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Abstract

A conflict-free open neighborhood coloring of a graph is an assignment of colors
to the vertices such that for every vertex there is a color that appears exactly once
in its open neighborhood. For a graph G, the smallest number of colors required
for such a coloring is called the conflict-free open neighborhood (CFON) chromatic
number and is denoted by χON (G). By considering closed neighborhood instead of
open neighborhood, we obtain the analogous notions of conflict-free closed neigh-
borhood (CFCN) coloring, and CFCN chromatic number (denoted by χCN (G)).
The notion of conflict-free coloring was introduced in 2002, and has since received
considerable attention.

We study CFON and CFCN colorings and show the following results. In what
follows, ∆ denotes the maximum degree of the graph.

• We show that if G is a K1,k-free graph then χON (G) = O(k ln∆). Dębski and
Przybyło in [JGT 2021] had shown that if G is a line graph, then χCN (G) =

O(ln∆). As an open question, they had asked if their result could be extended
to claw-free (K1,3-free) graphs, which is a superclass of line graphs. Since
χCN (G) ≤ 2χON (G), our result answers their open question. It is known that
there exist separate families of K1.k-free graphs with χON (G) = Ω(ln∆) and
χON (G) = Ω(k).

∗We note that one of the results in this submission, Theorem 23, had already appeared as part of
[4] in the conference 47th International Symposium on Mathematical Foundations of Computer Science
(MFCS 2022). The article [4] was authored by a subset of authors of this submission.

†The third author wishes to acknowledge SERB-DST for supporting this work via grants
MTR/2020/000497 and CRG/2022/009400.
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• For a K1,k-free graph G on n vertices, we show that χCN (G) = O(ln k lnn).
This bound is asymptotically tight for some values of k since there are graphs
G with χCN (G) = Ω(ln2 n) [Glebov, Szabó, Tardos, CPC 2014].

• Let δ ≥ 0 be an integer. We define fCN (δ) as follows:

fCN (δ) = max{χCN (G) : G is a graph with minimum degree at least δ}.

It is easy to see that fCN (δ′) ≥ fCN (δ) when δ′ < δ. Let c be a positive
constant. It was shown [Dębski and Przybyło, JGT 2021] that fCN (c∆) =

Θ(ln∆). In this paper, we show (i) fCN ( c∆
lnϵ ∆) = O(ln1+ϵ∆), where ϵ is a

constant such that 0 ≤ ϵ ≤ 1 and (ii) fCN (c∆1−ϵ) = Ω(ln2∆), where ϵ is a
constant such that 0 < ϵ < 0.003. Together with the known [Bhyravarapu,
Kalyanasundaram and Mathew, JGT 2021] upper bound χCN (G) = O(ln2∆),
this implies that fCN (c∆1−ϵ) = Θ(ln2∆).

1 Introduction

For a hypergraph H = (V, E) and a positive integer k, a coloring f : V → [k] is a conflict-
free coloring (or CF coloring) of H if for every E ∈ E , some vertex in E gets a color that
is different from the color received by every other vertex in E. The minimum k such that
f : V → [k] is a CF coloring of H is called the Conflict-Free chromatic number (or CF
chromatic number) of H. We shall use χCF (H) to denote the CF chromatic number of H.
The notion of CF coloring has been extensively studied in the context of ‘neighborhood
hypergraphs’ of graphs. Let G be a graph with vertex set V (G) and edge set E(G). For a
vertex v ∈ V (G), the set of neighbors of v in G is called the open neighborhood of v. We
use NG(v) to denote this. The closed neighborhood of v, denoted by NG[v], is {v}∪NG(v).

Definition 1 (Conflict-free open neighborhood chromatic number). A conflict-free col-
oring concerning the open neighborhoods of G is an assignment of colors to V (G) such
that every vertex has a uniquely colored vertex in its open neighborhood. We call such a
coloring a Conflict-Free Open Neighborhood coloring (or CFON coloring). The mini-
mum number of colors required for a CFON coloring of G is called the Conflict-Free Open
Neighborhood chromatic number (or CFON chromatic number), denoted by χON(G).

Definition 2 (Conflict-free closed neighborhood chromatic number). A conflict-free col-
oring concerning the closed neighborhoods of G is an assignment of colors to V (G) such
that every vertex has a uniquely colored vertex in its closed neighborhood. We call such a
coloring a Conflict-Free Closed Neighborhood coloring (or CFCN coloring). The mini-
mum number of colors required for a CFCN coloring of G is called the Conflict-Free Closed
Neighborhood chromatic number (or CFCN chromatic number), denoted by χCN(G).

It is easy to see that every proper coloring is a CFCN coloring since each vertex serves
as its own uniquely colored neighbor. Hence we have χCN(G) ≤ χ(G). The following
result connects CFON and CFCN chromatic numbers of a graph G.
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Proposition 3 (Inequality 1.3 in [18]). χCN(G) ≤ 2χON(G).

The above follows by modifying a CFON coloring to obtain a CFCN coloring. We
may have to duplicate every color in the worst case, as the unique color seen by a vertex
in its open neighborhood could be its own color.

Conflict-free coloring was introduced by Even et al. [10] in the year 2002. Since its
introduction, CF coloring of hypergraphs, CFON and CFCN coloring of graphs have been
extensively studied [6, 11, 18, 2, 7, 3, 16, 8, 13, 12, 19]. The interested reader may refer to
the survey by Smorodisnky [20] on conflict-free coloring. Abel et al. [1] showed that it is
NP-complete to determine if a planar graph has a ‘partial’ CFCN coloring with one color
(in a partial CFCN coloring, we color only a subset of the vertices such that every vertex
sees a unique color in its closed neighborhood). Conflict-free colorings have been studied
on various geometric intersection graphs such as interval graphs, unit disk graphs, unit
square graphs etc. [4, 16, 20]. The problem has also been studied on geometric graphs
such as intersection graphs of pseudo disks [13] and string graphs [12].

Conflict-free coloring and its variants have found applications in frequency assignment
problem in cellular networks, battery consumption aspects of sensor networks, RFID
protocols, and the vertex ranking (or, ordered coloring) problem which finds applications
in VLSI design, operations research, etc. [20]. Recently, an application was discovered in
the PICOD problem which is a problem from coding theory [14, 15].

2 Definitions and notations

For a positive integer k, we use [k] to denote the set {1, 2, . . . , k}. Throughout this
paper, we consider only graphs that are simple, finite, and undirected. For a graph G, we
use V (G) to denote its vertex set and E(G) to denote its edge set. In the introduction
section, we had defined the open and closed neighborhoods, denoted respectively NG(v)

and NG[v], for a vertex v in V (G). We shall use dG(v) to denote the degree of v in
G. That is, dG(v) = |NG(v)|. For a positive integer k, we shall use K1,k to denote the
complete bipartite graph with 1 vertex in one part and k vertices in the other part. A
graph is K1,k-free if it does not contain K1,k as an induced subgraph. Graphs that are
K1,3-free are also known by the name claw-free graphs. The claw number of a graph G

is defined to be the largest k for which G contains K1,k as an induced subgraph.
Given a graph G, the line graph of G, denoted by L(G), is the graph defined as follows:

The vertex set of L(G) is V (L(G)) = E(G) and two vertices e1, e2 of L(G) are adjacent
to each other if and only if in the original graph G, the edges e1 and e2 share an end
point.

Given a hypergraph H = (V, E), the degree of an element v ∈ V , denoted by dH(v),
is the number of hyperedges that v is present in. The maximum degree of the hypergraph
H is max{dH(v) : v ∈ V }.
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3 Our contributions and open questions

Dębski and Przybyło in [7] showed that for a graph G with maximum degree ∆, the CFCN
chromatic number of its line graph is χCN(L(G)) = O(ln∆). Note that line graphs are
a subclass of claw-free graphs (or K1,3-free graphs). The following example implies that
the upper bound of O(ln∆) from [7] is asymptotically tight.

Example 4. Consider L(Kn), the line graph of the complete graph on n vertices. In [7],
it was shown that χCN(L(Kn)) = Ω(lnn). Since χCN(G) ≤ 2χON(G) (Proposition 3),
this implies χON(L(Kn)) = Ω(lnn).

Let us first discuss the dependence of the CFON chromatic number of a graph on its
claw number k and maximum degree ∆. Example 4 is a family of graphs whose maximum
degree is 2n− 4 and claw number is 2. This means that χON(G) cannot be a function of
the form k · h(∆) where h(∆) = o(ln∆). On the other hand, Example 5, given below, is
a family of graphs where ∆ = n− 1 and k = n− 1. This means that χON(G) cannot be
a function of the form g(k) · ln∆, where g(k) = O(k1−ϵ), for an ϵ > 0.

Example 5. Let K∗
n be the K1,n-free graph with maximum degree n − 1 obtained by

subdividing every edge of Kn exactly once. It is known (see [18]) that χON(K
∗
n) = n.

We complement the above observations with an upper bound of χON(G) = O(k ln∆).
This implies an upper bound χCN(G) = O(k ln∆) by Proposition 3. Our result, proved
in Section 5, generalizes the upper bound of χCN(G) = O(ln∆) [7] for line graphs. As
mentioned before, line graphs are a subclass of claw-free graphs. In many of the practical
applications that motivate conflict-free coloring, the underlying graphs happen to be
geometric intersection graphs such as unit disk graphs, unit square graphs, etc. [16, 20].
These graph classes are usually K1,k-free for some constant k. For instance, unit disk
graphs are K1,6-free.

It was posed as an open question in [7] if the O(ln∆) upper bound could be generalized
to claw-free graphs. Our O(k ln∆) upper bound answers this question in the affirmative.
Though Examples 4 and 5 imply the existence of graphs G for which χON(G) = Ω(k)

and χON(G) = Ω(ln∆), it is of interest to know whether the upper bound of O(k ln∆)

is tight.

Open Question 6. Are there K1,k-free graphs G with maximum degree ∆ for which
χON(G) = Ω(k ln∆)?

In Section 5, we show that if G is a K1,k-free graph on n vertices, then χCN(G) =

O(ln k lnn). This bound is asymptotically tight for some values of k as it was shown in
[11] that there exist graphs G on n vertices with χCN(G) = Ω(ln2 n). This still leaves the
possibility of the following improvement:

Open Question 7. Can a bound of O(ln k ln∆) be obtained for χCN(G), for K1,k-free
graphs G with maximum degree ∆?
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Now we turn our attention to CFCN chromatic number for graphs of a specified
minimum degree. Let ∆ denote the maximum degree of the graph under consideration
and let c be any positive constant. Let δ ≥ 0 be an integer. We define

fCN(δ) := max{χCN(G) : G is a graph with minimum degree at least δ}.

It is easy to see that fCN(δ
′) ≥ fCN(δ) when δ′ < δ. Dębski and Przybyło in [7] showed

that fCN(c∆) = Θ(ln∆). In Section 6, we show that fCN(c
∆

lnϵ ∆
) = O(ln1+ϵ ∆), where

0 ≤ ϵ ≤ 1. A natural open question is if this bound is tight.

Open Question 8. Is fCN(c
∆

lnϵ ∆
) = Ω(ln1+ϵ ∆)?

Further, in Section 7, we show that fCN(c∆
1−ϵ) = Ω(ln2∆), for 0 < ϵ < 0.003. It

was shown by Bhyravarapu, Kalyanasundaram, and Mathew [2] that for any graph G,
χCN(G) = O(ln2∆). Combining both, we get fCN(c∆

1−ϵ) = Θ(ln2∆). An affirmative
answer to Open Question 8 will help us understand the function fCN in its full range.

Analogous to the function fCN , we can define a function fON as

fON(δ) := max{χON(G) : G is a graph with minimum degree at least δ}.

Like in the case of CFCN coloring, we have that fON(δ
′) ≥ fON(δ) when δ′ < δ. The

results in [7] imply1 that fON(c∆) = Θ(ln∆). It was shown by Pach and Tardos [18] that
for any graph G with minimum degree c log∆, we have χON(G) = O(ln2∆). Combining
this with our result in Section 7, we have fON(c∆

1−ϵ) = Θ(ln2∆), where 0 < ϵ < 0.003.
What is the value of fON(δ), when δ = o(ln∆)? It is known that χON(G) ≤ ∆ + 1, for
any graph G. This bound is tight as χON(K

∗
n) = n. Thus, fON(c) = Θ(∆). This leaves

us with the following open question.

Open Question 9. What is the value of fON(δ) when δ = o(ln∆) and δ is not any
absolute constant?

Theorem 1.2 in [18] implies that fON(δ) = O(δ ·∆ 2
δ · ln∆). However, it is not clear

whether this bound is tight in the range of values of δ that we are interested in.

4 Auxiliary results

In this section, we state a few known auxiliary lemmas and theorems that will be used
later. We state the local lemma that will be used in the proof of Lemma 13 and Chernoff
bound that will be used in the proof of Theorem 24.

1The article [7] explicitly discusses only CFCN chromatic number. However, the proof techniques
of the upper bound extend to yield an identical upper bound for CFON chromatic number. The lower
bound in [7] implies a similar lower bound for CFON chromatic number by an application of Proposition
3.
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Lemma 10 (The Local Lemma, [9]). Let A1, . . . , An be events in an arbitrary probability
space. Suppose that each event Ai is mutually independent of a set of all the other events
Aj but at most d, and that Pr[Ai] ≤ p for all i ∈ [n]. If 4pd ≤ 1, then Pr[∩n

i=1Ai] > 0.

Theorem 11 (Chernoff Bound, Corollary 4.6 in [17]). Let X1, . . . , Xn be independent
Poisson trials such that Pr[Xi] = pi. Let X =

∑n
i=1Xi and µ = E[X]. For 0 < δ < 1,

Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3.

The theorem below gives an upper bound to the CF chromatic number of a hypergraph
in terms of its maximum degree.

Theorem 12 (Theorem 1.1(b) in [18]). Let H be a hypergraph and let ∆ be the maximum
degree of any vertex in H. Then, χCF (H) ≤ ∆+ 1.

Finally, we prove the following lemma for CF chromatic number of near uniform
hypergraphs. We will use this lemma in the proofs of Theorems 14 and 23.

Lemma 13. Let H = (V, E) be a hypergraph where (i) every hyperedge intersects with at
most Γ other hyperedges, and (ii) for every hyperedge E ∈ E, r ≤ |E| ≤ ℓr, where ℓ ≥ 1

is some integer and r ≥ 2 log2(4Γ). Then, χCF (H) ≤ eℓr, where e is the base of natural
logarithm.

Proof. For each vertex in V , assign a color that is chosen independently and uniformly at
random from a set of eℓr colors. We will first show that the probability of this coloring
being bad for an edge is small, and then use Local Lemma to show the existence of
conflict-free coloring for H using at most eℓr colors.

Consider a hyperedge E ∈ E with m := |E|. By assumption, we have r ≤ m ≤ ℓr.
Let AE denote the bad event that E is colored with ≤ |E|/2 colors. Note that if AE does
not occur, then E is colored with > |E|/2 colors, hence there is at least one color that
appears exactly once in E.

Pr[AE] ≤
(
eℓr

m/2

)(
m/2

eℓr

)m

≤
(
e2ℓr

m/2

)m/2(
m/2

eℓr

)m

(since
(
n

k

)
≤
(en
k

)k
)

=
(m/2)m/2

(ℓr)m/2
=

( m

2ℓr

)m/2

≤ (1/2)m/2 ≤ 1

4Γ
.

Here the penultimate inequality follows since m ≤ ℓr, and the last inequality follows since
m ≥ 2 log2(4Γ).

We apply the Local Lemma (Lemma 10) on the events AE for all hyperedges E ∈ E .
Since each hyperedge intersects with at most Γ other hyperedges, and 4 · 1

4Γ
· Γ ≤ 1, we

get Pr[∩E∈E(AE)] > 0. That is, there is a conflict free coloring of H that uses at most
eℓr colors. This completes the proof of the lemma.
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5 K1,k-free graphs

In this section, we show improved upper bounds for CFON and CFCN chromatic numbers
on K1,k-free graphs.

Theorem 14. Let G be a K1,k-free graph with maximum degree ∆ ≥ 2 having no isolated
vertices. Then, χON(G) = O(k ln∆).

Proof. Let A be a maximal independent set of G. Let A1 := {v ∈ A : dG(v) ≤ 12k ln∆}
and A2 := A \ A1. Let X :=

⋃
v∈A1

NG(v).
Next, we obtain G′ by removing all the vertices from G that belong to A ∪ X. In

other words, G′ = G[V \ (A ∪ X)]. Since A is a maximal independent set in G, every
v ∈ V \ (A ∪ X) has a neighbor, say w, in A. Since no vertex in A1 has a neighbor in
V (G′), w ∈ A2. Thus we have the following:

Observation 15. Every vertex in V (G′) has a neighbor in A2.

We start with a proper coloring of G′, say h : V (G′) −→ [s] = {1, 2, . . . , s} that uses
at most ∆+ 1 colors. Let L1, L2, . . . , Ls be the color classes with respect to the coloring
h, where s ≤ ∆+ 1.

Observation 16. For every 2 ≤ i ≤ s, we may assume that every vertex v ∈ Li has a
neighbor in each Lj, 1 ≤ j < i. If v has no neighbor in Lj, j < i, we can move v to Lj.

Observation 17. Since G is K1,k-free, any vertex in G has at most k − 1 neighbors in
Li, for every i ∈ [s].

Observation 18. Consider a subset Â ⊆ A, and let Ĥ = (V̂ , Ê) be defined as follows:
V̂ =

⋃
v∈ÂNG(v) and Ê = {NG(v) : v ∈ Â}. Since G is K1,k-free and A is an independent

set, the maximum degree of Ĥ is at most k − 1.

If s > 12 ln∆, then we define B := L1 ∪ L2 ∪ · · · ∪ L12 ln∆ and C = V (G′) \ B.
Otherwise, we define B := L1 ∪ L2 ∪ · · · ∪ Ls and C = ∅.

We obtain the desired CFON coloring of G by conflict-free coloring five hypergraphs,
H1, . . . ,H5, which are defined below. Note that the set of colors we use to color each
hypergraph Hi is disjoint from the set of colors we use to color any other hypergraph Hj,
1 ≤ i < j ≤ 5.

• Suppose C ̸= ∅. We define a hypergraph H1 = (V1, E1), where V1 = B and E1 =

{NG′(v)∩B : v ∈ C}. The following observation follows from Observations 16 and
17.

Observation 19. Every vertex in C has at least 12 ln∆ neighbors in B. Further,
for every v ∈ V (G), |NG(v) ∩B| ≤ 12(k − 1) ln∆.

So for each E ∈ E1, we have 12 ln∆ ≤ |E| ≤ 12(k−1) ln∆. By applying Lemma 13
to H1, with ℓ = k−1, r = 12 ln∆, and Γ ≤ ∆2, we get χCF (H1) ≤ e·(k−1)·12 ln∆.
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Here, Γ denotes the number of other hyperedges a given hyperedge E := NG′(v)∩B,
for some v ∈ C, is overlapping with. Since the maximum degree is ∆, and since
E ⊆ NG(v), it follows that Γ ≤ ∆2. The conflict-free coloring of hypergraph H1

ensures that all the vertices in C, see a unique color in their open neighborhood.

• Similarly, we define a hypergraph H2 = (V2, E2), where V2 = A2 and E2 = {NG(v)∩
A2 : v ∈ B}. By Observation 15, every vertex in B has a neighbor in A2. This
ensures that the hypergraph H2 does not have empty hyperedges. By Observation
17, the maximum degree of H2 is at most (k − 1) · 12 ln∆. Hence by Theorem 12,
we have χCF (H2) ≤ (k − 1) · 12 ln∆ + 1. This conflict-free coloring of H2 ensures
that every v ∈ B sees a unique color in its open neighborhood.

• Let H3 = (V3, E3) be a hypergraph, where V3 = A1 and E3 = {NG(v)∩A1 : v ∈ X}.
By choice of vertices in A1, the maximum degree of H3 is at most 12k ln∆. Hence
by Theorem 12, χCF (H3) ≤ 12k ln∆ + 1. The conflict-free coloring of H3 ensures
that every v ∈ X sees a unique color in its open neighborhood.

Now we need to handle the needs of the vertices in A. We first partition A as follows:
let AX = {v ∈ A : NG(v) ∩X ̸= ∅} and AX = A \ AX . From their definitions, (A1, A2)

and (AX , AX) are two partitions of A that satisfy A1 ⊆ AX , and thereby AX ⊆ A2. Also,
no vertex in AX has a neighbor in X. Since AX ⊆ A2 and every vertex in A2 has degree
greater than 12k ln∆, we have the following observation.

Observation 20. For every v ∈ AX , (i) NG(v) ⊆ B ∪ C, and (ii) |NG(v)| > 12k ln∆.

• We define a hypergraph H4 = (V4, E4), where V4 = X and E4 = {NG(v) ∩X : v ∈
AX}. By the definition of AX , the hypergraph H4 does not have empty hyperedges.
By Observation 18, the maximum degree of H4 is at most k−1. Hence by Theorem
12, χCF (H4) ≤ k. This coloring addresses the requirements of the vertices in AX .

• What is left to be addressed are the requirements of the vertices in AX . We first
claim that, if C = ∅, then AX = ∅. Assume, for the sake of contradiction, that
v ∈ AX . Then, by Observation 20, |NG(v)| > 12k ln∆ and NG(v) ⊆ B. By
Observation 19, |NG(v)| ≤ 12(k − 1) ln∆ which is a contradiction.

Now we may assume that C ̸= ∅. Then, we construct a hypergraph H5 = (V5, E5),
where V5 = C and E5 = {NG(v) ∩ C : v ∈ AX}. From Observations 19 and 20, it
follows that NG(v)∩C ̸= ∅, for every v ∈ AX . By Observation 18, we know that the
maximum degree of H5 is at most k− 1. Therefore, by Theorem 12, χCF (H5) ≤ k.

Note that we have addressed the needs of all the vertices in G. Also, each vertex is
colored at most once in the above. There may be vertices that are left uncolored because
they did not feature in any of the hypergraphs. We can assign all these vertices a new
color, obtaining a conflict-free coloring of G that uses at most 57k ln∆+2k+3 colors.
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The following result gives an upper bound for CFCN chromatic number of K1,k-free
graphs.

Theorem 21. Let G be a K1,k-free graph with n vertices. Then, χCN(G) = O(ln k lnn).

Proof. We first give a brief overview of the proof. We use an approach similar to the
one used by Pach and Tardos for the proof of Theorem 1.6 in [18]. Using a probabilistic
approach, we show the existence of a subset I∗1 of a maximal independent set. By coloring
all the vertices of I∗1 with the color 1, we can ensure that a c/ log2 k fraction of the vertices
of the graph sees a uniquely colored neighbor. Since the need of the vertices in I∗1 is
satisfied by themselves, we will not recolor them in the later coloring process. We can
repeat this process O(ln k lnn) times to ensure that all the vertices of G see a uniquely
colored neighbor.

We now describe in detail how we pick the random independent sets. Let G1 = G.
Let S1 be a maximal independent set in G1. Pick an integer i uniformly at random
from the set {0, 1, . . . , ⌊log2 k⌋}. Select I1 ⊆ S1 by picking v into I1 with probability 2−i

independently, for each vertex v ∈ S1. Note that the integer i can be equal to 0 with
probability 1

⌊log2 k⌋+1
. In that case, every v ∈ S1 is chosen into I1 with probability 1.

∀v ∈ S1, P r[v is chosen into I1] ≥
1

⌊log2 k⌋+ 1
. (1)

Color every vertex in I1 with color 1. Let A1 = {v ∈ V (G1)\S1 : |NG1(v)∩I1| = 1}. For a
vertex w ∈ V (G1)\S1, we define dw := |NG1(w)∩S1|. Note that for any w ∈ V (G1)\S1, we
have k− 1 ≥ dw ≥ 1 as (1) G is K1,k-free, and (2) S1 is a maximal independent set in G1.
For a vertex w ∈ V (G1) \S1, what is the probability that w ∈ A1 (or |NG1(w)∩ I1| = 1)?
Let Aw

1 denote the event that w ∈ A1. Let p = 1
2⌊log2 dw⌋ . Below, we estimate the

probability of the event Aw
1 .

Pr[Aw
1 ] =

⌊log2 k⌋∑
x=0

Pr[i = x] · Pr[Aw
1 |i = x]

≥ Pr[i = ⌊log2 dw⌋] · Pr[Aw
1 |i = ⌊log2 dw⌋]

=
1

⌊log2 k⌋+ 1

(
dw · p(1− p)dw−1

)
.

We analyze the above expression for different values of dw. When dw = 1, we can check
that Pr[Aw

1 |i = ⌊log2 dw⌋] = 1. When 2 ≤ dw ≤ 4, we can verify using direct calculations
that dw · p(1− p)dw−1 > 0.02. For the remaining values of dw, we have that

dw · p(1− p)dw−1 ≥
(
1− 2

dw

)dw−1

≥
(
1− 2

dw

)dw

≥ e−2

(
1− 4

dw

)
≥ c,

where c = 0.02. The first inequality holds since 1
dw

≤ p ≤ 2
dw

, and the third inequality
holds since (1 + x/n)n ≥ ex(1− x2/n) for n ≥ 1, |x| ≤ n. The last inequality holds when
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dw ≥ 5. Thus we get the following:

∀w ∈ V (G1)\S1, P r[w is chosen into A1] ≥
c

⌊log2 k⌋+ 1
. (2)

From equations (1) and (2), we have the expected cardinality of I1∪A1 is at least c·|V (G1)|
⌊log2 k⌋+1

.
By the probabilistic method, this implies the existence of I∗1 such that at least c·|V (G1)|

⌊log2 k⌋+1

vertices of G1 see a uniquely colored neighbor. Color all the vertices of I∗1 with color 1.
Let G2 be the subgraph of G1 induced on the vertices that do not have a uniquely

colored neighbor. We can repeat the same construction and argument for G2, ensuring
that c·|V (G2)|

⌊log2 k⌋+1
vertices of G2 see a uniquely colored neighbor.

After r such rounds, there will be at most n
(
1 − c

log2 k

)r many vertices of the graph
that do not have a uniquely colored neighbor. By setting r > (lnn log2 k)/c, we get that
there are < 1 vertices that do not have a uniquely colored neighbor. Since we use one
new color per round, we need (lnn log2 k)/c = O(ln k lnn) colors.

6 Graphs with high minimum degree

We first prove the following lemma, which will be used in the proof of Theorem 23.

Lemma 22. Let ∆ denote the maximum degree of a graph G. It is given that every
vertex in G has degree at least c∆

lnϵ ∆
for some ϵ ≥ 0 and c is a constant. Then, there exists

A ⊆ V (G) such that for every vertex v ∈ V (G),

108 ln(2∆) < |NG(v) ∩ A| < 180

c
ln1+ϵ(2∆).

Proof. We construct a random subset A of V (G) as described below. Each v ∈ V (G) is
independently chosen into A with probability 144 ln1+ϵ(2∆)

c∆
. For a vertex v ∈ V (G), let Xv

be a random variable that denotes |NG(v)∩A|. Then, µv := E[Xv] =
144 ln1+ϵ(2∆)

c∆
dG(v) ≥

144 ln(2∆). Since dG(v) ≤ ∆, we also have µv ≤ 144 ln1+ϵ(2∆)
c

. Let Bv denote the event
that |Xv−µv| ≥ µv

4
. Applying Theorem 11 with δ = 1/4, we get Pr[Bv] = Pr[|Xv−µv| ≥

µv

4
] ≤ 2e−

µv
48 ≤ 2e−

144 ln(2∆)
48 = 2

(2∆)3
. The event Bv is mutually independent of all but those

events Bu where NG(u) ∩ NG(v) ̸= ∅. Hence, every event Bv is mutually independent
of all but at most ∆2 other events. Applying Lemma 10 with p = Pr[Bv] ≤ 2

(2∆)3
and

d = ∆2, we have 4 · 2
(2∆)3

· ∆2 ≤ 1. Thus, there is a non-zero probability that none of
the events Bv occur. In other words, for every v, it is possible to have 3

4
µv < Xv <

5
4
µv.

Using the upper and lower bounds of µv we computed above, we can say that there exists
an A such that, for every v, 108 ln(2∆) < |NG(v) ∩ A| < 180

c
ln1+ϵ(2∆).

The following theorem provides improved upper bounds for χON in terms of its max-
imum degree for graphs G that have high minimum degrees.

Theorem 23. Let G be a graph with maximum degree ∆. It is given that every vertex in
G has a degree at least c∆

lnϵ ∆
for some ϵ ≥ 0 and c is a constant. Then, χON = O(ln1+ϵ ∆).

10



Proof. Apply Lemma 22 to find an A ⊆ V (G) such that for every v ∈ V (G), 108 ln(2∆) <

|NG(v) ∩ A| < 180
c
ln1+ϵ(2∆). Construct a hypergraph H = (A, E) where E = {NG(v) ∩

A : v ∈ V (G)}. Every E ∈ E satisfies 2 log2(4∆
2) < 108 ln(2∆) < |E| < 180

c
ln1+ϵ(2∆).

Applying Lemma 13 with r = 108 ln(2∆) and ℓ = 5
3c
logϵ(2∆), we get χCF (H) ≤

490
c
ln1+ϵ(2∆). By assigning an unused color to the vertices in V (G) \ A, we can extend

a conflict-free coloring of H to a CFON coloring for G.

7 A lower bound

Let δ ≥ 0 be an integer. Recall that, fCN(δ) = max{χCN(G) : G has minimum degree
at least δ}. From the definition, it follows that fCN(δ

′) ≥ fCN(δ), when δ′ < δ. As
discussed earlier, with ∆ denoting the maximum degree of the graph under consideration
and with c denoting any positive constant, we know that fCN(c∆) = Θ(ln∆). In this
section, in Theorem 24, we show that fCN(c∆

1−ϵ) = Ω(ln2∆), where 0 < ϵ < 0.003 is a
constant. Combined with the known upper bound χCN(G) = O(ln2∆) for any graph G,
due to [2], we have fCN(c∆

1−ϵ) = Θ(ln2∆). In order to show that fCN(c∆
1−ϵ) = Ω(ln2∆),

we need to show the existence of a graph with minimum degree Ω(∆1−ϵ) having CFCN
chromatic number Ω(ln2∆). We use the same random graph model used by Glebov,
Szabó, and Tardos in [11] and show that such a graph exists with positive probability.
Our proof is an extension of the proof of Theorem 4 in [11] as it builds on the ideas
presented there.

Let A ⊆ V (G), for a graph G. We define N
(1)
G (A) := {v ∈ V (G)\A : |NG(v)∩A| = 1}

to be the set of vertices outside A that have exactly one neighbor in A.

Theorem 24. There exists a graph G with maximum degree ∆ and minimum degree
∆1−ϵ, where 0 < ϵ < 0.003 is a constant, such that χCN(G) = Ω(ln2∆).

Proof Sketch. We start our proof by constructing a random graph G on n vertices. Over
all the choices of colorings, we bound the number of vertices that gets taken care of, i.e.,
see a uniquely colored vertex in its closed neighborhood. Our proof is divided into three
lemmas. Lemma 25 provides a bound asymptotically almost surely (a.a.s.) on the number
of vertices that serve as their own uniquely colored neighbor. Lemmas 26 and 27 together
a.a.s. bound the number of vertices that are taken care of by their neighboring vertices.
Finally, it follows that independent of the choice of coloring used, a.a.s., the total number
of vertices that are taken care of either by themselves or by their neighboring vertices is
less than the total number of vertices n.

Let ϵ0 =
ϵ
3
. Below, we describe the construction of a random graph G on n vertices.

We use V to denote V (G). For the sake of simplicity, we assume that ⌊lnn⌋ divides n.
We partition the vertex set V into parts L1, . . . , L⌊lnn⌋ of size n

⌊lnn⌋ each. We define the
weight of a vertex x ∈ Li to be wx = (1 − ϵ0)

i. For any x ∈ Li, y ∈ Lj, we put an

11



edge between x and y with probability wxwy = (1− ϵ0)
i+j. We define the weight of a set

S ⊆ V as,
w(S) =

∑
v∈S

wv.

Let f : V (G) −→ [ϵ30 ln
2∆] be a coloring (not necessarily proper) of the vertices of G.

We say that a vertex x is taken care of by a vertex w under the coloring f if

1. w ∈ NG[x], and

2. f(w) is distinct from f(y), for every y ∈ NG[x] \ {w}. When w = x, we say that a
vertex x is taken care of by itself under f .

For each color class of the above coloring, the vertices that are taken care of by
themselves form an independent set. The below lemma provides a bound on such vertices.

Lemma 25. For the graph G constructed, the independence number α(G) ≤ n0.003 asymp-
totically almost surely.

Proof. We know that every edge in G is present with probability at least (1 − ϵ0)
2 lnn.

Suppose Pr[α(G) > n0.003] does not tend to 0 as n tends to infinity. Then, we can say
that for a graph H ∈ G(n, (1 − ϵ0)

2 lnn), Pr[α(H) > n0.003] too does not tend to 0 as
n −→ ∞. Here G(n, (1 − ϵ0)

2 lnn) denotes the Erdős-Rényi graph on n vertices where
each edge is chosen with probability (1− ϵ0)

2 lnn. But this contradicts a known result (see
Theorem 11.25 (ii) in Bollobás’ book [5]) that the largest independent set in G(n, p) has
size at most 2 ln(np)

p
a.a.s. when 2.27/n ≤ p ≤ 1/2. This would imply that the following

holds a.a.s.:

α(H) ≤ 2
lnn

(1− ϵ0)2 lnn
=

2 lnn

n2 ln(1−ϵ0)
= n

ln(2 lnn)
lnn

−2 ln(1−ϵ0) = n
−2 ln(1−ϵ0)

[
− ln(2 lnn)

2(lnn)·(ln(1−ϵ0))
+1

]

= n−2 ln(1−ϵ0)
[
1−o(1)

]
= n

2 ln

(
1

(1−ϵ0)

)[
1−o(1)

]
≤ n

ln

(
1

(1−ϵ0)
2

)
< n0.003.

In the above, the last inequality follows since ln(1/(1− ϵ0)
2) increases when ϵ0 increases.

By assumption, we have ϵ0 < 0.001, and hence ln(1/(1−ϵ0)
2) < ln(1/0.9992) < 0.003.

Let S be a color class of the coloring f . Let x ∈ Li and suppose x /∈ S. We shall use
p(x, S) to denote the probability that x is taken care of by some vertex in the color class
S. We have,

12



p(x, S) = Pr[|NG(x) ∩ S| = 1] =
∑
s∈S

Pr[NG(x) ∩ S = {s}]

=
∑
s∈S

wswx

∏
y∈S\{s}

(1− wywx)

< wx

∑
s∈S

ws exp

(
−

∑
y∈S\{s}

wywx

)
= wx

∑
s∈S

ws exp(−w(S)wx + wswx)

≤ wxw(S)e
−wxw(S)+(1−ϵ0),

where the third line follows since 1 − t ≤ e−t. It can be verified that the function ze−z

has a unique maximum at z = 1. Thus we get the following:

p(x, S) < e−ϵ0 . (3)

We say that a set S is heavy if w(S) >
√
n; otherwise we call S a light set. Note that

any vertex has weight at least (1− ϵ0)
lnn = nln(1−ϵ0) > n−2ϵ0 (when 0 < ϵ0 < 0.5, we have

that ln(1− ϵ0) ≥ −ϵ0
1−ϵ0

> −2ϵ0). For any set S, we have w(S) > |S| · n−2ϵ0 . Thus we have

|S| < n0.5+2ϵ0 , when S is a light set (w(S) ≤
√
n). (4)

The below lemma provides a bound on the number of vertices that are taken care of
by a heavy set.

Lemma 26. For each heavy set S ⊆ V of the graph G, asymptotically almost surely
|N (1)(S)| < n0.6. That is, a.a.s., at most n0.6 vertices that are not in S are taken care of
by S.

Proof. Consider a heavy subset S ⊆ V . Since S is a heavy set, w(S) > n0.5. Now fix a
set A ⊆ V \S with |A| ≥ n0.6. The probability that all elements x ∈ A have exactly one
neighbor in S is estimated below.

Pr[N (1)(S) ⊇ A] =
∏
x∈A

p(x, S)

≤
∏
x∈A

wxw(S)e
−wxw(S)+1

<
(
n(0.5−2ϵ0)e(−n0.5−2ϵ0+1)

)n0.6

= exp
(
(0.5− 2ϵ0) lnn− n0.5−2ϵ0 + 1

)n0.6

= exp

(
− n(1.1−2ϵ0)

(
− (0.5− 2ϵ0)n

0.6 lnn

n(1.1−2ϵ0)
+ 1− n0.6

n(1.1−2ϵ0)

))

≤ exp

(
− n(1.1−2ϵ0)

(
1− o(1)

))
.

13



The inequality in the third line follows from the observation that wxw(S) > (1− ϵ0)
lnn ·

n0.5 ≥ n0.5−2ϵ0 and that ze−z is decreasing in the interval [1,∞). Taking union over the
possible 2n · 2n choices for S and A, we see that the probability of S taking care of A
tends to 0.

The next lemma bounds the number of vertices that can be taken care of by light
sets.

Lemma 27. Let r = ⌊ϵ30 ln2 n⌋. For all pairwise disjoint light sets S1, . . . , Sr ⊆ V , we
have asymptotically almost surely |

⋃r
i=1N

(1)(Si)| < n− n0.7.

Proof. We first fix light subsets S1, . . . , Sr of V . Since each Si is a light set, w(Si) ≤
√
n.

We first need the following claim.

Claim 28. We have
∑r

i=1 p(x, Si) > ϵ0 lnn for at most half of the vertices x ∈ V .

Proof. Assume the contrary. We then have

n

2
· ϵ0 lnn ≤

∑
x∈V

r∑
i=1

p(x, Si) =
r∑

i=1

∑
x∈V

p(x, Si) . (5)

When Si is fixed, we have seen that p(x, Si) ≤ wxw(Si)e
−wxw(Si)+(1−ϵ0). When x ∈ Lj, we

get
p(x, Si) ≤ (1− ϵ0)

jw(Si)e
−(1−ϵ0)jw(Si)+1 = zje

−zj+1,

where the first inequality follows by dropping −ϵ0 from the exponent. We set zj =

(1− ϵ0)
jw(Si) to get the second equality. Observe that

∑
x∈V

p(x, Si) =
lnn∑
j=1

∑
x∈Lj

p(x, Si) ≤
n

lnn

lnn∑
j=1

zje
−zj+1 ≤ n

lnn

∞∑
j=1

zje
−zj+1. (6)

We will now upper bound
∑∞

j=1 zje
−zj+1 by considering three ranges for zj. Notice that

zj > 0 when Si is nonempty.

• When 0 < zj ≤ 1, we have zje
−zj+1 ≤ ezj. Therefore,

∑
j:zj≤1

(
zje

−zj+1
)

≤∑
j:zj≤1

(
ezj
)
≤ e
(
1 + (1− ϵ0) + (1− ϵ0)

2 + · · ·
)
= e

1−(1−ϵ0)
= e

ϵ0
.

• When 1 < zj < 2, we have the following summation:
∑

j:1<zj<2

(
zje

−zj+1
)
. It can

be verified that zje−zj+1 < 1 in the range 1 < zj < 2. It can also be noted that the
number of terms in this summation is at most 1

ϵ0
. Thus we get that the terms sum

to at most 1
ϵ0

.

• When zj ≥ 2, we have
∑

j:zj≥2

(
zje

−zj+1
)
≤ 1

ϵ0

∫∞
1

ze−z+1 dz = 2
ϵ0

. The factor of 1
ϵ0

is due to the fact that zj−zj+1 = zj−zj(1−ϵ0) = zjϵ0 > ϵ0. Thus, the number of z′js
that lie between a and a+1, for any integer a ≥ 2, is at most 1

ϵ0
. A straightforward

integration by parts gives us that
∫∞
1

ze−z+1 dz = 2.
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Combining equations (5), (6), and the above bound, gives us the following.

n

2
· ϵ0 lnn ≤

r∑
i=1

n

lnn

∞∑
j=1

zje
−zj+1 ≤ r

n

lnn

(
e

ϵ0
+

1

ϵ0
+

2

ϵ0

)
≤ 6rn

ϵ0 lnn
. (7)

Rearranging terms in inequality (7), we get r ≥ ϵ20 ln
2 n

12
. This contradicts the fact that

r = ϵ30 ln
2 n ≤ 0.001 · ϵ20 ln2 n =

ϵ20 ln
2 n

1000
.

This completes the proof of the claim that
∑r

i=1 p(x, Si) > ϵ0 lnn for at most half the
vertices x ∈ V .

Let V ′ ⊆ V be the set of those vertices x ∈ V for which
∑r

i=1 p(x, Si) ≤ ϵ0 lnn. Then,
|V ′| ≥ n/2. Now fix a set B ⊆ V with |B| = n0.7. In the below calculation, we bound
the probability that all the vertices x ∈ V \ B have exactly one neighbor in at least one
of the Si’s. This probability is given by

∏
x∈V \B

(
1−

r∏
i=1

(
1− p(x, Si)

))
≤

∏
x∈V ′\B

(
1−

r∏
i=1

(
1− p(x, Si)

))

≤ exp

(
−
∑

x∈V ′\B

r∏
i=1

(
1− p(x, Si)

))

≤ exp

(
−
∑

x∈V ′\B

e−f(ϵ0)
∑r

1=1 p(x,Si)

)
, f(ϵ0) is defined below.

The first inequality follows by restricting the scope of vertices, and the second inequality
follows by using the fact that 1 − x ≤ e−x. For the third inequality, let us set f(ϵ0) :=

eϵ0 ln
(

1
1−e−ϵ0

)
. From equation (3), we get that p(x, Si) ∈ [0, e−ϵ0 ]. When a number z is

chosen from the range [0, 1), we can verify that
(
ln
(

1
1−z

))
/z is an increasing function

on z. So
(
ln
(

1
1−e−ϵ0

))
/e−ϵ0 ≥

(
ln
(

1
1−p(x,Si)

))
/p(x, Si). Rearranging this, it follows that

e−f(ϵ0)p(x,Si) ≤ 1− p(x, Si). We continue our computation below.

exp

(
−
∑

x∈V ′\B

e−f(ϵ0)
∑r

1=1 p(x,Si)

)
≤ exp

(
−
(n
2
− n0.7

)
e−f(ϵ0)ϵ0 lnn

)

≤ exp

(
−
(n
2
− n0.7

)
e−0.01 lnn

)
= exp

(
− 0.5n0.99 + n0.69

)
≤ exp

(
− n0.99

(1
2
− o(1)

))
. (8)

The first inequality follows since for vertices x of V ′, we have
∑r

i=1 p(x, Si) ≤ ϵ0 lnn.
Below we explain the second inequality. We have f(ϵ0) · ϵ0 = ϵ0 · eϵ0 ln

(
1

1−e−ϵ0

)
, where

0 < ϵ0 < 0.001. Using e−x ≤ 1− x
2
, for x ∈ [0, 1], we get f(ϵ0) · ϵ0 ≤ ϵ0 · eϵ0 ln

(
2
ϵ0

)
. Since
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x · ex ln
(
2
x

)
is an increasing function when x ∈ (0, 1] and considering that ϵ0 ∈ (0, 0.001),

we have, f(ϵ0) · ϵ0 ≤ 0.001 · e0.001 ln
(

2
0.001

)
< 0.01.

Finally, since |B| = n0.7 and using the size bound on light sets given in equation (4),
we note that the number of choices for sets S1, . . . , Sr, and B is at most

(
n

n0.7

)(
n

n0.5+2ϵ0

)r

< nn0.7
(
nn0.5+2ϵ0

)r
= en

0.7 lnn
(
e(n

0.5+2ϵ0 )r lnn
)

= en
0.7 lnn+n(0.5+2ϵ0)r lnn

= eO(n0.7 lnn).

From equation (8) and the above calculations, we can see that any r light sets S1, S2, . . . , Sr

can take care of at most n− n0.7 vertices a.a.s.

The below lemma shows that the graph G constructed has the desired minimum
degree with high probability.

Lemma 29. For the graph G constructed, the minimum degree of G is Ω(∆1−ϵ) asymp-
totically almost surely.

Proof. We first calculate the expected degree of a vertex x ∈ Lj. Let dG(x) denote the
degree of x.

µ(x) := E[dG(x)] =
n

lnn

[
(1− ϵ0)

j+1 + (1− ϵ0)
j+2 + · · ·+ (1− ϵ0)

j+lnn
]

≥ n

lnn
(1− ϵ0)

j+1 (9)

= (1− ϵ0) ·
n

lnn
· (1− ϵ0)

ln(ej)

= (1− ϵ0) ·
n

lnn
· (ej)ln(1−ϵ0)

≥ (1− ϵ0) ·
n

lnn
· (ej)−2ϵ0 , (10)

where we use the fact that ln(1 − ϵ0) ≥ −2ϵ0, as noted in the discussion preceding
the statement of Lemma 26. Using the Chernoff bound given in Theorem 11 for any
0 < α < 1, we get

Pr[|dG(x)− µ(x)| ≥ αµ(x)] ≤ 2e
−α2µ(x)

3

≤ 2e
−α2n
lnn

· (1−ϵ0)
j+1

3 ,

where the last inequality follows by equation (9). For an x ∈ Lj, let Aj
x denote the event

that |dG(x) − µ(x)| ≥ αµ(x). We have shown that Pr[Aj
x] ≤ 2e

−α2n
lnn

· (1−ϵ0)
j+1

3 . Let Aj

denote the event
⋃

x∈Lj
Aj

x. Below we calculate the probability of A1, using the union
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bound.

Pr[A1] ≤
∑
x∈L1

Pr[A1
x]

≤ 2n

lnn
· e

−α2n
lnn

· (1−ϵ0)
2

3

≤ 2n · exp
(
−α2n

lnn

0.9992

3

)
(since ϵ0 < 0.001)

≤ exp

(
ln(2n)− α2n

4 lnn

)
. (since 0.9992/3 > 1/4)

Observe that, Pr[Aj+1] ≤ e1−ϵ0Pr[Aj], for ∀1 ≤ j < lnn. So we have the following for
1 ≤ j ≤ lnn.

Pr[Aj] ≤ ej−1 exp

(
ln(2n)− α2n

4 lnn

)
.

Let Aj denote the complement of the event Aj. We have

Pr[A1 ∩ · · · ∩ Alnn] = 1− Pr[A1 ∪ · · · ∪ Alnn]

≥ 1−

[
eln(2n)

e
α2n
4 lnn

+ e · e
ln(2n)

e
α2n
4 lnn

+ · · ·+ elnn−1 · e
ln(2n)

e
α2n
4 lnn

]

≥ 1− n ·

[
eln(2n)

e
α2n
4 lnn

]
= 1− o(1).

We have thus shown that, for every vertex x in G, |dG(x) − µ(x)| < αµ(x) a.a.s. The
vertex with the maximum degree is from L1 a.a.s. and similarly, the vertex with the
minimum degree is from Llnn a.a.s. Now we calculate an upper bound for µ(x), for
x ∈ L1.

µ(x) =
n

lnn

[
(1− ϵ0)

1+1 + (1− ϵ0)
1+2 + · · ·+ (1− ϵ0)

1+lnn
]

≤ n

lnn

(1− ϵ0)
2

ϵ0
.

From the above upper bound and the lower bound (computed in equation (9)) on µ(x)

when x ∈ L1, we have ∆ = Θ
(

n
lnn

)
a.a.s. Now, consider an x ∈ Llnn. From the lower

bound for µ(x) that we computed at the beginning of this proof in equation (10), we
have, µ(x) ≥ (1− ϵ0) · n

lnn
·n−2ϵ0 . Thus, the minimum degree of G is Ω

(
n1−2ϵ0

lnn

)
a.a.s. That

is, the minimum degree of G is Ω(∆1−ϵ) a.a.s. (as ϵ = 3ϵ0).

To summarize the proof of Theorem 24, we note that any coloring f : V (G) −→ [r]

that uses r = ϵ30 ln
2∆ many colors cannot take care of all the vertices of G. For a fixed

color class, Lemma 25 bounds the number of vertices of that color class that can take
care of themselves. Lemma 25 provides a bound of n0.003. Thus across the r color classes,
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the number of vertices that take care of themselves is at most rn0.003. The number of
vertices that are taken care of by a fixed heavy set is bounded by Lemma 26 to n0.6. Thus
the total number of vertices that are taken care of by heavy color classes is at most rn0.6.
Lemma 27 bounds the number of vertices taken care of by all the light color classes to
n− n0.7. Summing up, we note that all the n vertices cannot be taken care of.

Lemma 29 shows that the minimum degree of G is Ω(∆1−ϵ), completing the proof of
Theorem 24.
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