(G) = O(\sqrt{n})$ and $\chi_{CN}(G) = O(\log^2 n)$.
- Geometric intersection graphs like disk, square, rectangle, interval graphs, etc have attracted special interest.
- Most of the variants are NP-complete.

Parameter	Known Result	Our Result	Lower Bound
Planar	8 ¹	6	4
Outerplanar	6	4	3
Pathwidth (pw)	$2pw + 1^2$	$[\frac{5}{3}(pw+1)]$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	$2dc + 3^3$	dc + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cI(G) + 1^4$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

¹Abel, Alvare, Demaine, Fekete, Gour, Hesterberg, Keldenich, and Scheffer, "Conflict-Free Coloring of Graphs", *SIAM Journal on Discrete Mathematics*. 2018.

²Bodlaender, Kolay and Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", *Workshop on Algorithms and Data Structures (WADS)*, 2019.

³Reddy, "Parameterized algorithms for conflict-free colorings of graphs", *Theor. Comput. Sci.*, 2018.

⁴Gargano and Rescigno, "Complexity of Conflict-free Colorings of raphs". *Theor. Comput. Sci.*, 2015.

Parameter	Known Result	Our Result	Lower Bound
Planar	8 ¹	6	4
Outerplanar	6	4	3
Pathwidth (pw)	$2pw + 1^2$	$\lfloor \frac{5}{3}(pw+1) \rfloor$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	$2dc + 3^3$	dc + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cI(G) + 1^4$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

¹Abel, Alvare, Demaine, Fekete, Gour, Hesterberg, Keldenich, and Scheffer, "Conflict-Free Coloring of Graphs", *SIAM Journal on Discrete Mathematics*. 2018.

²Bodlaender, Kolay and Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", *Workshop on Algorithms and Data Structures (WADS)*, 2019.

³Reddy, "Parameterized algorithms for conflict-free colorings of graphs", Theor. Comput. Sci., 2018.

⁴Gargano and Rescigno, "Complexity of Conflict-free Colorings of raphs". *Theor. Comput. Sci.*, 2015.

Parameter	Known Result	Our Result	Lower Bound
Planar	8 ¹	6	4
Outerplanar	6	4	3
Pathwidth (pw)	$2pw + 1^2$	$\lfloor \frac{5}{3}(pw+1) \rfloor$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	$2dc + 3^3$	dc + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cI(G) + 1^4$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

¹Abel, Alvare, Demaine, Fekete, Gour, Hesterberg, Keldenich, and Scheffer, "Conflict-Free Coloring of Graphs", *SIAM Journal on Discrete Mathematics*. 2018.

²Bodlaender, Kolay and Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", *Workshop on Algorithms and Data Structures (WADS)*, 2019.

³Reddy, "Parameterized algorithms for conflict-free colorings of graphs", *Theor. Comput. Sci.*, 2018.

⁴Gargano and Rescigno, "Complexity of Conflict-free Colorings of raphs". *Theor. Comput. Sci.*, 2015.

Parameter	Known Result	Our Result	Lower Bound
Planar	8 ¹	6	4
Outerplanar	6	4	3
Pathwidth (pw)	$2pw + 1^2$	$\lfloor \frac{5}{3}(pw+1) \rfloor$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	$2dc + 3^3$	dc + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cI(G) + 1^4$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

¹Abel, Alvare, Demaine, Fekete, Gour, Hesterberg, Keldenich, and Scheffer, "Conflict-Free Coloring of Graphs", *SIAM Journal on Discrete Mathematics*. 2018.

²Bodlaender, Kolay and Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", *Workshop on Algorithms and Data Structures (WADS)*, 2019.

³Reddy, "Parameterized algorithms for conflict-free colorings of graphs", *Theor. Comput. Sci.*, 2018.

⁴Gargano and Rescigno, "Complexity of Conflict-free Colorings of raphs". *Theor. Comput. Sci.*, 2015.

Parameter	Known Result	Our Result	Lower Bound
Planar	8 ¹	6	4
Outerplanar	6	4	3
Pathwidth (pw)	$2pw + 1^2$	$\lfloor \frac{5}{3}(pw+1) \rfloor$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	2 <i>dc</i> + 3 ³	<i>dc</i> + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cI(G) + 1^4$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

¹Abel, Alvare, Demaine, Fekete, Gour, Hesterberg, Keldenich, and Scheffer, "Conflict-Free Coloring of Graphs", *SIAM Journal on Discrete Mathematics*. 2018.

²Bodlaender, Kolay and Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", *Workshop on Algorithms and Data Structures (WADS)*, 2019.

³Reddy, "Parameterized algorithms for conflict-free colorings of graphs", *Theor. Comput. Sci.*, 2018.

⁴Gargano and Rescigno, "Complexity of Conflict-free Colorings of raphs". *Theor. Comput. Sci.*, 2015.

Parameter	Known Result	Our Result	Lower Bound
Planar	8 ¹	6	4
Outerplanar	6	4	3
Pathwidth (pw)	$2pw + 1^2$	$\lfloor \frac{5}{3}(pw+1) \rfloor$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	2 <i>dc</i> + 3 ³	<i>dc</i> + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cl(G) + 1^4$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

¹Abel, Alvare, Demaine, Fekete, Gour, Hesterberg, Keldenich, and Scheffer, "Conflict-Free Coloring of Graphs", *SIAM Journal on Discrete Mathematics*. 2018.

²Bodlaender, Kolay and Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", *Workshop on Algorithms and Data Structures (WADS)*, 2019.

³Reddy, "Parameterized algorithms for conflict-free colorings of graphs", *Theor. Comput. Sci.*, 2018.

⁴Gargano and Rescigno, "Complexity of Conflict-free Colorings of Graphs", *Theor. Comput. Sci.*, 2015.

Planar graphs

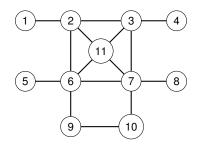
Theorem

If G is a planar graph, then $\chi_{ON}(G) \leq 6$.

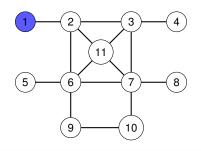
Assumption: *G* is connected and $|V(G)| \ge 2$.

Maximal distance-3 set, V_0

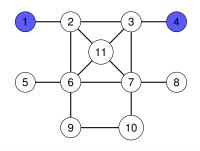
- Initially $V_0 = \{v\}$, for some $v \in V(G)$.
- Add *u* to *V*₀, if
 - $\exists w \in V_0$, such that dist(u, w) = 3.
 - $dist(u, w') \ge 3$, for all $w' \in V_0$.



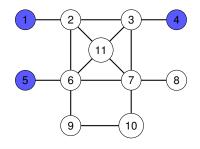
- $V_0 \rightarrow$ maximal distance-3 set.
- $V_1 = N(V_0)$, where $N(V_0)$ represents neighborhood of V_0 .
- V₂ = V(G) \ (V₀ ∪ V₁).
 V₂ → Set of vertices that are at a distance 2 from V₀



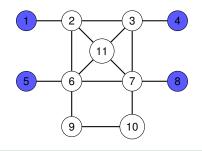
- $V_0 \rightarrow$ maximal distance-3 set.
- $V_1 = N(V_0)$, where $N(V_0)$ represents neighborhood of V_0 .
- $V_2 = V(G) \setminus (V_0 \cup V_1)$. $V_2 \rightarrow$ Set of vertices that are at a distance 2 from V_0



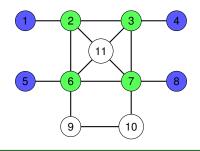
- $V_0 \rightarrow$ maximal distance-3 set.
- $V_1 = N(V_0)$, where $N(V_0)$ represents neighborhood of V_0 .
- $V_2 = V(G) \setminus (V_0 \cup V_1)$. $V_2 \rightarrow$ Set of vertices that are at a distance 2 from V_0



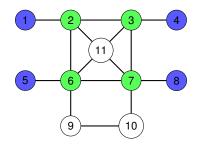
- $V_0 \rightarrow$ maximal distance-3 set.
- $V_1 = N(V_0)$, where $N(V_0)$ represents neighborhood of V_0 .
- $V_2 = V(G) \setminus (V_0 \cup V_1)$. $V_2 \rightarrow$ Set of vertices that are at a distance 2 from V_0



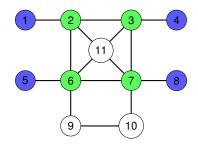
- $V_0 \rightarrow$ maximal distance-3 set.
- $V_1 = N(V_0)$, where $N(V_0)$ represents neighborhood of V_0 .
- $V_2 = V(G) \setminus (V_0 \cup V_1)$. $V_2 \rightarrow$ Set of vertices that are at a distance 2 from V_0



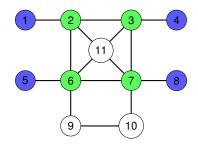
- V₀ → maximal distance-3 set.
- $V_1 = N(V_0)$, where $N(V_0)$ represents neighborhood of V_0 .
- V₂ = V(G) \ (V₀ ∪ V₁).
 V₂ → Set of vertices that are at a distance 2 from V₀.



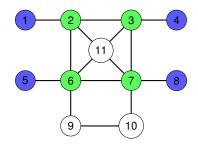
- V₀ is an independent set.
- No edges between V_0 and V_2 .
- Every vertex in $V_0 \cup V_2$ has a neighbor in V_1 .
- Every vertex in V_1 has exactly 1 neighbor in V_0 .



- V₀ is an independent set.
- No edges between V₀ and V₂.
- Every vertex in $V_0 \cup V_2$ has a neighbor in V_1 .
- Every vertex in V_1 has exactly 1 neighbor in V_0 .



- V₀ is an independent set.
- No edges between V₀ and V₂.
- Every vertex in V₀ ∪ V₂ has a neighbor in V₁.
- Every vertex in V_1 has exactly 1 neighbor in V_0 .



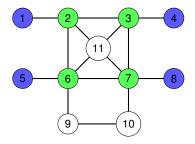
- V₀ is an independent set.
- No edges between V₀ and V₂.
- Every vertex in $V_0 \cup V_2$ has a neighbor in V_1 .
- Every vertex in V_1 has exactly 1 neighbor in V_0 .

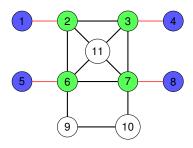
Observations:

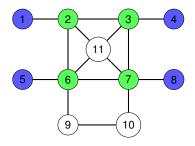
- V₀ is an independent set.
- No edges between V₀ and V₂.
- Every vertex in V₀ ∪ V₂ has a neighbor in V₁.
- Every vertex in V_1 has exactly 1 neighbor in V_0 .

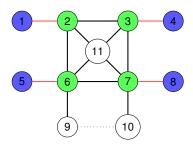
Color V_0 :

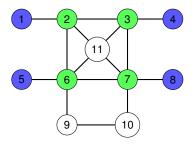
- For all $v \in V_0$, assign C(v) = 1.
- For each vertex in V_1 , there is a uniquely colored neighbor.

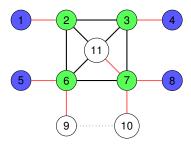




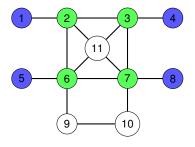




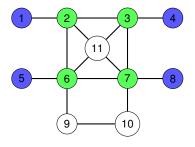


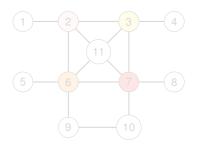


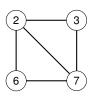
Color $\overline{V_1}$



Color V_1

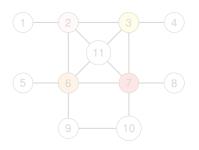






- The contracted vertex in V_1 will be the uniquely colored neighbor for each vertex in $V_0 \cup V_2$.
- All vertices of G have a uniquely colored neighbor.
 However, vertices in V₂ are uncolored.
- For all $v \in V_2$, assign C(v) = 6.

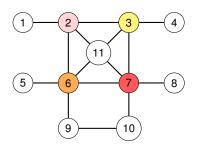
Color V₁

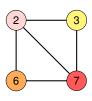




- The contracted vertex in V₁ will be the uniquely colored neighbor for each vertex in V₀ ∪ V₂.
- All vertices of G have a uniquely colored neighbor.
 However, vertices in V₂ are uncolored.
- For all $v \in V_2$, assign C(v) = 6.

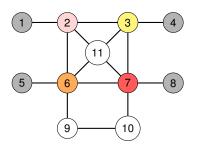
Color V₁





- The contracted vertex in V₁ will be the uniquely colored neighbor for each vertex in V₁ ∪ V₂.
- All vertices of G have a uniquely colored neighbor.
 However, vertices in V₂ are uncolored.
- For all $v \in V_2$, assign C(v) = 6.

Color V₁



- The contracted vertex in V₁ will be the uniquely colored neighbor for each vertex in V₀ ∪ V₂.
- All vertices of G have a uniquely colored neighbor.
 However, vertices in V₂ are uncolored.
- For all $v \in V_2$, assign C(v) = 6.

CFON coloring of Planar graphs

Theorem

If G is a planar graph, then $\chi_{ON}(G) \leq 6$.

Partial conflict-free coloring: CFON³

If G is a planar graph, then $\chi_{ON}^*(G) \leq 5$.

CFON coloring of Planar graphs

Theorem

If G is a planar graph, then $\chi_{ON}(G) \leq 6$.

Partial conflict-free coloring: CFON*

If G is a planar graph, then $\chi_{ON}^*(G) \leq 5$.

Pathwidth

- Bodlaender, Kolay and Pieterse [WADS 2019] showed that $\chi_{ON}(G) \leq 2tw + 1$, where tw is the treewidth of graph G.
- We show that $\chi_{ON}(G) \leq \lfloor \frac{5}{3}(pw+1) \rfloor$, where pw is the pathwidth of G.

Sketch

- Every vertex v in a bag X_i gets a distinct color C(v).
 Assign the unique color U(v) when its sees its first neighbor.
- Assign a color which is not seen in the bag, which gives $\forall v \in X_i, |C(v) \cup U(v)| \le 2|X_i|$. For a bag of tw vertices, we need $\le 2 \cdot tw$ colors.
- We use some sophisticated rules, that reuses the colors to get $|C(v) \cup U(v)| \le \frac{5}{3}|X_i|$.

Pathwidth¹

- Bodlaender, Kolay and Pieterse [WADS 2019] showed that $\chi_{ON}(G) \leq 2tw + 1$, where tw is the treewidth of graph G.
- We show that $\chi_{ON}(G) \leq \lfloor \frac{5}{3}(pw+1) \rfloor$, where pw is the pathwidth of G.

Sketch

- Every vertex v in a bag X_i gets a distinct color C(v).
 Assign the unique color U(v) when its sees its first neighbor.
- Assign a color which is not seen in the bag, which gives $\forall v \in X_i, |C(v) \cup U(v)| \le 2|X_i|$. For a bag of tw vertices, we need $\le 2 \cdot tw$ colors.
- We use some sophisticated rules, that reuses the colors to get $|C(v) \cup U(v)| \le \frac{5}{3}|X_i|$.

Pathwidth

- Bodlaender, Kolay and Pieterse [WADS 2019] showed that $\chi_{ON}(G) \leq 2tw + 1$, where tw is the treewidth of graph G.
- We show that $\chi_{ON}(G) \leq \lfloor \frac{5}{3}(pw+1) \rfloor$, where pw is the pathwidth of G.

Sketch

- Every vertex v in a bag X_i gets a distinct color C(v).
 Assign the unique color U(v) when its sees its first neighbor.
- Assign a color which is not seen in the bag, which gives $\forall v \in X_i, |C(v) \cup U(v)| \le 2|X_i|$. For a bag of tw vertices, we need $\le 2 \cdot tw$ colors.
- We use some sophisticated rules, that reuses the colors to get $|C(v) \cup U(v)| \le \frac{5}{3}|X_i|$.

FVS

- Bodlaender, Kolay and Pieterse [WADS 2019] showed that $\chi_{ON}(G) \leq |F| + 3$, where F is a feedback vertex set of G.
- We show that $\chi_{ON}(G) \leq |F| + 2$.

Sketch

- Color trees in G[V \ F] using 2 colors.
- We use |F| distinct colors to color F.
- If G[F] is connected, we have a CFON coloring of G.
- Else, we identify a "free color". This is the non-trivial part of the algorithm.

The bounds for the distance to cluster parameter use the same framework

FVS

- Bodlaender, Kolay and Pieterse [WADS 2019] showed that $\chi_{ON}(G) \leq |F| + 3$, where F is a feedback vertex set of G.
- We show that $\chi_{ON}(G) \leq |F| + 2$.

Sketch

- Color trees in G[V \ F] using 2 colors.
- We use |F| distinct colors to color F.
- If G[F] is connected, we have a CFON coloring of G.
- Else, we identify a "free color". This is the non-trivial part of the algorithm.

The bounds for the distance to cluster parameter use the same framework.

Summary of our results

Parameter	Known Result	Our Result	Lower Bound
Planar	8	6	4
Outerplanar	6	4	3
Pathwidth (pw)	2 <i>pw</i> + 1	$\lfloor \frac{5}{3}(pw+1) \rfloor$	pw
FVS (f)	f + 3	f + 2	f + 2
Distance to Cluster (dc)	2 <i>dc</i> + 3	<i>dc</i> + 3	dc
Neighborhood Diversity	$\chi_{ON}(H) + cI(G) + 1$	$\chi_{ON}(H) + \frac{cl(G)}{2} + 2$	-

Our techniques also yield results for CFCN coloring.

Parameter	Known Result	Our Result
Distance to Cluster (dc)	dc + 2	$\max\{3, dc+1\}$
Neighborhood Diversity	$\chi_{\mathit{CN}}(H) + \mathit{ind}(G) + 1$	$\chi_{CN}(H) + \frac{ind(G)}{3} + 3$

Future Work

- · Get tight results for some parameters.
 - For the distance to cluster (dc) parameter, we now have matching upper and lower bounds of dc + 1, [B., Kalyanasundaram 20+]
- Can we show that $\chi_{ON}(G) \leq \frac{5}{3}(tw+1)$?
- Look at the list coloring variant of the problem.
- Complexity status for various graph classes is unknown, like block graphs, permutation graphs, interval graphs, etc.

References

- [1] Zachary Abel, Victor Alvarez, Erik D. Demaine, Sándor P. Fekete, Aman Gour, Adam Hesterberg, Phillip Keldenich, and Christian Scheffer, "Conflict-Free Coloring of Graphs", SIAM Journal on Discrete Mathematics, 2018.
- [2] Hans L. Bodlaender, Sudeshna Kolay and Astrid Pieterse, "Parameterized Complexity of Conflict-free Graph Coloring", Workshop on Algorithms and Data Structures (WADS), 2019.
- [3] I. Vinod Reddy, "Parameterized algorithms for conflict-free colorings of graphs", *Theor. Comput. Sci.*, 2018.
- [4] Luisa Gargano and Adele A. Rescigno, "Complexity of Conflict-free Colorings of Graphs", *Theor. Comput. Sci.*, 2015.

THANK YOU

Questions?