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Abstract9

A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph G = (V, E)10

using k colors is an assignment of colors from a set of k colors to a subset of vertices of V (G) such11

that every vertex sees some color exactly once in its open neighborhood. The minimum k for which12

G has a CFON∗ coloring using k colors is called the CFON∗ chromatic number of G, denoted by13

χ∗
ON (G). The analogous notion for closed neighborhood is called CFCN∗ coloring and the analogous14

parameter is denoted by χ∗
CN (G). The problem of deciding whether a given graph admits a CFON∗

15

(or CFCN∗) coloring that uses k colors is NP-complete. Below, we describe briefly the main results16

of this paper.17

For k ≥ 3, we show that if G is a K1,k-free graph then χ∗
ON (G)= O(k2 log ∆), where ∆ denotes18

the maximum degree of G. Dębski and Przybyło in [J. Graph Theory, 2021] had shown that if19

G is a line graph, then χ∗
CN (G)= O(log ∆). As an open question, they had asked if their result20

could be extended to claw-free (K1,3-free) graphs, which are a superclass of line graphs. Since it21

is known that the CFCN∗ chromatic number of a graph is at most twice its CFON∗ chromatic22

number, our result positively answers the open question posed by Dębski and Przybyło.23

We show that if the minimum degree of any vertex in G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0, then24

χ∗
ON (G)= O(log1+ϵ ∆). This is a generalization of the result given by Dębski and Przybyło in25

the same paper where they showed that if the minimum degree of any vertex in G is Ω(∆), then26

χ∗
ON (G)= O(log ∆).27

We give a polynomial time algorithm to compute χ∗
ON (G) for interval graphs G. This answers28

in positive the open question posed by Reddy [Theoretical Comp. Science, 2018] to determine29

whether the CFON∗ chromatic number can be computed in polynomial time on interval graphs.30

We explore biconvex graphs, a subclass of bipartite graphs and give a polynomial time algorithm31

to compute their CFON∗ chromatic number. This is interesting as Abel et al. [SIDMA, 2018]32

had shown that it is NP-complete to decide whether a planar bipartite graph G has χ∗
ON (G) = k33

where k ∈ {1, 2, 3}.34
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72:2 Conflict-free Coloring on Claw-free graphs and Interval graphs

1 Introduction44

A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph45

G = (V, E) using k colors is an assignment of colors from a set of k colors to a subset of46

vertices of V (G) such that every vertex sees some color exactly once in its open neighborhood.47

The minimum k for which G has a CFON∗ coloring using k colors is called the CFON∗
48

chromatic number of G, denoted by χ∗
ON (G).1 The analogous notion for closed neighborhood49

is called CFCN∗ coloring and the analogous parameter is denoted by χ∗
CN (G). It is known50

(see for instance, Equation 1.3 from [26]) that if G has no isolated vertices, then χ∗
CN (G) is51

at most twice χ∗
ON (G). Given a graph G and integer k > 0, the CFON∗ coloring problem is52

the problem of determining if χ∗
ON (G) ≤ k. The CFON∗ variant is considered to be harder53

than the CFCN∗ variant, see for instance, remarks in [22,26].54

The notion of conflict-free coloring was introduced by Even, Lotker, Ron and Smorodinsky55

in 2004, motivated by the frequency assignment problem in wireless communication [14].56

The conflict-free coloring problem on graphs was introduced and first studied by Cheilaris [8]57

and Pach and Tardos [26]. Conflict-free coloring has found applications in the area of sensor58

networks [17, 25] and coding theory [23]. Since its introduction, the problem has been59

extensively studied, see for instance [1, 3, 5, 6, 8, 18, 19, 26, 28]. The decision version of the60

CFON∗ coloring problem and many of its variants are known to be NP-complete [1,18]. In [18],61

Gargano and Rescigno showed that the optimization version of the CFON∗ coloring problem62

is hard to approximate within a factor of n1/2−ϵ, unless P = NP. Fekete and Keldenich [15]63

and Hoffmann et al. [21] studied a conflict-free variant of the chromatic Art Gallery Problem,64

which is about guarding a simple polygon P using a finite set of colored point guards such65

that each point p ∈ P sees at least one guard whose color is distinct from all the other guards66

visible from p.67

The conflict-free coloring problem has been studied on several graph classes like planar68

graphs, split graphs, geometric intersection graphs like interval graphs, unit disk intersection69

graphs and unit square intersection graphs, graphs of bounded degree, block graphs, etc.70

[1, 4, 6, 9, 16, 22, 26, 27]. The problem has been studied from parameterized complexity71

perspective. The problem is fixed-parameter tractable when parameterized by tree-width,72

neighborhood diversity, distance to cluster, or the combined parameters clique-width and73

the number of colors [2, 4, 6, 18,27].74

1.1 Our Contribution and Discussion75

Below, we discuss the main results of this paper.76

The complete bipartite graph K1,3 is known as a claw. If a graph does not contain a77

claw as an induced subgraph, then it is called a claw-free graph. The claw number of a graph78

G is the largest integer k such that G contains an induced K1,k. Dębski and Przybyło [10]79

showed that if G is a line graph with maximum degree ∆, then χ∗
CN (G)= O(log ∆). This80

bound is tight up to constants. Line graphs are a subclass of claw-free graphs. In [10], it81

was asked whether the above result can be extended to claw-free graphs. We do this by82

proving a more general result. We show that if G is K1,k-free with maximum degree ∆, then83

1 It is also known by the name ‘partial conflict-free chromatic number’ as only a subset of vertices are
assigned colors. The ‘(full) conflict-free chromatic number’ of a graph, which requires assigning colors
to all the vertices, is at most one more than its partial conflict-free chromatic number. We use the
notations χ∗

ON (G) and χ∗
CN (G) to be consistent with our other papers on related topics. In our other

papers, we use χON (G) and χCN (G) to refer to the versions of the problem that require all the vertices
to be assigned a color.
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χ∗
ON (G)= O(k2 log ∆). Since χ∗

CN (G) ≤ 2χ∗
ON (G), we have χ∗

CN (G)= O(k2 log ∆) as well.84

This result is presented in Section 3.2.85

What is the maximum number of colors required to CFON∗ color a graph whose maximum86

degree is ∆? It can be seen that the graph obtained by subdividing every edge of a complete87

graph requires ∆ + 1 colors. It is known that for a graph G with maximum degree ∆,88

χ∗
ON (G) is at most ∆ + 1 [26]. Pach and Tardos [26] showed that if the minimum degree89

of any vertex in G is Ω(log ∆), then χ∗
ON (G)= O(log2 ∆). In this direction, Dębski and90

Przybyło [10] showed that if the minimum degree of any vertex in G is Ω(∆), then the91

previous upper bound can be improved to show χ∗
ON (G)= O(log ∆). We extend the proof92

idea of [10] to generalize their result. We show that if the minimum degree of any vertex93

in G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0, then χ∗

ON (G)= O(log1+ϵ ∆). This result is presented in94

Section 3.3. A natural open question we have here is, can we get a stronger upper bound for95

the CFON∗ chromatic number of a graph with minimum degree ω(1)? When the minimum96

degree is o(log ∆), the only upper bound known is O(∆) mentioned above due to [26]. In this97

situation our first result does give a better (than O(∆)) upper bound for CFON∗ chromatic98

number, if the claw number of the graph under consideration is o
(√

∆
log ∆

)
.99

For an interval graph G, it has been shown that [4, 27] χ∗
ON (G) ≤ 3. It was shown100

in [4] that there exists an interval graph that requires 3 colors, making the above bound101

tight. It was asked in [27] if there is a polynomial time algorithm that given an interval102

graph G, computes χ∗
ON (G). We answer this in the affirmative and give polynomial time103

characterization algorithms for interval graphs G that decide if χ∗
ON (G) ∈ {1, 2, 3}. These104

results are presented in Section 4.105

For a bipartite graph G, it is easy to see that χ∗
CN (G) ≤ 2. On the contrary, there106

exist bipartite graphs G, for which χ∗
ON (G) = Θ(

√
n). It is NP-complete [1] to decide if a107

planar bipartite graph is CFON∗ colorable using k colors, where k ∈ {1, 2, 3}. We study the108

problem on some subclasses of bipartite graphs that include chain graphs, biconvex bipartite109

graphs, and bipartite permutation graphs. We show that three colors are sufficient to CFON∗
110

color a biconvex bipartite graph and give characterization algorithms to decide the CFON∗
111

chromatic number. The results are presented in Section 5.112

2 Preliminaries113

Throughout the paper, we consider simple undirected graphs. We denote the vertex set and114

the edge set of a graph G = (V, E), by V (G) and E(G). For standard graph notations, we115

refer to the graph theory book by R. Diestel [11]. For a vertex v ∈ G, its open neighborhood,116

denoted by NG(v), is the set of neighbors of v in G. The closed neighborhood of v, denoted117

by NG[v], is NG(v) ∪ {v}. We use log to denote the logarithm to the base 2, and ln to118

denote the natural logarithm. Proofs of the results marked with (⋆) are omitted due to space119

constraints.120

3 Improved bounds for χ∗
ON(G) for graphs with bounded claw number121

The graph K1,k is the complete bipartite graph on k + 1 vertices with one vertex in one part122

and the remaining k vertices in the other part.123

▶ Definition 1 (Claw number). The claw number of a graph G is the smallest k such that G124

is K1,k+1-free. In other words, it is the largest k such that G contains an induced K1,k.125

The complete bipartite graph K1,3 is called a claw. A graph is called a claw-free graph if it126

does not contain a claw as an induced subgraph.127

MFCS 2022
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In this section, we prove two results: (i) an improved bound for χ∗
ON (G) in terms of the128

claw number and maximum degree of G, and (ii) an improved bound for χ∗
ON (G) for graphs129

with high minimum degree. We begin by stating a couple of results from probability theory130

which will be useful.131

▶ Lemma 2 (The Local Lemma, [13]). Let A1, . . . , An be events in an arbitrary probability132

space. Suppose that each event Ai is mutually independent of a set of all the other events Aj133

but at most d, and that Pr[Ai] ≤ p for all i ∈ [n]. If 4pd ≤ 1, then Pr[∩n
i=1Ai] > 0.134

▶ Theorem 3 (Chernoff Bound, Corollary 4.6 in [24]). Let X1, . . . , Xn be independent Poisson135

trials such that Pr[Xi] = pi. Let X =
∑n

i=1 Xi and µ = E[X]. For 0 < δ < 1, Pr[|X − µ| ≥136

δµ] ≤ 2e−µδ2/3.137

3.1 Auxiliary lemmas138

In this subsection, we state some auxiliary lemmas on conflict-free chromatic number of139

graphs and hypergraphs having certain structural characteristics that will be used to prove140

the main theorems in Sections 3.2 and 3.3. Before we begin, let us define the conflict-free141

chromatic number of a hypergraph.142

▶ Definition 4. Given a hypergraph H = (V, E), a coloring c : V → [r] is a conflict-free143

coloring of H if for every hyperedge E ∈ E, there is a vertex in E that receives a color under144

c that is distinct from the colors received by all the other vertices in E. The minimum r such145

that c : V → [r] is a conflict-free coloring of H is called the conflict-free chromatic number146

of H. This is denoted by χCF (H).147

The following theorem on conflict-free coloring of hypergraphs is from [26]. The degree of a148

vertex in a hypergraph is the number of hyperedges it is part of.149

▶ Theorem 5 (Theorem 1.1(b) in [26]). Let H be a hypergraph and let ∆ be the maximum150

degree of any vertex in H. Then, χCF (H) ≤ ∆ + 1.151

We prove an upper bound for the conflict-free chromatic number of a ‘near uniform hypergraph’152

in Lemma 6 below.153

▶ Lemma 6. Let H = (V, E) be a hypergraph where (i) every hyperedge intersects with at154

most Γ other hyperedges, and (ii) for every hyperedge E ∈ E, r ≤ |E| ≤ ℓr, where ℓ ≥ 1155

is some integer and r ≥ 2 log(4Γ). Then, χCF (H) ≤ eℓr, where e is the base of natural156

logarithm.157

Proof. For each vertex in V , assign a color that is chosen independently and uniformly at158

random from a set of eℓr colors. We will first show that the probability of this coloring being159

bad for an edge is small, and then use Local Lemma to show the existence of conflict-free160

coloring for H using at most eℓr colors.161

Consider a hyperedge E ∈ E with m := |E|. By assumption, we have r ≤ m ≤ ℓr. Let162

AE denote the bad event that E is colored with ≤ |E|/2 colors. Note that if AE does not163

occur, then E is colored with > |E|/2 colors, hence there is at least one color that appears164

exactly once in E.165
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Pr[AE ] ≤
(

eℓr

m/2

) (
m/2
eℓr

)m

166

≤
(

e2ℓr

m/2

)m/2 (
m/2
eℓr

)m

(since
(

n

k

)
≤

(en

k

)k

)167

= (m/2)m/2

(ℓr)m/2 =
( m

2ℓr

)m/2
168

≤ (1/2)m/2 ≤ 1
4Γ .169

Here the penultimate inequality follows since m ≤ ℓr, and the last inequality follows since170

m ≥ 2 log(4Γ).171

We apply the Local Lemma (Lemma 2) on the events AE for all hyperedges E ∈ E .172

Since each hyperedge intersects with at most Γ other hyperedges, and 4 · 1
4Γ · Γ ≤ 1, we get173

Pr[∩E∈E(AE)] > 0. That is, there is a conflict free coloring of H that uses at most eℓr colors.174

This completes the proof of the lemma. ◀175

Lemmas 7 and 8 prove upper bounds for χ∗
ON (G) when G satisfies certain degree restric-176

tions.177

▶ Lemma 7. Let G be a graph with (i) V (G) = X ⊎ Y , X, Y ̸= ∅, (ii) every vertex in G has178

at most dX neighbors in X, (iii) every vertex in Y has at least one neighbor in X, and (iv)179

every vertex in X has at most dY neighbors in Y . Then, there is a coloring of vertices of X180

with dXdY + dX − dY + 1 colors such that every vertex in Y sees some color exactly once181

among its neighbors in X.182

Proof. For each vertex y ∈ Y , we arbitrarily choose one of its neighbors in X. Let us call183

this neighbor f(y). For each y ∈ Y , contract the edges {y, f(y)} to obtain a resulting graph184

GX . Note that the vertex set of GX is V (GX) = X. The maximum degree of a vertex in the185

new graph GX is at most (dX − 1)dY + dX . Thus, we can do a proper coloring (such that no186

pair of adjacent vertices receive the same color) of GX using dXdY + dX − dY + 1 colors. We187

note that this coloring of the vertices of X satisfies our requirement: in the original graph G,188

for each y ∈ Y , the neighbor f(y) is colored distinctly from all the other neighbors of y in189

X. ◀190

▶ Lemma 8. Let G be a graph with (i) V (G) = X ⊎ Y , X, Y ̸= ∅, (ii) every vertex in Y has191

at most tX neighbors in X, and (iii) every vertex in X has at least one neighbor in Y . Then,192

there is a coloring of the vertices of Y using at most (tX + 1) colors such that every vertex in193

X sees some color exactly once among its neighbors in Y .194

Proof. For every vertex v ∈ X, let NY
G (v) denote the set NG(v) ∩ Y , i.e., the neighbors of195

v in Y in the graph G. Since every vertex in X has at least one neighbor in Y , we have,196

|NY
G (v)| ≥ 1. We construct a hypergraph H = (V, E) from G as described below. We have (i)197

V = Y , and (ii) E = {NY
G (v) : v ∈ X}. Since every vertex in Y has at most tX neighbors198

in X in the graph G, the maximum degree of a vertex in the hypergraph H (that is, the199

maximum number of hyperedges a vertex in H is part of) is at most tX . From Theorem 5,200

we have χCF (H) ≤ tX + 1. Observe that in this coloring of the vertices of Y using at most201

(tX + 1) colors, every vertex in X sees some color exactly once among its neighbors in Y . ◀202

MFCS 2022
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The following lemma, which will be used in the proof of Theorem 12, shows that given203

a graph with high minimum degree there exists a subset of vertices that, for every vertex,204

intersects its neighborhood at a small number of vertices.205

▶ Lemma 9. Let ∆ denote the maximum degree of a graph G. It is given that every vertex in
G has degree at least c∆

logϵ ∆ for some ϵ ≥ 0 and c is a constant. Then, there exists A ⊆ V (G)
such that for every vertex v ∈ V (G),

75 log(2∆) < |NG(v) ∩ A| <
125
c

log1+ϵ(2∆).

Proof. We construct a random subset A of V (G) as described below. Each v ∈ V (G) is206

independently chosen into A with probability 100 log1+ϵ(2∆)
c∆ . For a vertex v ∈ V (G), let Xv207

be a random variable that denotes |NG(v) ∩ A|. Then, µv := E[Xv] = 100 log1+ϵ(2∆)
c∆ dG(v) ≥208

100 log(2∆). Since dG(v) ≤ ∆, we also have µv ≤ 100 log1+ϵ(2∆)
c . Let Bv denote the event209

that |Xv − µv| ≥ µv

4 . Applying Theorem 3 with δ = 1/4, we get Pr[Bv] = Pr[|Xv − µv| ≥210

µv

4 ] ≤ 2e− µv
48 ≤ 2e− 100 log(2∆)

48 = 2e− 100 ln(2∆)
48 ln 2 < 2

(2∆)3 . The event Bv is mutually independent211

of all but those events Bu where NG(u) ∩ NG(v) ̸= ∅. Hence, every event Bv is mutually212

independent of all but at most ∆2 other events. Applying Lemma 2 with p = Pr[Bv] ≤ 2
(2∆)3213

and d = ∆2, we have 4 · 2
(2∆)3 · ∆2 ≤ 1. Thus, there is a non-zero probability that none of214

the events Bv occur. In other words, for every v, it is possible to have 3
4 µv < Xv < 5

4 µv.215

Using the upper and lower bounds of µv we computed above, we can say that there exists an216

A such that, for every v, 75 log(2∆) < |NG(v) ∩ A| < 125
c log1+ϵ(2∆). ◀217

3.2 Graphs with bounded claw number218

▶ Theorem 10. Let G be a K1,k-free graph with maximum degree ∆ having no isolated219

vertices. Then, χ∗
ON (G)= O(k2 log ∆).220

Proof. Consider a proper coloring (such that no pair of adjacent vertices receive the same221

color) of G, h : V (G) → [∆ + 1], using ∆ +1 colors. Let C1, C2, . . . , C∆+1 be the color classes222

given by this coloring G. That is, V (G) = C1 ⊎ C2 ⊎ · · · ⊎ C∆+1 is the partitioning of the223

vertex set of G given by the coloring, where each Ci is an independent set. We may assume224

that the coloring h satisfies the following property: for every 1 < i ≤ ∆ + 1, every vertex v225

in Ci has at least one neighbor in every Cj , where 1 ≤ j < i (otherwise, we can move v to a226

color class Cj , j < i, in which it has no neighbors without compromising on the ‘properness’227

of the coloring). Since G is K1,k-free, we have the following observation.228

▶ Observation 11. For every i ∈ [∆ + 1], a vertex in G has at most k − 1 neighbors in Ci.229

Let r = 2 log(4∆2). We partition the vertex set of G into three parts, namely V1, V2, and230

V3 as described below. We have V1 := C1. If ∆ > r, then V2 := C2 ⊎ C3 ⊎ · · · ⊎ Cr+1 and231

V3 := Cr+2 ⊎ Cr+3 ⊎ · · · ⊎ C∆+1. Otherwise, V2 := C2 ⊎ C3 ⊎ · · · ⊎ C∆+1 and V3 := ∅.232

The rest of the proof is about constructing a coloring f : V (G) → N × N that is a233

CFON∗ coloring of G. Let N1 = {1, 2, . . . , r1}, N2 = {r1 + 1, r1 + 2, . . . , r1 + r2}, and234

N3 = {r1 + r2 + 1, r1 + r2 + 2, . . . , r1 + r2 + r3}, where |N1| = r1 = (k − 1)(k − 2)r + k,235

|N2| = r2 = e(k − 1)r, and |N3| = r3 = k. We define three colorings f1, f2, and f3 below.236

We begin by describing the coloring f1 : V1 → N1. Let G[V1 ∪ V2] be the subgraph of237

G induced on V1 ∪ V2. From Observation 11, every vertex in G[V1 ∪ V2] has at most k − 1238

neighbors in V1 = C1. Every vertex in V2 has at least one neighbor in V1 due to the property239

of our coloring h. From Observation 11, we can also say that every vertex in V1 has at most240
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r(k − 1) neighbors in V2. Applying Lemma 7 on G[V1 ∪ V2] with X = V1, Y = V2, dX = k − 1241

and dY = r(k − 1), we can say that there is a coloring f1 : V1 → N1 of the vertices of V1 with242

(k − 1)(k − 2)r + k colors such that every vertex in V2 sees some color exactly once among243

its neighbors in V1.244

We now describe the coloring f2 : V2 → N2. If V3 = ∅, then, ∀v ∈ V2, f2(v) = r1 + 1.245

Suppose V3 ̸= ∅. For a vertex v in G, let NV2
G (v) denote the set of neighbors of v in V2 in the246

graph G. We construct a hypergraph H2 = (V2, E2) as follows. We have E2 = {NV2
G (v) : v ∈247

V3}. Consider an arbitrary hyperedge E ∈ E2. In the graph G, since every vertex in V3 has at248

least one neighbor in every color class Ci, 2 ≤ i ≤ r + 1, |E| ≥ r. Using Observation 11, we249

can say that |E| ≤ (k − 1)r. As |NV2
G (v)| ≤ NG(v) ≤ ∆, ∀v ∈ V (G), we have |E| ≤ ∆. This250

also implies that E intersects with at most ∆2 other hyperedges in E2. Applying Lemma251

6 with ℓ = (k − 1) and Γ = ∆2, we have χCF (H2) ≤ e(k − 1)r. Thus, there is a coloring252

f2 : V2 → N2 of the vertices V2 such that every vertex in V3 sees some color exactly once253

among its neighbors in V2.254

Finally, we describe the coloring f3 : V2 ∪ V3 → N3. From Observation 11, every vertex255

in V2 ∪ V3 has at most k − 1 neighbors in V1 = C1. Since there are no isolated vertices in G,256

every vertex in V1 has at least one neighbor in V2 ∪ V3. Applying Lemma 8 with X = V1,257

Y = V2 ∪ V3, and tX = k − 1, we get a coloring f3 : V2 ∪ V3 → N3 of the vertices of V2 ∪ V3258

using at most k colors such that every vertex in V1 sees some color exactly once among its259

neighbors in V2 ∪ V3.260

We are now ready to define the coloring f .261

f(v) =


(1, f1(v)), if v ∈ V1

(f2(v), f3(v)), if v ∈ V2

(1, f3(v)), if v ∈ V3

.262

263

We now argue that f is indeed a CFON∗ coloring of G. Consider a vertex v ∈ V (G). If v ∈ V3,264

v sees some color exactly once among its neighbors in V2 under the coloring f2. Let u be that265

neighbor of v in V2 and f2(u) be that color that appears exactly once in the neighborhood266

of v in V2. Since the codomains of f1, f2, and f3 are pairwise disjoint sets, v does not see267

the same color among its neighbors in V1 or in V2. Further, since f(u) = (f2(u), f3(u)), the268

final coloring f only refines the color classes of V2 given by f2. Thus, the color (f2(u), f3(u))269

appears exactly once among the neighbors of v in G. The cases when v ∈ V1 and v ∈ V2 also270

follow using similar arguments.271

The coloring f uses at most |N1| + |N2||N3| + |N3| = (k − 1)(k − 2)r + k + e(k − 1)kr + k272

colors. Since r = O(log ∆), this implies that χON
CF (G) = O(k2 log ∆). ◀273

3.3 Graphs with high minimum degree274

When a graph G has high minimum degree, the following theorem gives improved upper275

bounds for χ∗
ON (G) in terms of its maximum degree.276

▶ Theorem 12. Let G be a graph with maximum degree ∆. It is given that every vertex in G277

has degree at least c∆
logϵ ∆ for some ϵ ≥ 0 and c is a constant. Then, χ∗

ON (G)= O(log1+ϵ ∆).278

Proof. Apply Lemma 9 to find an A ⊆ V (G) such that for every v ∈ V (G), 75 log(2∆) <279

|NG(v) ∩ A| < 125
c log1+ϵ(2∆). Construct a hypergraph H = (A, E) where E = {NG(v) ∩280

A : v ∈ V (G)}. Every E ∈ E satisfies 2 log(4∆2) < 75 log(2∆) < |E| < 125
c log1+ϵ(2∆). Ap-281

plying Lemma 6 with r = 75 log(2∆) and ℓ = 5
3c logϵ(2∆), we get χCF (H) ≤ 340

c log1+ϵ(2∆).282

It is easy to see that this conflict-free coloring of H is indeed a CFON∗ coloring for G. ◀283
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4 Interval graphs284

In this section, we show that the problem of determining the CFON∗ chromatic number285

of a given interval graph is polynomial time solvable. It was shown in [4, 27] that, for an286

interval graph G, χ∗
ON (G) ≤ 3 and that there exists an interval graph that requires three287

colors. The complexity of the problem on interval graphs was posed as an open question in288

the above papers. We show that CFON∗ coloring is polynomial time solvable. That is, given289

an interval graph G, in polynomial time we decide whether χ∗
ON (G) is 1, 2 or 3. We state it290

formally below.291

▶ Theorem 13. Given an interval graph G, there is a polynomial time algorithm that292

determines χ∗
ON (G).293

▶ Remark 14 (Notation). In the introduction, we defined CFON∗ coloring to be an assignment294

of colors to a subset of the vertices. For the sake of convenience, we will use the color 0 to295

denote uncolored vertices. That is, we will use an assignment f : V (G) → {0, 1, 2}, to denote296

a coloring that assigns the colors 1 and 2 to some vertices. The vertices that are assigned297

0 by f are the “uncolored” vertices. The “color” 0 cannot serve as a unique color in the298

neighborhood of any vertex.299

▶ Definition 15 (Interval Graphs). A graph G = (V, E) is called an interval graph if there300

exists a set of intervals on the real line such that the following holds: (i) there is a bijection301

between the intervals and the vertices and (ii) there exists an edge between two vertices if302

and only if the corresponding intervals intersect.303

The main ingredient of the algorithm is the use of multi-chain ordering property on interval304

graphs. Before defining the multi-chain ordering property, we look at some prerequisites.305

▶ Definition 16 (Chain Graph [12]). A bipartite graph G = (A, B) is a chain graph if and306

only if for any two vertices u, v ∈ A, either N(u) ⊆ N(v) or N(v) ⊆ N(u). If G is a chain307

graph, it follows that for any two vertices u, v ∈ B, either N(u) ⊆ N(v) or N(v) ⊆ N(u).308

As a consequence, we can order the vertices in B in the decreasing order of the degrees.309

We can break ties arbitrarily. If b1 ∈ B appears before b2 ∈ B in the ordering, then it follows310

that N(b2) ⊆ N(b1).311

▶ Definition 17 (Multi-chain Ordering [7, 12]). Given a connected graph G = (V, E), we312

arbitrarily choose a vertex as v0 ∈ V (G) and construct distance layers L0, L1, . . . , Lp from313

v0. The layer Li, where i ∈ [p], represents the set of vertices that are at a distance i from v0.314

Note that p here denotes the largest integer such that Lp is non-empty.315

We say that these layers form a multi-chain ordering of G if for every two consecutive316

layers Li and Li+1, where i ∈ {0, 1, . . . , p − 1}, we have that the vertices in Li and Li+1, and317

the edges connecting these layers form a chain graph.318

▶ Theorem 18 (Theorem 2.5 of [12]). All connected interval graphs admit multi-chain319

orderings.320

We give a characterization of interval graphs that require one color and two colors in321

polynomial time in Theorem 21 and Theorem 23 respectively. Given an interval graph G, the322

algorithms decide if G is CFON∗ colorable using one color or two colors. If G is not CFON∗
323

colorable using one color or two colors, we conclude that G is CFON∗ colorable using three324

colors (since it is known that for an interval graph G, χ∗
ON (G) ≤ 3). One of the key ideas325

used in Theorem 23 (to decide if G can be CFON∗ colored using two nonzero colors) is sort326
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of a bootstrapping idea. After narrowing down the possibilities, we need to test if a given327

subgraph can be colored using the colors {0, 1} so as to obtain a CFON∗ coloring. To solve328

this, we use Theorem 21.329

Before we proceed to the main theorems of this section, we observe the following on a330

graph G that admits multi-chain ordering.331

▶ Observation 19. If G admits a multi-chain ordering, then every distance layer Li, for332

0 ≤ i < p contains a vertex v such that N(v) ⊇ Li+1.333

Proof. Consider a multi-chain ordering of G, starting with an arbitrary vertex. For any334

two consecutive distance layers Li and Li+1, it can be seen that each vertex in Li+1 has a335

neighbor in Li. This, together with the fact that Li and Li+1 form a chain graph, imply that336

there is a vertex v ∈ Li such that N(v) ⊇ Li+1. ◀337

▶ Observation 20. In any CFON∗ coloring of G that uses one color, at most one vertex in338

each Li is assigned the color 1.339

Proof. Consider a layer Li of the graph. As per Observation 19, there is a v ∈ Li such that340

N(v) ⊇ Li+1. If two vertices in Li+1 are colored 1, then the vertex v ∈ Li does not have a341

uniquely colored neighbor. Hence in all the layers L1, L2, . . . up to the last layer Lp, we have342

that at most one vertex is assigned the color 1. Since L0 has only one vertex, the statement343

is trivially true for L0. ◀344

▶ Theorem 21. Given an interval graph G = (V, E), we can decide in O(n5) time if345

χ∗
ON (G) = 1.346

Proof. Let L0, L1, . . . , Lp be the distance layers of G constructed from an arbitrarily chosen347

vertex v0, satisfying the multi-chain ordering. If there is a CFON∗ coloring that uses 1 color,348

then from Observation 20, at most one vertex in each layer is assigned the color 1. There349

are two possibilities for a layer Li: either it has no vertices colored 1, or it has exactly one350

vertex that is colored 1. In the former case, there is a unique coloring for Li when none of351

the vertices in Li are assigned the color 1. In the latter case, we have |Li| many colorings352

(for Li) where each coloring has exactly one vertex with color 1 (and the rest are assigned 0).353

In total, we have at most |Li| + 1 colorings for each Li. We call all such colorings valid.354

The task is to find if there is a sequence of colorings assigned to each layer of G such355

that we have a CFON∗ coloring. Notice that the vertices in Li can possibly have neighbors356

in the layers Li−1, Li, and Li+1. The question of deciding whether the vertices in Li have a357

uniquely colored neighbor entirely depends on the colorings assigned to these three layers.358

We say that colorings assigned to three consective layers are good if the vertices in the central359

layer have uniquely colored neighbors. We use a dynamic programming based approach to360

verify the existence of a CFON∗ coloring for G.361

We now construct a layered companion hypergraph G = (V ′, E) with vertices in p + 1362

layers. Each layer Ti of G corresponds to the layer Li of G where i ∈ [p] ∪ {0}. Each vertex363

in layer Ti of G corresponds to a valid coloring of vertices in Li of G. Hence the number of364

vertices in each layer Ti of G is equal to |Li| + 1. We now explain how the hyperedges E of G365

are determined.366

For 1 ≤ i ≤ p − 1, the vertices x ∈ Ti−1, y ∈ Ti, z ∈ Ti+1 form a hyperedge {x, y, z} if the367

corresponding colorings, when assigned to Li−1, Li and Li+1 respectively, ensures that every368

vertex in Li has a uniquely colored neighbor. We also have hyperedges {y, z}, where y ∈ T0369

and z ∈ T1 are colorings such that when y and z are assigned to L0 and L1 respectively, the370

vertex in L0 sees a uniquely colored neighbor. Similarly, we have hyperedges {x, y}, where371
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x ∈ Tp−1 and z ∈ Tp are colorings such that when x and y are assigned to Lp−1 and Lp372

respectively, all the vertices in Lp see a uniquely colored neighbor.373

Since the number of valid colorings is |Li| + 1 for the layer Li, the total number of valid374

colorings across all layers is at most 2n. The total number of potential hyperedges to check375

is at most O(n3). Once we fix valid colorings xi−1, xi, xi+1 for Li−1, Li, Li+1 respectively,376

we can check in O(|Li| · n) ≤ O(n2) time if {xi−1, xi, xi+1} ∈ E . Hence we need O(n5) time377

to construct G.378

To obtain a CFON∗ coloring for G, we need to construct a sequence of colorings x0 ∈ T0,379

x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E , {xi−1, xi, xi+1} ∈ E for all 1 ≤ i ≤ p − 1, and380

finally {xp−1, xp} ∈ E . For this, we use Lemma 22, stated and proved below. Since each381

|Ti| = |Li| + 1 ≤ n + 1, and number of layers is at most n, this takes at most O(n4) time.382

The construction of G takes O(n5) time and dominates the running time. ◀383

▶ Lemma 22. Suppose there is a layered hypergraph G = (V ′, E) with layers T0, T1, T2, . . . , Tp,384

where |Ti| ≤ α, for 0 ≤ i ≤ p and p ≤ β. Suppose further that all the hyperedges in E contain385

one vertex each from three consecutive layers, or contain one vertex each from T0 and386

T1, or contain one vertex each from Tp−1 and Tp. We can determine if there exists a387

sequence x0 ∈ T0, x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E, {xi−1, xi, xi+1} ∈ E for all388

1 ≤ i ≤ p − 1, and finally {xp−1, xp} ∈ E in O(α3β) time.389

Proof. We start with the vertices in T0. For each vertex x1 ∈ T1, we store a list of predecessors390

x0 such that {x0, x1} ∈ E . For 1 ≤ i ≤ p − 1, we do the following at each vertex xi ∈ Ti.391

We look at the list of predecessors stored. If xi−1 is a listed predecessor of xi, then we392

search for all the hyperedges {xi−1, xi, z}, where z ∈ Ti+1. If we find such a hyperedge393

{xi−1, xi, xi+1} ∈ E , then we store xi as a predecessor in the list at xi+1. Finally, for each394

xp ∈ Tp, we check if there is a listed predecessor z ∈ Tp−1 of xp such that {z, xp} ∈ E . If395

there is any such xp ∈ Tp for which this holds, then there exists a sequence as desired in the396

statement of the lemma.397

Note that the general step involves going through a list of size at most α at each vertex398

xi. For each listed predecessor xi−1, there are potentially at most α hyperedges of the form399

{xi−1, xi, z} to check, where z ∈ Ti+1. We need to do this for all the vertices (at most α of400

them) of Ti. This gives a time complexity of O(α3) at the i-th layer. Since there are β layers,401

the total running time is O(α3β). ◀402

We now proceed to the next result that decides in polynomial time whether χON (G) = 2.403

404

▶ Theorem 23 (⋆). Given an interval graph G, we can decide in O(n20) time if χON (G) = 2.405

Sketch of Proof. The idea of this proof is similar to the proof of Theorem 21. For a layer406

|Li|, we had |Li| + 1 colorings to consider in Theorem 21. Unlike in Theorem 21, we have407

more colorings to consider since the vertices can get the colors {0, 1, 2}. We have the following408

types of colorings in each layer Li:409

Type 1: All the vertices in Li are assigned the color 0. There is only one coloring of Li of410

this type.411

Type 2: Exactly one vertex is assigned the color 1 or 2 while the rest are assigned the color412

0. The number of colorings is 2|Li|.413

Type 3: Both the colors 1 and 2 appear exactly once and the rest are assigned the color 0.414

The number of colorings is |Li|(|Li| − 1) ≤ |Li|2.415
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Type 4: One of the colors 1 or 2 appears at least twice while the other color appears exactly416

once. The remaining vertices are assigned the color 0.417

Type 5: One of the colors 1 or 2 appears at least twice and all the other vertices are assigned418

the color 0.419

Due to space constraints, the full proof is omitted. We describe a proof sketch highlighting420

the key ideas in the proof below.421

The above 5 types are exhaustive. We cannot have a “Type 6” coloring in Li+1 where422

there are at least two vertices with color 1 and at least two vertices with color 2. This is423

because Observation 19 implies the existence of a vertex v ∈ Li such that N(v) ⊇ Li+1.424

This implies that v does not have a uniquely colored neighbor for such a coloring of Li+1.425

The number of colorings of Types 1, 2, 3 are polynomial in |Li| while the number of426

colorings of Types 4 and 5 are exponential in |Li|. Since we cannot consider an exponential427

number of colorings, we consider a polynomial subset of Type 4 and Type 5 colorings428

which are representatives of all possible Type 4 and Type 5 colorings.429

Given a Type 4 or Type 5 coloring, the key point is that it is enough to fix the colors of430

a few vertices that we will refer to as “left-important” and “right-important” vertices.431

This allows us to restrict the focus onto a reduced number of representative colorings.432

Because of the flexibility offered by the representative colorings, there are some cases433

where we have to explore further in order to decide if the graph is CFON∗ colorable using434

colors from {0, 1, 2}. This reduces to the problem of testing whether a given subgraph is435

CFON∗ colorable using colors from {0, 1}. We use Theorem 21 (with some minor changes)436

to accomplish this. This is the last, but critical step that we need to complete the proof.437

◀438

Using Theorems 21 and 23, we can now infer Theorem 13.439

▶ Remark 24. Recently, the work of Gonzalez and Mann [20] (done simultaneously and inde-440

pendently from ours) on mim-width showed that the CFON∗ coloring problem is polynomial-441

time solvable on graph classes for which a branch decomposition of constant mim-width can442

be computed in polynomial time. This includes the class of interval graphs. We note that443

our work gives a more explicit algorithm without having to go through the machinery of444

mim-width. We also note that the mim-width algorithm, as presented in [20], requires a445

running time in excess of Ω(n300). Hence our algorithm is better in this regard as well.446

5 Subclasses of Bipartite Graphs447

It is known that there exist bipartite graphs G for which χ∗
ON (G) = Θ(

√
n), where n is448

the number of vertices of G. Abel et al. [1] showed that it is NP-complete to decide if k449

colors are sufficient to CFON∗ color a planar bipartite graph even when k ∈ {1, 2, 3}. This450

implies that CFON∗ coloring is NP-hard on bipartite graphs as well. In this section, we451

study CFON∗ coloring on some subclasses of bipartite graphs namely biconvex graphs and452

bipartite permutation graphs. We show that CFON∗ coloring is polynomial time solvable on453

these classes.454

We first define biconvex graphs, followed Lemma 26 by a bound on the CFON* chromatic455

number. The proof of Lemma 26 is omitted.456

▶ Definition 25 (Biconvex Graph). We say that an ordering σ of X in a bipartite graph457

B = (X, Y, E) satisfies the adjacency property if for every vertex y ∈ Y , the neighborhood458

N(y) is a set of vertices that are consecutive in the ordering σ of X. A bipartite graph459
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(X, Y, E) is biconvex if there are orderings of X (with respect to Y ) and Y (with respect to460

X) that fulfill the adjacency property.461

▶ Lemma 26 (⋆). If G is a biconvex graph, then χ∗
ON (G) ≤ 3.462

▶ Theorem 27. The problem of determining the CFON∗ chromatic number of a given463

biconvex graph is solvable in polynomial time.464

Proof. Given a biconvex graph G, we show that χ∗
ON (G) ≤ 3. We use the fact that every465

induced subgraph of a biconvex graph admits multi-chain ordering [7, 12]. Let G = (V, E)466

be a biconvex graph and let V0, V1, . . . , Vq be a partition of vertices V (G) respecting the467

multi-chain ordering conditions. Similar to interval graphs, we now characterize graphs that468

require one color and two colors. Note that the algorithms in Theorems 21 and 23 work for469

biconvex graphs too as the proof is based on the multi-chain ordering property and biconvex470

bipartite graphs admit multi-chain ordering property. In fact, the proof is a bit simpler471

because of the fact that each Vi is an independent set and we do not need to take care of the472

edges within a part Vi, as in the case of interval graphs. ◀473

The class of bipartite permutation graphs [7] are a subclass of biconvex, and also admit474

multi-chain ordering property. Hence it follows from Theorem 27 that the problem is475

polynomial time solvable on bipartite permutation graphs.476

▶ Corollary 28. The problem of determining the CFON∗ chromatic number of a given477

bipartite permutation graph is solvable in polynomial time.478

6 Conclusion479

In this paper, we study CFON∗ coloring on claw-free graphs, interval graphs and biconvex480

graphs.481

We first show that if G is a K1,k-free graph with maximum degree ∆, then χ∗
ON (G) =482

O(k2 log ∆). We then show that if the minimum degree of G is Ω( ∆
logϵ ∆ ) for some ϵ ≥ 0,483

then χ∗
ON (G) = O(log1+ϵ ∆). The tightness of these bounds is a natural open question.484

We show that CFON∗ coloring is polynomial time solvable on interval graphs and biconvex485

graphs, critically using the fact that they admit multi-chain ordering property. Using a486

similar approach, it can be shown that the full coloring variant of the problem (i.e., CFON487

coloring) is polynomial time solvable on these graph classes. It is known that CFON∗ coloring488

is NP-hard on planar bipartite graphs and there exist bipartite graphs on n vertices that489

requires Θ(
√

n) colors. It may be of interest to study the problem on other subclasses of490

bipartite graphs, such as convex bipartite graphs, chordal bipartite graphs and tree-convex491

bipartite graphs.492

References493

1 Zachary. Abel, Victor. Alvarez, Erik D. Demaine, Sándor P. Fekete, Aman. Gour, Adam.494

Hesterberg, Phillip. Keldenich, and Christian. Scheffer. Conflict-free coloring of graphs. SIAM495

Journal on Discrete Mathematics, 32(4):2675–2702, 2018. doi:10.1137/17M1146579.496

2 Akanksha Agrawal, Pradeesha Ashok, Meghana M. Reddy, Saket Saurabh, and Dolly Yadav.497

FPT algorithms for conflict-free coloring of graphs and chromatic terrain guarding. CoRR,498

abs/1905.01822, 2019. arXiv:1905.01822.499

3 Amotz Bar-Noy, Panagiotis Cheilaris, Svetlana Olonetsky, and Shakhar Smorodinsky. Online500

conflict-free colorings for hypergraphs. pages 219–230, 2007.501

https://doi.org/10.1137/17M1146579
http://arxiv.org/abs/1905.01822


S. Bhyravarapu, S. Kalyanasundaram, and R. Mathew 72:13

4 Sriram Bhyravarapu, Tim A. Hartmann, Subrahmanyam Kalyanasundaram, and I. Vinod502

Reddy. Conflict-free coloring: Graphs of bounded clique width and intersection graphs. In503

Combinatorial Algorithms - 32nd International Workshop, IWOCA 2021, Ottawa, ON, Canada,504

July 5-7, 2021, Proceedings, pages 92–106, 2021. doi:10.1007/978-3-030-79987-8\_7.505

5 Sriram Bhyravarapu, Subrahmanyam Kalyanasundaram, and Rogers Mathew. A short note506

on conflict-free coloring on closed neighborhoods of bounded degree graphs. J. Graph Theory,507

97(4):553–556, 2021. doi:10.1002/jgt.22670.508

6 Hans L. Bodlaender, Sudeshna Kolay, and Astrid Pieterse. Parameterized complexity of conflict-509

free graph coloring. CoRR, abs/1905.00305, 2019. URL: http://arxiv.org/abs/1905.00305,510

arXiv:1905.00305.511

7 Andreas Brandstädt and Vadim V. Lozin. On the linear structure and clique-width of bipartite512

permutation graphs. Ars Comb., 67, 2003.513

8 Panagiotis Cheilaris. Conflict-free Coloring. PhD thesis, New York, NY, USA, 2009.514

9 Ke Chen, Amos Fiat, Haim Kaplan, Meital Levy, Jiří Matoušek, Elchanan Mossel, János Pach,515

Micha Sharir, Shakhar Smorodinsky, Uli Wagner, and Emo Welzl. Online conflict-free coloring516

for intervals. SIAM J. Comput., 36(5):1342–1359, December 2006.517

10 Michał Dębski and Jakub Przybyło. Conflict-free chromatic number versus conflict-free518

chromatic index. Journal of Graph Theory, 2021. URL: https://onlinelibrary.wiley.com/519

doi/abs/10.1002/jgt.22743, doi:https://doi.org/10.1002/jgt.22743.520

11 Reinhard Diestel. Graph theory 5th ed. Graduate texts in mathematics, 173, 2017.521

12 Jessica A. Enright, Lorna Stewart, and Gábor Tardos. On list coloring and list homomorphism522

of permutation and interval graphs. SIAM J. Discret. Math., 28(4):1675–1685, 2014. doi:523

10.1137/13090465X.524

13 P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related525

questions. Infinite and finite sets, 10:609–627, 1975.526

14 Guy Even, Zvi Lotker, Dana Ron, and Shakhar Smorodinsky. Conflict-free colorings of simple527

geometric regions with applications to frequency assignment in cellular networks. SIAM528

Journal on Computing, 33(1):94–136, January 2004.529

15 Sándor P Fekete, Stephan Friedrichs, Michael Hemmer, Joseph BM Mitchell, and Christiane530

Schmidt. On the chromatic art gallery problem. In CCCG, 2014.531

16 Sándor P. Fekete and Phillip Keldenich. Conflict-free coloring of intersection graphs. Interna-532

tional Journal of Computational Geometry & Applications, 28(03):289–307, 2018.533

17 Luisa Gargano and Adele Rescigno. Collision-free path coloring with application to minimum-534

delay gathering in sensor networks. Discrete Applied Mathematics, 157:1858–1872, 04 2009.535

doi:10.1016/j.dam.2009.01.015.536

18 Luisa Gargano and Adele A. Rescigno. Complexity of conflict-free colorings of graphs. Theor.537

Comput. Sci., 566(C):39–49, February 2015. doi:10.1016/j.tcs.2014.11.029.538

19 Roman Glebov, Tibor Szabó, and Gábor Tardos. Conflict-free colouring of graphs. Combinat-539

orics, Probability and Computing, 23(3):434–448, 2014.540

20 Carolina Lucía Gonzalez and Felix Mann. On d-stable locally checkable problems on bounded541

mim-width graphs. CoRR, abs/2203.15724, 2022. arXiv:2203.15724, doi:10.48550/arXiv.542

2203.15724.543

21 Frank Hoffmann, Klaus Kriegel, Subhash Suri, Kevin Verbeek, and Max Willert. Tight bounds544

for conflict-free chromatic guarding of orthogonal art galleries. Computational Geometry,545

73:24–34, 2018.546

22 Chaya Keller and Shakhar Smorodinsky. Conflict-free coloring of intersection graphs of547

geometric objects. In SODA, 2017.548

23 Prasad Krishnan, Rogers Mathew, and Subrahmanyam Kalyanasundaram. Pliable index549

coding via conflict-free colorings of hypergraphs. In IEEE International Symposium on550

Information Theory, ISIT 2021, Melbourne, Australia, July 12-20, 2021, pages 214–219. IEEE,551

2021. doi:10.1109/ISIT45174.2021.9518120.552

MFCS 2022

https://doi.org/10.1007/978-3-030-79987-8_7
https://doi.org/10.1002/jgt.22670
http://arxiv.org/abs/1905.00305
http://arxiv.org/abs/1905.00305
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22743
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22743
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22743
https://doi.org/https://doi.org/10.1002/jgt.22743
https://doi.org/10.1137/13090465X
https://doi.org/10.1137/13090465X
https://doi.org/10.1137/13090465X
https://doi.org/10.1016/j.dam.2009.01.015
https://doi.org/10.1016/j.tcs.2014.11.029
http://arxiv.org/abs/2203.15724
https://doi.org/10.48550/arXiv.2203.15724
https://doi.org/10.48550/arXiv.2203.15724
https://doi.org/10.48550/arXiv.2203.15724
https://doi.org/10.1109/ISIT45174.2021.9518120


72:14 Conflict-free Coloring on Claw-free graphs and Interval graphs

24 M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and553

probabilistic analysis. Cambridge Univ Pr, 2005.554

25 Vinodh P Vijayan and E. Gopinathan. Design of collision-free nearest neighbor assertion and555

load balancing in sensor network system. Procedia Computer Science, 70:508–514, 12 2015.556

doi:10.1016/j.procs.2015.10.092.557

26 Janos Pach and Gábor Tardos. Conflict-free colourings of graphs and hypergraphs. Combinat-558

orics, Probability and Computing, 18(5):819–834, 2009.559

27 I. Vinod Reddy. Parameterized algorithms for conflict-free colorings of graphs. Theor. Comput.560

Sci., 745:53–62, 2018. doi:10.1016/j.tcs.2018.05.025.561

28 Shakhar Smorodinsky. Conflict-Free Coloring and its Applications, pages 331–389. Springer562

Berlin Heidelberg, Berlin, Heidelberg, 2013.563

https://doi.org/10.1016/j.procs.2015.10.092
https://doi.org/10.1016/j.tcs.2018.05.025

	1 Introduction
	1.1 Our Contribution and Discussion

	2 Preliminaries
	3 Improved bounds for Chion for graphs with bounded claw number
	3.1 Auxiliary lemmas
	3.2 Graphs with bounded claw number
	3.3 Graphs with high minimum degree

	4 Interval graphs
	5 Subclasses of Bipartite Graphs
	6 Conclusion

