Conflict-free Coloring on Claw-free graphs and Interval graphs

Sriram Bhyravarapu ¹, Subrahmanyam Kalyanasundaram ², Rogers Mathew ²

 $^1{\rm The}$ Institute of Mathematical Sciences, Chennai, India $^2{\rm Dept.}$ of Computer Science and Engineering, Indian Institute of Technology Hyderabad, India

47th International Symposium on Mathematical Foundations of Computer Science August 22, 2022, Vienna, Austria

590

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Agenda

- Conflict-free Coloring
- Known Results
- Our Results

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨ の ()

Conflict-free Coloring

Definition (Conflict-free Coloring)

Given a graph G = (V, E), a conflict-free coloring is an assignment of colors to a subset of V such that

• Every vertex in G has a uniquely colored vertex in its neighborhood.

The minimum number of colors required for such a coloring is called the conflict-free chromatic number.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conflict-free Coloring

Definition (Conflict-free Coloring on Open Neighborhoods)

Given a graph G = (V, E), a conflict-free coloring is an assignment of colors to a subset of V such that

• Every vertex in *G* has a uniquely colored vertex in its open neighborhood.

The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi^*_{ON}(G)$.

- Open Neighborhood of a vertex v is $N(v) = \{w \mid \{v, w\} \in E(G))\}.$
- This problem is abbreviated as CFON* Coloring Problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conflict-free Coloring

Definition (Conflict-free Coloring on Closed Neighborhoods)

Given a graph G = (V, E), a conflict-free coloring with respect to closed neighborhoods is an assignment of colors to a subset of V such that

• Every vertex has a uniquely colored vertex in its closed neighborhood.

The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi^*_{CN}(G)$.

- Closed Neighborhood of a vertex v is $N[v] = N(v) \cup \{v\}$.
- This problem is abbreviated as CFCN* Coloring Problem.

August 22, 2022

CFON* vs CFCN*

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Figure 1: CFON* Coloring

Sriram, Subruk, Rogers (IMSc & IITH)

August 22, 2022

CFON* vs CFCN*

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Figure 1: CFON* Coloring

Figure 2: CFCN* Coloring

CFON* vs CFCN*

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Figure 3: CFON* Coloring

◆ロト ◆御 ト ◆臣 ト ◆臣 ト ○臣 - のへで

CFON* vs CFCN*

Figure 4: CFCN* Coloring

August 22, 2022

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

August 22, 2022

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

August 22, 2022

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

August 22, 2022

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

August 22, 2022

K_n^* : Subdivision graph of the Clique

χ^{*}_{ON}(K^{*}_n) = n.
K^{*}_n is bipartite and hence χ^{*}_{CN}(K^{*}_n) = 2.

Motivation & History

- Introduced by Even, Lotker, Ron and Smorodinsky in 2004, motivated by the Frequency Assignment Problem.
- The problem has been studied with respect to both the open neighborhoods and the closed neighborhoods.
- $\chi^*_{ON}(G) = O(\sqrt{n})$ and $\chi^*_{CN}(G) = O(\log^2 n)$.
- Geometric intersection graphs like disk, square, rectangle, interval graphs, etc have attracted special interest.
- Most of the variants are NP-complete.

August 22, 2022

Our Results 1

- Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if G is a line graph, then $\chi^*_{CN}(G) = O(\log \Delta)$.
 - **Open Question:** Can it be extended to claw-free (*K*_{1,3}-free) graphs, which are a superclass of line graphs ?
- In the same paper, they showed that if the minimum degree of any vertex in G is $\Omega(\Delta)$, then $\chi^*_{ON}(G) = O(\log \Delta)$.

Our Results

- For $k \ge 3$, we show that if G is a $K_{1,k}$ -free graph then $\chi^*_{ON}(G) = O(k^2 \log \Delta)$, where Δ denotes the maximum degree of G. Since $\chi^*_{CN}(G) \le 2\chi^*_{ON}(G)$, we have $\chi^*_{CN}(G) = O(k^2 \log \Delta)$ as well
- If the minimum degree of any vertex in G is $\Omega(\frac{\Delta}{\log^{\epsilon} \Delta})$ for some $\epsilon \geq 0$, then $\chi^*_{ON}(G) = O(\log^{1+\epsilon} \Delta)$.

Our Results 2

- Reddy in [Theo. Comp. Sci., 2018] showed that, for an interval graph G, $\chi^*_{ON}(G) \leq 3$. Bhyravarapu et. al. [IWOCA 2021] showed that there exists an interval graph that requires three colors.
- It was asked by Reddy if there is a polynomial time algorithm to compute χ^{*}_{ON}(G) for interval graphs.

Our Results

• We show that CFON* Coloring Problem is polynomial time solvable on interval graphs.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Our Results 3

 Abel et. al. [SIDMA 2018] showed that it is NP-complete to decide if k colors are sufficient to CFON* color a planar bipartite graph, even when k ∈ {1,2,3}.

Our Results

• We explore sub-classes of bipartite graphs that includes biconvex graphs, biconvex permutation graphs, etc, and show polynomial time algorithms for CFON* Coloring Problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CFON* Coloring for claw-free graphs

Claw: The complete bipartite graph $K_{1,3}$ is called a *claw*. A graph is called a *claw-free graph* if it does not contain a claw as an induced subgraph.

Claw number: The *claw number* of a graph *G* is the smallest *k* such that *G* is $K_{1,k+1}$ -free. In other words, it is the largest *k* such that *G* contains an induced $K_{1,k}$.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Bounded Claw Number

Theorem

Let G be a $K_{1,k}$ -free graph with no isolated vertices. Then, $\chi^*_{ON}(G) = O(k^2 \log \Delta)$, where Δ is the maximum degree of G.

Proof: We start with a proper coloring $h: V(G) \rightarrow [\Delta + 1]$ of G.

- Let $C_1, C_2, \ldots, C_{\Delta+1}$ be the color classes w.r.t. the coloring h.
- WLOG we assume that every vertex in C_i has a neighbor in each C_j , $1 \le j < i$.
- Observe that, any vertex in G has at most k − 1 neighbors in C_i, for every i ∈ [Δ + 1].

・ロト ・ 同ト ・ ヨト ・ ヨト

Two ingredients

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H} . Then, $\chi_{CF}(\mathcal{H}) \leq \Delta + 1$.

Lemma

Let $\mathcal{H} = (V, \mathcal{E})$ be a hypergraph where (i) every hyperedge intersects with at most Γ other hyperedges, and (ii) for every hyperedge $E \in \mathcal{E}$, $r \leq |E| \leq \ell r$, where $\ell \geq 1$ is some integer and $r \geq 2\log(4\Gamma)$. Then, $\chi_{CF}(\mathcal{H}) \leq e\ell r$, where e is the base of natural logarithm.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Proofs

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H} . Then, $\chi_{CF}(\mathcal{H}) \leq \Delta + 1$.

Proof.

- Consider the vertices in arbitrary order.
- We want the first vertex in any hyperedge to be the uniquely colored vertex.
- A vertex appears in at most Δ hyperedges and hence needs to avoid at most Δ other colors.

Proofs

Lemma

Let $\mathcal{H} = (V, \mathcal{E})$ be a hypergraph where (i) every hyperedge intersects with at most Γ other hyperedges, and (ii) for every hyperedge $E \in \mathcal{E}$, $r \leq |E| \leq \ell r$, where $\ell \geq 1$ is some integer and $r \geq 2\log(4\Gamma)$. Then, $\chi_{CF}(\mathcal{H}) \leq e\ell r$, where e is the base of natural logarithm.

Proof.

- Each vertex is assigned a color, that is chosen independently and uniformly at random from a set of *e*ℓ*r* colors.
- For a hyperedge *E*, let A_E be the event that *E* is colored with $\leq |E|/2$ colors.
- A_E contains the event that E is not conflict-free colored.
- We show that $P(A_E) \le 1/4\Gamma$ and hence Local Lemma implies that $P[\bigcap_{E \in \mathcal{E}}(\overline{A}_E)] > 0.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ● ●

Calculations

$$\begin{aligned} \Pr[A_E] &\leq \left(\frac{e\ell r}{m/2}\right) \left(\frac{m/2}{e\ell r}\right)^m \\ &\leq \left(\frac{e^2\ell r}{m/2}\right)^{m/2} \left(\frac{m/2}{e\ell r}\right)^m \qquad (\text{since } \binom{n}{k} \leq \left(\frac{en}{k}\right)^k) \\ &= \frac{(m/2)^{m/2}}{(\ell r)^{m/2}} \\ &= \left(\frac{m}{2\ell r}\right)^{m/2} \\ &\leq (1/2)^{m/2} \leq \frac{1}{4\Gamma}. \end{aligned}$$

Here the penultimate inequality follows since $m \le \ell r$, and the last inequality follows since $m \ge r \ge 2\log(4\Gamma)$.

Bounded Claw Number

Theorem

Let G be a $K_{1,k}$ -free graph with no isolated vertices. Then, $\chi^*_{ON}(G) = O(k^2 \log \Delta)$, where Δ is the maximum degree Δ of G.

Proof: We start with a proper coloring $h: V(G) \rightarrow [\Delta + 1]$ of *G*.

- Let $C_1, C_2, \ldots, C_{\Delta+1}$ be the color classes w.r.t. the coloring h.
- WLOG we assume that every vertex in C_i has a neighbor in each C_j , $1 \le j < i$.
- Observe that, any vertex in G has at most k 1 neighbors in C_i , for every $i \in [\Delta + 1]$.

August 22, 2022

Bounded Claw Number

- Let $r = 2 \log(4\Delta^2)$.
- Partition the vertices of G into three sets V_1 , V_2 and V_3 as follows:
 - $V_1 = C_1$.
 - $V_2 = C_2 \cup C_3 \cup \cdots \cup C_{r+1}$.
 - $V_3 = C_{r+2} \cup C_{r+3} \cup \cdots \cup C_{\Delta+1}$.
- Color V_1, V_2 and V_3 such that every vertex has a uniquely colored neighbor.

・ロト・西ト・西ト・西ト・日 うくぐ

Uniquely colored neighbors for V_3

- Let $\mathcal{H}_3 = (V_2, \mathcal{E}_3)$ where $E_v \in \mathcal{E}_3$ if $E_v = N(v) \cap V_2$, for $v \in V_3$.
- Note that $r \leq |E_v| \leq r(k-1)$, for all $E_v \in \mathcal{E}_3$
- The below lemma implies $\chi_{CF}(\mathcal{H}_3) \leq e(k-1)r$

Lemma

Let $\mathcal{H} = (V, \mathcal{E})$ be a hypergraph where (i) every hyperedge intersects with at most Γ other hyperedges, and (ii) for every hyperedge $E \in \mathcal{E}$, $r \leq |E| \leq \ell r$, where $\ell \geq 1$ is some integer and $r \geq 2\log(4\Gamma)$. Then, $\chi_{CF}(\mathcal{H}) \leq e\ell r$, where e is the base of natural logarithm.

Uniquely colored neighbors for V_2

- Let $\mathcal{H}_2 = (V_1, \mathcal{E}_2)$ where $E_v \in \mathcal{E}_2$ if $E_v = N(v) \cap V_1$, for $v \in V_2$.
- Note that any $u \in V_1$ appears in at most r(k-1) hyperedges of \mathcal{H}_2 .
- The below theorem implies $\chi_{CF}(\mathcal{H}_1) \leq r(k-1)+1$

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H} . Then, $\chi_{CF}(\mathcal{H}) \leq \Delta + 1$.

Uniquely colored neighbors for V_1

• Let $\mathcal{H}_1 = (V_2 \cup V_3, \mathcal{E}_1)$ where $E_v \in \mathcal{E}_2$ if $E_v = N(v)$, for $v \in V_1$.

- Note that any $u \in V_2 \cup V_3$ appears in at most (k-1) hyperedges of \mathcal{H}_1 .
- The below theorem implies $\chi_{CF}(\mathcal{H}_1) \leq k$

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H} . Then, $\chi_{CF}(\mathcal{H}) \leq \Delta + 1$.

Summarizing

- Vertices in V_1 are taken care by coloring \mathcal{H}_1 , i.e., $V_2 \cup V_3$ using k colors.
- Vertices in V_2 are taken care by coloring \mathcal{H}_2 , i.e., V_1 using r(k-1)+1 colors.
- Vertices in V_3 are taken care by coloring \mathcal{H}_3 , i.e., V_2 using r(k-1)e colors.

Summarizing

- Vertices in V_1 are taken care by coloring \mathcal{H}_1 , i.e., $V_2 \cup V_3$ using k colors.
- Vertices in V_2 are taken care by coloring \mathcal{H}_2 , i.e., V_1 using r(k-1)+1 colors.
- Vertices in V_3 are taken care by coloring \mathcal{H}_3 , i.e., V_2 using r(k-1)e colors.
- Vertices in V_2 can be colored by using a Cartesian product, needing $r(k-1)ke \approx O(rk^2)$ colors. This turns out to be the dominating quantity.
- Noting that $r = O(\log \Delta)$, we have a CFON^{*} coloring of G with $O(k^2 \log \Delta)$ colors.

Summarizing

- Vertices in V_2 can be colored by using a Cartesian product, needing $r(k-1)ke = O(rk^2)$ colors. This turns out to be the dominating quantity.
- Noting that $r = O(\log \Delta)$, we have a CFON^{*} coloring of G with $O(k^2 \log \Delta)$ colors.

Theorem

Let G be a $K_{1,k}$ -free graph with no isolated vertices. Then, $\chi^*_{ON}(G) = O(k^2 \log \Delta)$, where Δ is the maximum degree of G.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

CFON* Coloring on Interval Graphs

Theorem

The CFON^{*} Coloring Problem is polynomial time solvable on interval graphs.

- If G is an interval graph, it is known that $\chi^*_{ON}(G) \leq 3$.
- Characterization algorithms for interval graphs G that decide if $\chi^*_{ON}(G) \in \{1, 2, 3\}.$
- The main tool that we use is the **multi-chain ordering** of interval graphs.
- It was shown by Enright, Stewart and Tardos [SIDMA 2014] that connected interval graphs admit multi chain orderings.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Multi-chain ordering

Definition (Chain Graph)

A bipartite graph G = (A, B) is a *chain graph* if and only if for any two vertices $u, v \in A$, either $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$. If G is a chain graph, it follows that for any two vertices $u, v \in B$, either $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$.

As a consequence, we can order the vertices in B in the decreasing order of the degrees. We can break ties arbitrarily. If $b_1 \in B$ appears before $b_2 \in B$ in the ordering, then it follows that $N(b_2) \subseteq N(b_1)$.

Sriram, Subruk, Rogers (IMSc & IITH)

Sac

э

Multi-chain ordering

Definition (Multi-chain Ordering)

We say that distance layers form a *multi-chain ordering* of *G* if for every two consecutive layers L_i and L_{i+1} , where $i \in \{0, 1, ..., p-1\}$, we have that the vertices in L_i and L_{i+1} , and the edges connecting these layers form a chain graph.

Interval Graphs

Theorem (Enright, Stewart and Tardos (SIDMA 2014))

All connected interval graphs admit multi-chain orderings.

Theorem (Our Result)

Given an interval graph G, there is a polynomial time algorithm that determines $\chi^*_{ON}(G)$.

Overall Idea of the Proof.

- We give a characterization of interval graphs that require one color and two colors in polynomial time.
- If G is not CFON* colorable using one color or two colors, we conclude that G is CFON* colorable using three colors (since it is known that for an interval graph G, $\chi^*_{ON}(G) \leq 3$).
- One of the key ideas used to decide if G can be CFON* 2-colorable is sort of a bootstrapping idea.

イロト イポト イヨト イヨト

3

Sar

1-Colorable?

Observation

If G admits a multi-chain ordering, then every distance layer L_i , for $0 \le i < p$ contains a vertex v such that $N(v) \supseteq L_{i+1}$.

- This means that if G is CFON^{*} colorable with 1 color, then, L_{i+1} has at most one vertex that is colored.
- There are $|L_{i+1}|$ possible colorings to check for L_{i+1} .
- We also need to check if the colorings are consistent across neighboring layers.
- This leads to a dynamic programming algorithm.

Theorem

Given an interval graph G = (V, E), we can decide in $O(n^5)$ time if $\chi^*_{ON}(G) = 1$.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

2-Colorable?

- The idea is similar to checking 1-colorability, but there are more cases to deal with.
- One of the cases require us to verify that a subgraph is 1-CFON* colorable.
- We use the algorithm for 1-colorability since subgraphs of interval graphs are interval graphs.

Theorem

Given an interval graph G = (V, E), we can decide in $O(n^{20})$ time if $\chi^*_{ON}(G) = 2$.

Interval Graphs

Remark

Recently, the work of Gonzalez and Mann [Gonzalez-Mann] (done simultaneously and independently from ours) on mim-width showed that the CFON* coloring problem is polynomial-time solvable on graph classes for which a branch decomposition of constant mim-width can be computed in polynomial time.

This includes the class of interval graphs. We note that our work gives a more explicit algorithm without having to go through the machinery of mim-width.

We also note that the mim-width algorithm, as presented in [Gonzalez-Mann], requires a running time in excess of $\Omega(n^{300})$. Hence our algorithm is better in this regard as well.

[Gonzalez-Mann] Carolina Lucía Gonzalez and Felix Mann, "On d-stable locally checkable problems on bounded mim-width graphs", CoRR, abs/2203.15724, 2022.

▲ロト ▲母 ト ▲ ヨ ト ▲ ヨ ト つ Q ()

Conclusion

In this paper, we study CFON^* coloring on claw-free graphs, interval graphs and biconvex graphs.

- We first show that if G is a $K_{1,k}$ -free graph with maximum degree Δ , then $\chi^*_{ON}(G) = O(k^2 \log \Delta)$.
- We then show that if the minimum degree of G is $\Omega(\frac{\Delta}{\log^{\epsilon} \Delta})$ for some $\epsilon \geq 0$, then $\chi^*_{ON}(G) = O(\log^{1+\epsilon} \Delta)$.

Question 1: The tightness of these bounds is a natural open question.

• We show polynomial time algorithms for the CFON* coloring problem on interval graphs and biconvex graphs. (can be extended to CFON coloring also)

Question 2: It may be of interest to study the problem on other subclasses of bipartite graphs, such as convex bipartite graphs, chordal bipartite graphs and tree-convex bipartite graphs.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Thank You!