Conflict-free Coloring on Claw-free graphs and Interval graphs

Sriram Bhyravarapu ${ }^{1}$, Subrahmanyam Kalyanasundaram ${ }^{2}$, Rogers Mathew ${ }^{2}$
${ }^{1}$ The Institute of Mathematical Sciences, Chennai, India
${ }^{2}$ Dept. of Computer Science and Engineering, Indian Institute of Technology Hyderabad, India

47th International Symposium on Mathematical Foundations of Computer Science
August 22, 2022, Vienna, Austria

Agenda

- Conflict-free Coloring
- Known Results
- Our Results

Conflict-free Coloring

Definition (Conflict-free Coloring)

Given a graph $G=(V, E)$, a conflict-free coloring is an assignment of colors to a subset of V such that

- Every vertex in G has a uniquely colored vertex in its neighborhood. The minimum number of colors required for such a coloring is called the conflict-free chromatic number.

Conflict-free Coloring

Definition (Conflict-free Coloring on Open Neighborhoods)

Given a graph $G=(V, E)$, a conflict-free coloring is an assignment of colors to a subset of V such that

- Every vertex in G has a uniquely colored vertex in its open neighborhood.
The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi_{O N}^{*}(G)$.
- Open Neighborhood of a vertex v is $N(v)=\{w \mid\{v, w\} \in E(G))\}$.
- This problem is abbreviated as CFON* Coloring Problem.

Conflict-free Coloring

Definition (Conflict-free Coloring on Closed Neighborhoods)

Given a graph $G=(V, E)$, a conflict-free coloring with respect to closed neighborhoods is an assignment of colors to a subset of V such that

- Every vertex has a uniquely colored vertex in its closed neighborhood.
The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi_{C N}^{*}(G)$.
- Closed Neighborhood of a vertex v is $N[v]=N(v) \cup\{v\}$.
- This problem is abbreviated as CFCN* Coloring Problem.

CFON* vs CFCN*

Figure 1: CFON* Coloring

CFON* vs CFCN*

Figure 1: CFON* Coloring

Figure 2: CFCN* Coloring

CFON* vs CFCN*

Figure 3: CFON* Coloring

CFON* vs CFCN*

Figure 3: CFON* Coloring

Figure 4: CFCN* Coloring

K_{n}^{*} : Subdivision graph of the Clique

- $\chi_{O N}^{*}\left(K_{n}^{*}\right)=n$.
- K_{n}^{*} is bipartite and hence $\chi_{C N}^{*}\left(K_{n}^{*}\right)=2$.

Motivation \& History

- Introduced by Even, Lotker, Ron and Smorodinsky in 2004, motivated by the Frequency Assignment Problem.
- The problem has been studied with respect to both the open neighborhoods and the closed neighborhoods.
- $\chi_{O N}^{*}(G)=O(\sqrt{n})$ and $\chi_{C N}^{*}(G)=O\left(\log ^{2} n\right)$.
- Geometric intersection graphs like disk, square, rectangle, interval graphs, etc have attracted special interest.
- Most of the variants are NP-complete.

Our Results 1

- Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if G is a line graph, then $\chi_{C N}^{*}(G)=O(\log \Delta)$.
- Open Question: Can it be extended to claw-free ($K_{1,3}-f r e e$) graphs, which are a superclass of line graphs ?
- In the same paper, they showed that if the minimum degree of any vertex in G is $\Omega(\Delta)$, then $\chi_{O N}^{*}(G)=O(\log \Delta)$.

Our Results

- For $k \geq 3$, we show that if G is a $K_{1, k}$-free graph then $\chi_{O N}^{*}(G)=O\left(k^{2} \log \Delta\right)$, where Δ denotes the maximum degree of G. Since $\chi_{C N}^{*}(G) \leq 2 \chi_{O N}^{*}(G)$, we have $\chi_{C N}^{*}(G)=O\left(k^{2} \log \Delta\right)$ as well
- If the minimum degree of any vertex in G is $\Omega\left(\frac{\Delta}{\log ^{e} \Delta}\right)$ for some $\epsilon \geq 0$, then $\chi_{O N}^{*}(G)=O\left(\log ^{1+\epsilon} \Delta\right)$.

Our Results 2

- Reddy in [Theo. Comp. Sci., 2018] showed that, for an interval graph $G, \chi_{O N}^{*}(G) \leq 3$. Bhyravarapu et. al. [IWOCA 2021] showed that there exists an interval graph that requires three colors.
- It was asked by Reddy if there is a polynomial time algorithm to compute $\chi_{O N}^{*}(G)$ for interval graphs.

Our Results

- We show that CFON* Coloring Problem is polynomial time solvable on interval graphs.

Our Results 3

- Abel et. al. [SIDMA 2018] showed that it is NP-complete to decide if k colors are sufficient to CFON* color a planar bipartite graph, even when $k \in\{1,2,3\}$.

Our Results

- We explore sub-classes of bipartite graphs that includes biconvex graphs, biconvex permutation graphs, etc, and show polynomial time algorithms for CFON* Coloring Problem.

CFON* Coloring for claw-free graphs

Claw: The complete bipartite graph $K_{1,3}$ is called a claw. A graph is called a claw-free graph if it does not contain a claw as an induced subgraph.

Claw number: The claw number of a graph G is the smallest k such that G is $K_{1, k+1}$-free. In other words, it is the largest k such that G contains an induced $K_{1, k}$.

Bounded Claw Number

Theorem

Let G be a $K_{1, k}-$ free graph with no isolated vertices. Then, $\chi_{O N}^{*}(G)=O\left(k^{2} \log \Delta\right)$, where Δ is the maximum degree of G.

Proof: We start with a proper coloring $h: V(G) \rightarrow[\Delta+1]$ of G.

- Let $C_{1}, C_{2}, \ldots, C_{\Delta+1}$ be the color classes w.r.t. the coloring h.
- WLOG we assume that every vertex in C_{i} has a neighbor in each C_{j}, $1 \leq j<i$.
- Observe that, any vertex in G has at most $k-1$ neighbors in C_{i}, for every $i \in[\Delta+1]$.

Two ingredients

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H}. Then, $\chi_{C F}(\mathcal{H}) \leq \Delta+1$.

Lemma

Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph where (i) every hyperedge intersects with at most Γ other hyperedges, and (ii) for every hyperedge $E \in \mathcal{E}$, $r \leq|E| \leq \ell r$, where $\ell \geq 1$ is some integer and $r \geq 2 \log (4 \Gamma)$. Then, $\chi_{C F}(\mathcal{H}) \leq e \ell r$, where e is the base of natural logarithm.

Proofs

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H}. Then, $\chi_{C F}(\mathcal{H}) \leq \Delta+1$.

Proof.

- Consider the vertices in arbitrary order.
- We want the first vertex in any hyperedge to be the uniquely colored vertex.
- A vertex appears in at most Δ hyperedges and hence needs to avoid at most Δ other colors.

Proofs

Lemma

Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph where (i) every hyperedge intersects with at most Γ other hyperedges, and (ii) for every hyperedge $E \in \mathcal{E}$, $r \leq|E| \leq \ell r$, where $\ell \geq 1$ is some integer and $r \geq 2 \log (4 \Gamma)$. Then, $\chi_{C F}(\mathcal{H}) \leq e \ell r$, where e is the base of natural logarithm.

Proof.

- Each vertex is assigned a color, that is chosen independently and uniformly at random from a set of elr colors.
- For a hyperedge E, let A_{E} be the event that E is colored with $\leq|E| / 2$ colors.
- A_{E} contains the event that E is not conflict-free colored.
- We show that $P\left(A_{E}\right) \leq 1 / 4 \Gamma$ and hence Local Lemma implies that $P\left[\cap_{E \in \mathcal{E}}\left(\bar{A}_{E}\right)\right]>0$.

Calculations

$$
\begin{aligned}
\operatorname{Pr}\left[A_{E}\right] & \leq\binom{ e \ell r}{m / 2}\left(\frac{m / 2}{e \ell r}\right)^{m} \\
& \leq\left(\frac{e^{2} \ell r}{m / 2}\right)^{m / 2}\left(\frac{m / 2}{e \ell r}\right)^{m} \quad\left(\text { since }\binom{n}{k} \leq\left(\frac{e n}{k}\right)^{k}\right) \\
& =\frac{(m / 2)^{m / 2}}{(\ell r)^{m / 2}} \\
& =\left(\frac{m}{2 \ell r}\right)^{m / 2} \\
& \leq(1 / 2)^{m / 2} \leq \frac{1}{4 \Gamma}
\end{aligned}
$$

Here the penultimate inequality follows since $m \leq \ell r$, and the last inequality follows since $m \geq r \geq 2 \log (4 \Gamma)$.

Bounded Claw Number

Theorem

Let G be a $K_{1, k}-$ free graph with no isolated vertices. Then, $\chi_{O N}^{*}(G)=O\left(k^{2} \log \Delta\right)$, where Δ is the maximum degree Δ of G.

Proof: We start with a proper coloring $h: V(G) \rightarrow[\Delta+1]$ of G.

- Let $C_{1}, C_{2}, \ldots, C_{\Delta+1}$ be the color classes w.r.t. the coloring h.
- WLOG we assume that every vertex in C_{i} has a neighbor in each C_{j}, $1 \leq j<i$.
- Observe that, any vertex in G has at most $k-1$ neighbors in C_{i}, for every $i \in[\Delta+1]$.

Bounded Claw Number

- Let $r=2 \log \left(4 \Delta^{2}\right)$.
- Partition the vertices of G into three sets V_{1}, V_{2} and V_{3} as follows:
- $V_{1}=C_{1}$.
- $V_{2}=C_{2} \cup C_{3} \cup \cdots \cup C_{r+1}$.
- $V_{3}=C_{r+2} \cup C_{r+3} \cup \cdots \cup C_{\Delta+1}$.
- Color V_{1}, V_{2} and V_{3} such that every vertex has a uniquely colored neighbor.
v_{1}

c_{1}

$\begin{array}{lll}c_{2} & c_{3} & c_{9+1}\end{array}$

$C_{n+2} C_{n+3}$

Uniquely colored neighbors for V_{3}

- Let $\mathcal{H}_{3}=\left(V_{2}, \mathcal{E}_{3}\right)$ where $E_{v} \in \mathcal{E}_{3}$ if $E_{v}=N(v) \cap V_{2}$, for $v \in V_{3}$.
- Note that $r \leq\left|E_{v}\right| \leq r(k-1)$, for all $E_{v} \in \mathcal{E}_{3}$
- The below lemma implies $\chi_{C F}\left(\mathcal{H}_{3}\right) \leq e(k-1) r$

Lemma

Let $\mathcal{H}=(V, \mathcal{E})$ be a hypergraph where (i) every hyperedge intersects with at most Γ other hyperedges, and (ii) for every hyperedge $E \in \mathcal{E}$, $r \leq|E| \leq \ell r$, where $\ell \geq 1$ is some integer and $r \geq 2 \log (4 \Gamma)$. Then, $\chi_{C F}(\mathcal{H}) \leq e \ell r$, where e is the base of natural logarithm.

Uniquely colored neighbors for V_{2}

- Let $\mathcal{H}_{2}=\left(V_{1}, \mathcal{E}_{2}\right)$ where $E_{v} \in \mathcal{E}_{2}$ if $E_{v}=N(v) \cap V_{1}$, for $v \in V_{2}$.
- Note that any $u \in V_{1}$ appears in at most $r(k-1)$ hyperedges of \mathcal{H}_{2}.
- The below theorem implies $\chi_{C F}\left(\mathcal{H}_{1}\right) \leq r(k-1)+1$

Theorem (Pach and Tardos, 2009)
Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H}. Then, $\chi_{C F}(\mathcal{H}) \leq \Delta+1$.

Uniquely colored neighbors for V_{1}

- Let $\mathcal{H}_{1}=\left(V_{2} \cup V_{3}, \mathcal{E}_{1}\right)$ where $E_{v} \in \mathcal{E}_{2}$ if $E_{v}=N(v)$, for $v \in V_{1}$.
- Note that any $u \in V_{2} \cup V_{3}$ appears in at most $(k-1)$ hyperedges of \mathcal{H}_{1}.
- The below theorem implies $\chi_{C F}\left(\mathcal{H}_{1}\right) \leq k$

Theorem (Pach and Tardos, 2009)

Let \mathcal{H} be a hypergraph and let Δ be the maximum degree of any vertex in \mathcal{H}. Then, $\chi_{C F}(\mathcal{H}) \leq \Delta+1$.

Summarizing

- Vertices in V_{1} are taken care by coloring \mathcal{H}_{1}, i.e., $V_{2} \cup V_{3}$ using k colors.
- Vertices in V_{2} are taken care by coloring \mathcal{H}_{2}, i.e., V_{1} using $r(k-1)+1$ colors.
- Vertices in V_{3} are taken care by coloring \mathcal{H}_{3}, i.e., V_{2} using $r(k-1) e$ colors.

Summarizing

- Vertices in V_{1} are taken care by coloring \mathcal{H}_{1}, i.e., $V_{2} \cup V_{3}$ using k colors.
- Vertices in V_{2} are taken care by coloring \mathcal{H}_{2}, i.e., V_{1} using $r(k-1)+1$ colors.
- Vertices in V_{3} are taken care by coloring \mathcal{H}_{3}, i.e., V_{2} using $r(k-1) e$ colors.
- Vertices in V_{2} can be colored by using a Cartesian product, needing $r(k-1) k e \approx O\left(r k^{2}\right)$ colors. This turns out to be the dominating quantity.
- Noting that $r=O(\log \Delta)$, we have a CFON* coloring of G with $O\left(k^{2} \log \Delta\right)$ colors.

Summarizing

- Vertices in V_{2} can be colored by using a Cartesian product, needing $r(k-1) k e=O\left(r k^{2}\right)$ colors. This turns out to be the dominating quantity.
- Noting that $r=O(\log \Delta)$, we have a CFON* coloring of G with $O\left(k^{2} \log \Delta\right)$ colors.

Theorem

Let G be a $K_{1, k}$-free graph with no isolated vertices. Then, $\chi_{O N}^{*}(G)=O\left(k^{2} \log \Delta\right)$, where Δ is the maximum degree of G.

CFON* Coloring on Interval Graphs

Theorem

The CFON* Coloring Problem is polynomial time solvable on interval graphs.

- If G is an interval graph, it is known that $\chi_{O N}^{*}(G) \leq 3$.
- Characterization algorithms for interval graphs G that decide if $\chi_{O N}^{*}(G) \in\{1,2,3\}$.
- The main tool that we use is the multi-chain ordering of interval graphs.
- It was shown by Enright, Stewart and Tardos [SIDMA 2014] that connected interval graphs admit multi chain orderings.

Multi-chain ordering

Definition (Chain Graph)

A bipartite graph $G=(A, B)$ is a chain graph if and only if for any two vertices $u, v \in A$, either $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$. If G is a chain graph, it follows that for any two vertices $u, v \in B$, either $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$.

As a consequence, we can order the vertices in B in the decreasing order of the degrees. We can break ties arbitrarily. If $b_{1} \in B$ appears before $b_{2} \in B$ in the ordering, then it follows that $N\left(b_{2}\right) \subseteq N\left(b_{1}\right)$.

Multi-chain ordering

Definition (Multi-chain Ordering)

We say that distance layers form a multi-chain ordering of G if for every two consecutive layers L_{i} and L_{i+1}, where $i \in\{0,1, \ldots, p-1\}$, we have that the vertices in L_{i} and L_{i+1}, and the edges connecting these layers form a chain graph.

Interval Graphs

Theorem (Enright, Stewart and Tardos (SIDMA 2014))

All connected interval graphs admit multi-chain orderings.

Theorem (Our Result)

Given an interval graph G, there is a polynomial time algorithm that determines $\chi_{O N}^{*}(G)$.

Overall Idea of the Proof.

- We give a characterization of interval graphs that require one color and two colors in polynomial time.
- If G is not CFON* colorable using one color or two colors, we conclude that G is CFON* colorable using three colors (since it is known that for an interval graph $G, \chi_{O N}^{*}(G) \leq 3$).
- One of the key ideas used to decide if G can be CFON* 2-colorable is sort of a bootstrapping idea.

1-Colorable?

Observation

If G admits a multi-chain ordering, then every distance layer L_{i}, for $0 \leq i<p$ contains a vertex v such that $N(v) \supseteq L_{i+1}$.

- This means that if G is CFON* colorable with 1 color, then, L_{i+1} has at most one vertex that is colored.
- There are $\left|L_{i+1}\right|$ possible colorings to check for L_{i+1}.
- We also need to check if the colorings are consistent across neighboring layers.
- This leads to a dynamic programming algorithm.

Theorem

Given an interval graph $G=(V, E)$, we can decide in $O\left(n^{5}\right)$ time if $\chi_{O N}^{*}(G)=1$.

2-Colorable?

- The idea is similar to checking 1-colorability, but there are more cases to deal with.
- One of the cases require us to verify that a subgraph is 1 -CFON* colorable.
- We use the algorithm for 1-colorability since subgraphs of interval graphs are interval graphs.

Theorem

Given an interval graph $G=(V, E)$, we can decide in $O\left(n^{20}\right)$ time if $\chi_{O N}^{*}(G)=2$.

Interval Graphs

Remark

Recently, the work of Gonzalez and Mann [Gonzalez-Mann] (done simultaneously and independently from ours) on mim-width showed that the CFON* coloring problem is polynomial-time solvable on graph classes for which a branch decomposition of constant mim-width can be computed in polynomial time.
This includes the class of interval graphs. We note that our work gives a more explicit algorithm without having to go through the machinery of mim-width.
We also note that the mim-width algorithm, as presented in [Gonzalez-Mann], requires a running time in excess of $\Omega\left(n^{300}\right)$. Hence our algorithm is better in this regard as well.
[Gonzalez-Mann] Carolina Lucía Gonzalez and Felix Mann, "On d-stable locally checkable problems on bounded mim-width graphs", CoRR, abs/2203.15724, 2022.

Conclusion

In this paper, we study CFON* coloring on claw-free graphs, interval graphs and biconvex graphs.

- We first show that if G is a $K_{1, k}$-free graph with maximum degree Δ, then $\chi_{O N}^{*}(G)=O\left(k^{2} \log \Delta\right)$.
- We then show that if the minimum degree of G is $\Omega\left(\frac{\Delta}{\log ^{\varepsilon} \Delta}\right)$ for some $\epsilon \geq 0$, then $\chi_{O N}^{*}(G)=O\left(\log ^{1+\epsilon} \Delta\right)$.
Question 1: The tightness of these bounds is a natural open question.
- We show polynomial time algorithms for the CFON* coloring problem on interval graphs and biconvex graphs. (can be extended to CFON coloring also)
Question 2: It may be of interest to study the problem on other subclasses of bipartite graphs, such as convex bipartite graphs, chordal bipartite graphs and tree-convex bipartite graphs.

Thank You!

