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Abstract8

A Conflict-Free Open Neighborhood coloring, abbreviated CFON∗ coloring, of a graph9

G = (V,E) using k colors is an assignment of colors from a set of k colors to a subset of10

vertices of V such that every vertex sees some color exactly once in its open neighborhood.11

The minimum k for which G has a CFON∗ coloring using k colors is called the CFON∗
12

chromatic number of G, denoted by χ∗
ON (G). The analogous notion for closed neighborhood13

is called CFCN∗ coloring and the analogous parameter is denoted by χ∗
CN (G). The problem14

of deciding whether a given graph admits a CFON∗ (or CFCN∗) coloring that uses k colors15

is NP-complete. Below, we describe briefly the main results of this paper.16

• We show that it is NP-hard to determine the CFCN∗ chromatic number of chordal17

graphs. We also show the existence of a family of chordal graphs G that requires18

Ω(
√

ω(G)) colors to CFCN∗ color G, where ω(G) represents the size of a maximum19

clique in G.20

• We give a polynomial time algorithm to compute χ∗
ON (G) for interval graphs G. This21

answers in positive the open question posed by Reddy [Theoretical Comp. Science,22

2018] to determine whether CFON∗ chromatic number can be computed in polynomial23

time for interval graphs.24

• We explore biconvex graphs, a subclass of bipartite graphs, and give a polynomial time25

algorithm to compute their CFON∗ chromatic number.26

Keywords: Conflict-free Coloring, Graph Coloring, Interval Graphs, Chordal Graphs, Bipartite27

Graphs.28

1 Introduction29

Given a coloring of a graph G = (V,E), we say a vertex v ∈ V (G) sees a color c if there30

exists a neighbor of v that is assigned the color c. A Conflict-Free Open Neighborhood coloring,31

∗A subset of results of this paper appeared in the proceedings of 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022).
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abbreviated CFON∗ coloring, of a graph G = (V,E) using k colors is an assignment of colors to32

a subset of vertices such that every vertex sees some color exactly once in its open neighborhood.33

The minimum k for which G has a CFON∗ coloring using k colors is called the CFON∗ chromatic34

number of G, denoted by χ∗
ON (G). 1 The analogous notion for closed neighborhood is called35

CFCN∗ coloring and the analogous parameter is denoted by χ∗
CN (G). It is known (see for36

instance, Equation 1.3 from [27]) that if G has no isolated vertices, then χ∗
CN (G) is at most37

twice χ∗
ON (G). Given a graph G and an integer k ∈ N, the CFON∗ coloring problem is the38

problem of determining if χ∗
ON (G) ≤ k. The CFON∗ variant is considered to be harder than the39

CFCN∗ variant, see for instance the remarks in [24, 27]. As an example, consider the complete40

graph Kn on n vertices. The chromatic number of Kn is χ(Kn) = n while the conflict-free41

chromatic numbers are χ∗
CN (Kn) = 1 and χ∗

ON (Kn) = 2. It is sufficient to color one vertex42

(resp. two vertices) of Kn to obtain a CFCN∗ (resp. CFON∗) coloring.43

The notion of conflict-free coloring was introduced by Even, Lotker, Ron and Smorodinsky44

in 2004, motivated by the frequency assignment problem in wireless communication [16]. The45

conflict-free coloring problem on graphs was introduced and first studied by Cheilaris [11] and46

Pach and Tardos [27]. Conflict-free coloring has found applications in the area of sensor networks47

[19,26] and coding theory [25]. Since its introduction, the problem has been extensively studied,48

see for instance [1, 3, 6, 8, 11, 20, 21, 27, 29]. The decision version of the CFON∗ coloring problem49

and many of its variants are known to be NP-complete [1, 20]. In [20], Gargano and Rescigno50

showed that the optimization version of the CFON∗ coloring problem is hard to approximate51

within a factor of n1/2−ϵ, unless P = NP. Fekete and Keldenich [17] and Hoffmann et al. [23]52

studied a conflict-free variant of the chromatic Art Gallery Problem, which is about guarding a53

simple polygon P using a finite set of colored point guards such that each point p ∈ P sees at54

least one guard whose color is distinct from all the other guards visible from p.55

The conflict-free coloring problem has been studied on several graph classes like planar56

graphs [1], graphs of bounded degree [27], geometric intersection graphs like interval graphs [5,12,57

28], unit disk intersection graphs and unit square intersection graphs [4, 18], split graphs [4, 28],58

distance hereditary graphs [4], etc. The problem has been studied from a parameterized com-59

plexity perspective and is fixed-parameter tractable when parameterized by tree-width [2, 8],60

neighborhood diversity, distance to cluster [28], or the combined parameters clique-width and61

the number of colors [4, 5].62

1.1 Our Contribution and Discussion63

In this paper, we consider the problems of determining χ∗
ON and χ∗

CN on some subclasses of64

perfect graphs and bipartite graphs. Some of the popular subclasses of perfect graphs include65

chordal graphs, split graphs, interval graphs and cographs. Given a cograph G, we can determine66

χ∗
ON (G) and χ∗

CN (G) in polynomial time [5]. Moreover, it is known that χ∗
ON (G), χ∗

CN (G) ≤ 2.67

For a split graph G, χ∗
CN (G) can be computed in polynomial time while determining χ∗

ON (G) is68

NP-hard [5]. Further, it is known that χ∗
CN (G) ≤ 2 whereas there exists a family of split graphs69

G′ such that χ∗
ON (G′) = Θ(

√
n).70

In general, we use n to denote the number of vertices of the input graph. We denote by ω(G),71

the size of a largest clique in the graph G. Since split graphs are a subclass of chordal graphs,72

determining χ∗
ON on chordal graphs is NP-hard. It is known that ω(G) colors are sufficient and73

necessary to properly color (any pair of adjacent vertices are assigned distinct colors) a chordal74

graph G. Since a proper coloring is also a CFCN∗ coloring, we have that χ∗
CN (G) ≤ ω(G).75

1It is also known by the name ‘partial conflict-free chromatic number’ as only a subset of vertices are assigned
colors. The ‘(full) conflict-free chromatic number’ of a graph, which requires assigning colors to all the vertices,
is at most one more than its partial conflict-free chromatic number.
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Therefore we ask the following questions on chordal graphs: (i) whether χ∗
CN (G) ∈ O(1), similar76

to the case when the graph is a split graph or an interval graph, and (ii) whether χ∗
CN (G) can77

be computed in polynomial time. We answer both the questions in the negative by exhibiting a78

family of chordal graphs that require Ω(
√
ω(G)) colors in any CFCN∗ coloring of G. Then we79

show that it is NP-hard to determine if χ∗
CN (G) = 1. We state the results formally below and80

the proofs are presented in Section 3. Chordal graphs are formally defined at the beginning of81

the section.82

Theorem 1. Given a chordal graph G, it is NP-hard to determine if χ∗
CN (G) = 1.83

Theorem 2. There exists an infinite sequence of chordal graphs Gk, on an increasing number84

of vertices, such that χ∗
CN (Gk) = Ω(

√
ω(Gk)).85

Next, we consider interval graphs. For an interval graph G, it is known that χ∗
CN (G) ≤ 286

and the problem of determining χ∗
CN (G) is polynomial time solvable [18]. It was shown that87

χ∗
ON (G) ≤ 3 for interval graphs and that the bound is tight [5]. It was asked in [28] if there is a88

polynomial time algorithm that, given an interval graph G, computes χ∗
ON (G). We answer this89

in the affirmative and give polynomial time characterization algorithms for interval graphs G90

that decide if χ∗
ON (G) ∈ {1, 2, 3}. Formally, we have the following theorem, the proof for which91

is presented in Section 4. Interval graphs are formally defined at the beginning of this section.92

Theorem 3. Given an interval graph G, we can determine χ∗
ON (G) in time O(n20).93

Towards the end, we consider a subclass of bipartite graphs called biconvex graphs. It is easy94

to see that χ∗
CN (G) ≤ 2 for a bipartite graph G. On the contrary, there exist bipartite graphs95

(for instance, subdivision of a clique), for which χ∗
ON (G) = Θ(

√
n). It is NP-complete to decide96

if a planar bipartite graph G has χ∗
ON (G) ∈ {1, 2, 3} [1]. We show that χ∗

ON (G) ∈ {1, 2} for a97

biconvex graph G. To decide whether χ∗
ON (G) = 1 or χ∗

ON (G) = 2 for a biconvex graph, we98

use characterization algorithms, similar to those in interval graphs. The results and the formal99

definition of biconvex graphs are presented in Section 5.100

Theorem 4. Given a biconvex graph G, we can determine χ∗
ON (G) in time O(n5).101

Note: Theorems 1 and 2 are new results whereas Theorems 3 and 4 appeared in [7].102

2 Preliminaries103

Throughout the paper, we consider simple undirected graphs without any isolated vertices (for104

graphs with isolated vertices there is no CFON∗ coloring). For standard terminology related105

to graph theory, we refer to the textbook by Diestel [14]. For a vertex v ∈ V (G), its open106

neighborhood, denoted by NG(v), is the set of neighbors of v in G. The closed neighborhood of107

v, denoted by NG[v], is NG(v) ∪ {v}. For a set of vertices S, we denote NG(S) = ∪v∈SNG(v).108

We drop the subscript when it is clear from the context.109

In the introduction, we defined conflict-free colorings to be an assignment of colors to a110

subset of the vertices of the graph. For the sake of convenience, we will use the color 0 to denote111

uncolored vertices. The “color” 0 cannot serve as a unique color in the neighborhood of any112

vertex.113

3 Chordal graphs114

In this section, we consider conflict-free colorings on chordal graphs.115
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Definition 5. A chord of a cycle is an edge whose endpoints are vertices of the cycle but is not116

part of the cycle. A chordal graph is a graph in which every cycle of length at least 4 has a chord.117

It is known that determining the CFON∗ chromatic number on chordal graphs is NP-hard,118

which follows from the NP-hardness result on split graphs [5]. In this section, we explore bounds119

on χ∗
CN (G) for chordal graphs G. Since a proper coloring is also a CFCN∗ coloring and a chordal120

graph G can be properly colored using ω(G) (the size of a largest clique) colors, it follows that121

χ∗
CN (G) ≤ ω(G). It is natural to ask if this upper bound can be improved to a constant. We122

answer this in the negative. We also study the complexity of determining the CFCN∗ chromatic123

number of chordal graphs.124

Definition 6 (Perfect Independent Dominating Set [10]). Given a graph G, a perfect indepen-125

dent dominating set is a set of vertices S ⊆ V (G) such that S is an independent set and every126

vertex outside S has exactly one neighbor in S. That is, for each v ∈ V (G), |N [v] ∩ S| = 1.127

Given a graph G, the Perfect Independent Dominating Set (PIDS, in short) problem128

asks if G has a perfect independent dominating set. It is known that PIDS is NP-hard on chordal129

graphs [10].130

Proof of Theorem 1. We give a reduction from the Perfect Independent Dominating Set131

problem on chordal graphs. Consider an instance G of PIDS where G is chordal. We show that132

there exists a perfect independent dominating set of G if and only if χ∗
CN (G) = 1.133

Let S ⊆ V (G) be a perfect independent dominating set of G. We now give an assignment134

f : V (G) → {0, 1}. We assign f(v) = 1 for each v ∈ S and assign the color 0 to all vertices in135

V (G) \ S. Since every vertex v ∈ V (G) has exactly one neighbor in N [v]∩ S, the coloring f is a136

CFCN∗ coloring.137

Let f : V (G) → {0, 1} be a CFCN∗ coloring of G. We obtain a perfect independent domi-138

nating set S of G by picking vertices that are assigned the color 1 in G.139

Since PIDS is NP-hard on chordal graphs [10], it is NP-hard to determine if the CFCN∗
140

chromatic number of a chordal graph is 1.141

We now show the existence of chordal graphs with large CFCN∗ chromatic number. We first142

look at the following lemma.143

Lemma 7. Let H be a graph such that χ∗
CN (H) ≥ k. Consider a graph G, which contains two144

disjoint copies of H, say H1 and H2. Let X ⊆ V (G) such that X is disjoint from V (H1)∪V (H2).145

Further let vertices in X be adjacent to each vertex of H1 and H2, and NG(V (H1)) \ V (H1) =146

NG(V (H2))\V (H2) = X. Then in any CFCN∗ coloring of G using k colors, there exists a vertex147

w ∈ V (H1) ∪ V (H2) such that each uniquely colored neighbor of w belongs to X.148

Proof. Suppose for the sake of contradiction that c : V (G) → {1, . . . , k} is a CFCN∗ coloring of149

G where each vertex of H1 (resp. H2) has a uniquely colored neighbor from H1 (resp. H2). This150

means that c restricted to H1 (resp. H2) is a CFCN∗ coloring of H1 (resp. H2). Since χ∗
CN (H1) =151

χ∗
CN (H2) ≥ k, each of the colors in {1, 2, . . . , k} appear at least twice in the neighborhood of152

each vertex in X. This contradicts the assumption that c is a CFCN∗ coloring of G.153

Theorem 8. There exists a family of chordal graphs Gk such that χ∗
CN (Gk) ≥ k.154

Proof. We construct graphs Gk, where k ≥ 1, in an inductive fashion satisfying the property155

that Gk cannot be CFCN∗ colored using k − 1 colors. Let the graph G1 be isomorphic to K2.156

For each k ≥ 1, the graph Gk+1 is constructed as follows:157
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• Add a set B = {v1, v2, . . . , vk+1} of bottom vertices with the vertices in B being pairwise158

adjacent (thereby forming a clique),159

• For each nonempty X ⊆ B, add two disjoint copies of Gk, say GX
1 and GX

2 , and make each160

vertex of GX
1 and GX

2 adjacent to every vertex in X.161

An illustration of the graph G3 is given in Figure 1. We use induction on k to show that Gk162

does not have a CFCN∗ coloring using k − 1 colors. The hypothesis is clearly true for the base163

case where the graph is G1. We assume that the hypothesis is true for Gk. Suppose for the sake164

of contradiction that Gk+1 is CFCN∗ colorable using k colors. From Lemma 7, in any CFCN∗
165

coloring of Gk+1 using k colors, we have that for each nonempty X ⊆ B there is a vertex in166

GX
1 ∪GX

2 whose each uniquely colored neighbor belongs to X. Consider the set X1 = B. Because167

of Lemma 7, there is a vertex from X1 that is a uniquely colored neighbor of some vertex from168

GX1
1 ∪GX1

2 . Without loss of generality, let the vertex be v1. Now consider the set X2 = X1\{v1}.169

Again from Lemma 7, there is a vertex in X2 that acts as a uniquely colored neighbor of some170

vertex from GX2
1 ∪GX2

2 . Without loss of generality let that vertex from X2 be v2. We repeat this171

process until we reach the set Xk+1 = Xk \{v1, v2, v3, . . . , vk} = {vk+1}. By the same argument,172

we infer that vk+1 is a uniquely colored neighbor of some vertex in G
Xk+1

1 ∪G
Xk+1

2 .173

Now, we show that this leads to a contradiction, by showing that no two vertices in {v1, v2, . . . , vk+1}174

can be assigned the same color. Suppose that there exist two vertices vi and vj of the same color,175

where 1 ≤ i < j ≤ k + 1. Recall that vi was chosen as a uniquely colored neighbor of some176

vertex w ∈ GXi
1 ∪GXi

2 . Since Xj ⊆ Xi, w sees both vi and vj which are assigned the same color,177

contradicting our inference that vi is a uniquely colored neighbor of w.178

All that remains to show is that Gk+1 is a chordal graph. We show this by induction. The179

base case G1 = K2 is a chordal graph. Suppose that Gk+1, for some k ≥ 1, is not a chordal180

graph. Among the cycles of length at least 4, let C be a cycle of shortest length that does not181

have a chord. It is easy to see that C does not contain more than two vertices from B. We have182

the following cases depending on the size of C ∩B.183

• C contains exactly two vertices from B.184

Let the two vertices be vi and vj . It must be the case that vi and vj are consecutive in C,185

otherwise C contains a chord. Then the vertices of C − {vi, vj} should come from a copy186

of Gk, say H, that is adjacent to both vi and vj . According to the construction, vi and vj187

are adjacent to every vertex in H and thus C cannot be a shortest cycle without a chord.188

• C contains exactly one vertex from B.189

Then the other vertices of C belong to one copy of Gk. The arguments are similar to those190

in the above case.191

• C contains no vertex from B.192

Then C contains vertices from a copy of Gk which by induction is chordal, and thus a193

contradiction.194

195

Claim 9. The clique number of Gk is ω(Gk) =
k(k+1)

2 + 1.196

Proof. We use induction to prove the bound. Let ωk denote the size of the maximum sized197

clique in Gk. The graph G1 is isomorphic to K2 and thus ω1 = 2, satisfying the base case.198

Any maximum clique in Gk contains the set of k bottom vertices, say Bk, and the vertices of199

a maximum clique in a copy of Gk−1 that is adjacent to each of the vertices in Bk. We cannot200
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G2 G2

Figure 1: Illustration of the graph G3. The dashed line between a vertex, say v, from B and an
ellipse containing two copies of G2 indicate that v is adjacent to every vertex inside the ellipse.

have vertices from two different copies of Gk−1 as they are not adjacent to each other. Thus201

ωk = |Bk|+ ωk−1 = k + (k − 1)k/2 + 1 = k(k + 1)/2 + 1.202

The proof of Theorem 2 follows from Theorem 8 and Claim 9.203

4 Interval graphs204

In this section, we show that the problem of determining the CFON∗ chromatic number of a205

given interval graph is polynomial time solvable. It was shown in [5, 28] that, for an interval206

graph G, χ∗
ON (G) ≤ 3 and that there exists an interval graph that requires three colors. The207

complexity of the problem on interval graphs was posed as an open question in the above papers.208

We show that, given an interval graph G, it is possible to decide in polynomial time whether209

χ∗
ON (G) is 1, 2 or 3.210

Definition 10 (Interval Graphs). A graph G = (V,E) is called an interval graph if there exists211

a set of intervals on the real line such that the following holds: (i) there is a bijection between212

the intervals and the vertices and (ii) there exists an edge between two vertices if and only if the213

corresponding intervals intersect.214

The main ingredient of the algorithm is the use of multi-chain ordering property on interval215

graphs. Before defining the multi-chain ordering property, we look at some prerequisites.216

Definition 11 (Chain Graph [15]). A bipartite graph G = (A,B) is a chain graph if and only217

if for any two vertices u, v ∈ A, either N(u) ⊆ N(v) or N(v) ⊆ N(u).218

Proposition 12. If G = (A,B) is a chain graph as defined above, it follows that for any two219

vertices u, v ∈ B, either N(u) ⊆ N(v) or N(v) ⊆ N(u).220

As a consequence, we can order the vertices in B in the decreasing order of their degrees.221

If there are multiple vertices of the same degree, we arbitrarily order these vertices. If b1 ∈ B222

appears before b2 ∈ B in the ordering, then it follows that N(b2) ⊆ N(b1).223

Definition 13 (Multi-chain Ordering [9,15]). Let L0, L1, . . . , Lp be a partition of the vertices of224

the graph G. We say these layers form a multi-chain ordering of G if225

• |L0| = 1,226
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Figure 2: A graph G (on the left) and a multi-chain ordering of G (on the right).

• the layer Li, where 0 ≤ i ≤ p, represents the set of vertices that are at a distance i from227

the vertex in L0, and228

• for every two consecutive layers Li and Li+1, where i ∈ {0, 1, . . . , p− 1}, we have that the229

vertices in Li and Li+1, and the edges connecting these layers form a chain graph.230

Note that p here denotes the largest integer such that Lp is non-empty.231

For a given graph G, it is possible to check for the existence of a multi-chain ordering in232

polynomial time by trying out all the possibilities of the starting vertex in L0. A illustration of233

a multi-chain ordering is given in Figure 2. Notice that G is an interval graph.234

Theorem 14 (Theorem 2.5 of [15]). All connected interval graphs admit multi-chain orderings.235

We give a characterization of interval graphs that require one color and two colors in polyno-236

mial time in Theorem 17 and Theorem 19 respectively. Given an interval graph G, the algorithms237

decide if G is CFON∗ colorable using one color or two colors. If G is not CFON∗ colorable using238

one color or two colors, we conclude that G is CFON∗ colorable using three colors (since it is239

known that for an interval graph G, χ∗
ON (G) ≤ 3). One of the key ideas used in Theorem 19240

(to decide if G can be CFON∗ colored using two nonzero colors) is sort of a bootstrapping idea.241

After narrowing down the possibilities, we need to test if a given subgraph can be colored using242

the colors {0, 1} so as to obtain a CFON∗ coloring. To solve this, we use Theorem 17.243

Before we proceed to the main theorems of this section, we observe the following on a graph244

G that admits multi-chain ordering.245

Observation 15. If G admits a multi-chain ordering, then every distance layer Li, for 0 ≤ i < p,246

contains a vertex v such that N(v) ⊇ Li+1.247

Proof. Consider a multi-chain ordering of G. For any two consecutive distance layers Li and Li+1,248

it can be seen that each vertex in Li+1 has a neighbor in Li. This, together with the fact that249

Li and Li+1 form a chain graph, imply that there is a vertex v ∈ Li such that N(v) ⊇ Li+1.250

Observation 16. In any CFON∗ coloring of G that uses one color, at most one vertex in each251

Li is assigned the color 1.252

Proof. Consider a layer Li of the graph. As per Observation 15, there is a v ∈ Li such that253

N(v) ⊇ Li+1. If two vertices in Li+1 are colored 1, then the vertex v ∈ Li does not have a254

uniquely colored neighbor. Hence in all the layers L1, L2, . . . up to the last layer Lp, we have255

that at most one vertex is assigned the color 1. Since L0 has only one vertex, the statement is256

trivially true for L0.257
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Theorem 17. Given an interval graph G = (V,E), we can decide in time O(n5) if χ∗
ON (G) = 1.258

Proof. Let L0, L1, . . . , Lp be the distance layers that form a multi-chain ordering of G. Let259

L0 = {v0}. If there is a CFON∗ coloring that uses 1 color, then from Observation 16, at most260

one vertex in each layer is assigned the color 1. There are two possibilities for a layer Li: either261

it has no vertex colored 1, or it has exactly one vertex that is colored 1. In the former case, there262

is a unique coloring for Li when none of the vertices in Li are assigned the color 1. In the latter263

case, we have |Li| many colorings (of Li) where each coloring has exactly one vertex with color264

1 (and the rest are assigned 0). In total, we have at most |Li|+ 1 colorings for each Li. We call265

all such colorings valid.266

The task is to find if there is a sequence of colorings assigned to each layer of G such that267

we have a CFON∗ coloring. Notice that the vertices in Li can possibly have neighbors only268

in the layers Li−1, Li, and Li+1. The question of deciding whether the vertices in Li have a269

uniquely colored neighbor entirely depends on the colorings assigned to these three layers. We270

use a dynamic programming based approach to verify the existence of a CFON∗ coloring for G.271

We now construct a layered companion hypergraph G = (V ′, E) with vertices in p+ 1 layers.272

Each layer Ti of G corresponds to the layer Li of G where i ∈ [p] ∪ {0}. Each vertex in layer Ti273

of G corresponds to a valid coloring of vertices in Li of G. Hence the number of vertices in each274

layer Ti of G is equal to |Li|+ 1. We now explain how the hyperedges E of G are determined.275

For 1 ≤ i ≤ p − 1, the vertices x ∈ Ti−1, y ∈ Ti, z ∈ Ti+1 form a hyperedge {x, y, z} if the276

corresponding colorings, when assigned to Li−1, Li and Li+1 respectively, ensures that every277

vertex in Li has a uniquely colored neighbor. We also have hyperedges {y, z}, where y ∈ T0 and278

z ∈ T1 are colorings such that when y and z are assigned to L0 and L1 respectively, the vertex279

in L0 sees a uniquely colored neighbor. Similarly, we have hyperedges {x, y}, where x ∈ Tp−1280

and y ∈ Tp are colorings such that when x and y are assigned to Lp−1 and Lp respectively, all281

the vertices in Lp see a uniquely colored neighbor.282

Since the number of valid colorings is |Li| + 1 for the layer Li, the total number of valid283

colorings across all layers is at most 2n. The total number of potential hyperedges to check is284

at most O(n3). Once we fix valid colorings xi−1, xi, xi+1 for Li−1, Li, Li+1 respectively, we can285

check in O(|Li| ·n) ≤ O(n2) time if {xi−1, xi, xi+1} ∈ E . Hence we need O(n5) time to construct286

G.287

To obtain a CFON∗ coloring for G from the hypergraph G, we need to construct a sequence288

of colorings x0 ∈ T0, x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E , {xi−1, xi, xi+1} ∈ E for all289

1 ≤ i ≤ p− 1, and finally {xp−1, xp} ∈ E . For this, we use Lemma 18, stated and proved below.290

Note that each |Ti| = |Li|+1 ≤ n+1, and number of layers is at most n. This gives us that the291

parameters in Lemma 18, α ≤ n+1 and β ≤ n. Hence it takes at most O(n4) time to decide if G292

has a CFON∗ coloring that uses 1 color. The construction of G takes O(n5) time and dominates293

the running time.294

Lemma 18. Suppose there is a layered hypergraph G = (V ′, E) with layers T0, T1, T2, . . . , Tp,295

where |Ti| ≤ α, for 0 ≤ i ≤ p and p ≤ β. The layers partition the vertex set, i.e., ∪p
i=0Ti = V ′.296

Suppose further that all the hyperedges in E are of size 2 or 3 and are of the following form:297

the hyperedges contain one vertex each from three consecutive layers, or contain one vertex each298

from T0 and T1, or contain one vertex each from Tp−1 and Tp. We can determine if there exists299

a sequence x0 ∈ T0, x1 ∈ T1, . . ., xp ∈ Tp such that {x0, x1} ∈ E, {xi−1, xi, xi+1} ∈ E for all300

1 ≤ i ≤ p− 1, and finally {xp−1, xp} ∈ E in O(α3β) time.301

Proof. For each vertex x1 ∈ T1, we store a list of predecessors x0 ∈ T0 such that {x0, x1} ∈ E .302

For 1 ≤ i ≤ p− 1, we do the following at each vertex xi ∈ Ti. We look at the list of predecessors303

stored. If xi−1 is a listed predecessor of xi, then we search for all the hyperedges {xi−1, xi, z},304
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where z ∈ Ti+1. If we find such a hyperedge {xi−1, xi, xi+1} ∈ E , then we store xi as a predecessor305

in the list at xi+1. Finally, for each xp ∈ Tp, we check if there is a listed predecessor z ∈ Tp−1 of306

xp such that {z, xp} ∈ E . If there is any such xp ∈ Tp for which this holds, then there exists a307

sequence as desired in the statement of the lemma.308

Note that the general step involves going through a list of size at most α at each vertex xi. For309

each listed predecessor xi−1, there are potentially at most α hyperedges of the form {xi−1, xi, z}310

to check, where z ∈ Ti+1. We need to do this for all the vertices (at most α of them) of Ti. This311

gives a time complexity of O(α3) at the i-th layer. Since there are β layers, the total running312

time is O(α3β).313

We now proceed to the next result that decides in polynomial time whether χ∗
ON (G) = 2.314

Theorem 19. Given an interval graph G, we can decide in time O(n20) if χ∗
ON (G) = 2.315

Proof. The idea of this proof is similar to the proof of Theorem 17. Let L0, L1, . . . , Lp be the316

distance layers that form a multi-chain ordering of G. For a layer Li, we had |Li| + 1 colorings317

to consider in Theorem 17. Unlike in Theorem 17, we have more colorings to consider since the318

vertices can get the colors {0, 1, 2}. We have the following types of colorings in each layer Li, for319

i ≥ 1:320

Type 1: All the vertices in Li are assigned the color 0. There is only one coloring of Li of this321

type.322

Type 2: Exactly one vertex is assigned the color 1 or 2 while the rest are assigned the color 0.323

The number of colorings is 2|Li|.324

Type 3: Both the colors 1 and 2 appear exactly once and the rest are assigned the color 0. The325

number of colorings is |Li|(|Li| − 1) ≤ |Li|2.326

Type 4: One of the colors 1 or 2 appears at least twice while the other color appears exactly327

once. The remaining vertices are assigned the color 0.328

Type 5: Exactly one of the colors 1 or 2 appears at least twice and all the other vertices are329

assigned the color 0.330

Type 6: Both the colors 1 or 2 appears at least twice and all the other vertices are assigned the331

color 0.332

Notice that we cannot have a Type 6 coloring for any Li. Consider layer Li with i ≥ 1. Note333

that by Observation 15, there is a vertex v ∈ Li−1 such that N(v) ⊇ Li. Hence we cannot have a334

Type 6 coloring in Li where there are at least two vertices with color 1 and at least two vertices335

with color 2. This would imply that the v ∈ Li−1 does not have a uniquely colored neighbor.336

Hence, the layers Li, for 1 ≤ i ≤ p, cannot have a Type 6 coloring. Since L0 has only one vertex,337

this case does not arise for L0 as well.338

Notice that the number of colorings of Types 1, 2, 3 are polynomial in |Li| while the number339

of colorings of Types 4 and 5 are exponential in |Li|. Hence we cannot consider all the possible340

colorings exhaustively. We instead consider a polynomial subset of Type 4 and Type 5 colorings341

which are representatives of all possible Type 4 and Type 5 colorings. We now explain how to342

obtain these representative colorings.343

Let us first consider a Type 4 coloring f of Li. WLOG, let the coloring have at least two344

vertices colored 1, and exactly one vertex colored 2. All the remaining vertices are colored 0. We345

call the lone vertex that is colored 2 as the special vertex of Li with respect to f . Consider the346
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vertices of Li in a nonincreasing order of their degrees with respect to Li−1. Let this ordering be347

called σi. For example, vertex v appears ahead of u in σi if degLi−1
(v) > degLi−1

(u). If there are348

multiple vertices of the same degree, we arbitrarily order these vertices. The first two vertices349

that are colored 1 as per σi are called left important vertices of Li with respect to the coloring350

f .351

Similarly, we define the ordering of the vertices of Li, in the nonincreasing order of their352

degrees with respect to Li+1. If there are multiple vertices of the same degree, we arbitrarily353

order these vertices. Let this ordering be called τi. The first two vertices that are colored 1 as354

per τi are called right important vertices of Li with respect to the coloring f .355

For a Type 4 coloring with exactly one vertex colored 1, and at least two vertices colored 2, a356

similar argument to the above applies by swapping colors 1 and 2. That is, the left important and357

right important vertices will be those colored 2, and the special vertex will be the lone vertex358

colored 1. We can define left important and right important vertices with respect to Type 5359

colorings as well.360

Observation 20. Let f : V (G) → {0, 1, 2} be a coloring of G which is a Type 4 coloring,361

when restricted to Li. Let xi
1, x

i
2 ∈ Li be the left important vertices with respect to f such that362

f(xi
1) = f(xi

2) = 1.363

Consider the vertices X = {x ∈ Li : x appears after xi
2 in σi, f(x) ∈ {0, 1}}. Suppose364

u, u′ ∈ Li−1 such that u has a uniquely colored neighbor and u′ has no uniquely colored neighbor365

with respect to f . Let f ′ be a coloring of G such that f(v) = f ′(v) when v /∈ X, and f ′(v) ∈ {0, 1}366

when v ∈ X. Then u will have a uniquely colored neighbor and u′ will not have a uniquely colored367

neighbor with respect to f ′.368

Proof. Let us consider a vertex u ∈ Li−1 that had a uniquely colored neighbor with respect to f .369

Suppose the uniquely colored neighbor was w and f(w) = 2. Since the set of vertices colored 2370

by f ′ is the same as the set of vertices colored 2 by f , w will continue to be the unique neighbor371

of u colored 2.372

Now suppose f(w) = 1. If w /∈ Li, then u does not see any vertex in f−1(1) ∩ Li. In373

particular, u is not adjacent to xi
1, x

i
2 ∈ Li. Since the bipartite graph between Li−1 and Li is a374

chain graph, and since all the vertices in X appear after xi
2 in σi, it follows that u is not adjacent375

to any vertex in X. Since the only vertices that are colored differently in f and f ′ are those in376

X, it follows that w continues to be the uniquely colored neighbor of u in f ′ as well. If w ∈ Li,377

then it follows that w = xi
1, xi

2 /∈ N(u) and N(u)∩X = ∅. In this case as well, w = xi
1 continues378

to be the uniquely colored neighbor of u with respect to f ′.379

Now consider a vertex u′ ∈ Li−1 that did not have a uniquely colored neighbor with respect380

to f . The only ways in which u′ may obtain a uniquely colored neighbor in f ′ is due to the381

recoloring of a vertex x ∈ X ∩N(u′). However, since x ∈ N(u′), the multi-chain ordering implies382

that xi
1, xi

2 ∈ N(u′). Since u′ is adjacent to two vertices colored 1, the recoloring of vertices in383

X using the colors {0, 1} cannot introduce a uniquely colored neighbor for u′ in f ′.384

Similarly, we have the following observation.385

Observation 21. Let f : V (G) → {0, 1, 2} be a coloring of G which is a Type 4 coloring,386

when restricted to Li. Let yi1, yi2 ∈ Li be the right important vertices with respect to f such that387

f(yi1) = f(yi2) = 1.388

Consider the vertices X = {x ∈ Li : x appears after yi2 in τi, f(x) ∈ {0, 1}}. Suppose389

u, u′ ∈ Li+1 such that u has a uniquely colored neighbor and u′ has no uniquely colored neighbor390

with respect to f . Let f ′ be a coloring of G such that f(v) = f ′(v) when v /∈ X, and f ′(v) ∈ {0, 1}391

when v ∈ X. Then u will have a uniquely colored neighbor and u′ will not have a uniquely colored392

neighbor with respect to f ′.393
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Note that the Observations 20 and 21 continue to hold in the “color-inverted” setting: i.e.,394

when we have a Type 4 coloring where at least two vertices are colored 2 and exactly one vertex395

that is colored 1. Analogous observations also hold when f is a Type 5 coloring.396

Let f be a coloring of Li which is of Type 4 or 5, with at least two vertices colored 1. Let397

xi
1, x

i
2 be the left important vertices and yi1, y

i
2 be the right important vertices with respect to398

f . This implies that xi
1, x

i
2, y

i
1, y

i
2 are assigned the color 1, and the vertices that precede xi

2 in399

σi are colored 0 (with the exception of xi
1, and possibly the special vertex which is colored 2),400

and vertices that precede yi2 in τi are colored 0 (again with the exception of yi1, and possibly the401

special vertex). It may be the case that {xi
1, x

i
2} ∩ {yi1, yi2} ≠ ∅. The main consequence of the402

above observations is that the the colors of the remaining vertices have no impact on the vertices403

in Li−1 and Li+1 having a uniquely colored neighbor.404

Given a Type 4 or Type 5 coloring f of Li, we compute the set of “indifferent” vertices Xi as405

follows:406

Xi ={x ∈ Li : x appears after xi
2 in σi, f(x) ∈ {0, 1}} (1)

∩ {x ∈ Li : x appears after yi2 in τi, f(x) ∈ {0, 1}}.

The flexibility in coloring these indifferent vertices allow us to only focus on a limited number of407

Type 4 and Type 5 colorings.408

Type 4: One of the colors 1 or 2 appears at least twice while the other color appears exactly409

once. The remaining vertices are assigned the color 0. Here it is sufficient to just consider410

only the two left important vertices, the two right important vertices from Li, and the411

special vertex in Li. The number of representative colorings to be considered is upper412

bounded by 2|Li|5.413

Type 5: Exactly one of the colors 1 or 2 appears at least twice and all the other vertices are414

assigned the color 0. Similar to the above case, it is sufficient to choose two left important415

vertices and two right important vertices from Li. The number of representative colorings416

is upper bounded by 2|Li|4.417

Like in the proof of Theorem 17, we now construct a layered companion hypergraph G =418

(V ′, E) with vertices in p + 1 layers. Each layer Ti of G corresponds to the layer Li of G where419

i ∈ [p]∪{0}. Each vertex in layer Ti of G corresponds to a Type 1, 2, or 3 coloring of the vertices420

in Li of G, or one of the Type 4 or 5 representatives. We thus have the following claim.421

Claim 22. The number of vertices in each layer Ti of G is at most 1+2|Li|+|Li|2+2|Li|5+2|Li|4,422

which is loosely upper bounded by 8|Li|5.423

We now explain how the hyperedges E of G are determined.424

Like in Theorem 17, for 1 ≤ i ≤ p−1, the vertices x ∈ Ti−1, y ∈ Ti, z ∈ Ti+1 form a hyperedge425

{x, y, z} if the corresponding colorings, when assigned to Li−1, Li and Li+1 respectively, ensures426

that every vertex in Li has a uniquely colored neighbor. We also have hyperedges of size 2427

corresponding to the layers L0 and Lp.428

The main task that remains is to determine the hyperedges E . For this, we need to check429

whether {x, y, z} (when assigned respectively to Li−1, Li, Li+1) ensures a uniquely colored neigh-430

bor for every vertex in Li. This task is somewhat harder than the analogous task in Theorem 17.431

This is because x, y, z could be representative colorings and provide flexibility in coloring. If y is432

a coloring of Type 1, 2 or 3, then all the colors of Li are fixed. The colors of those vertices from433

Li−1 and Li+1 that matter to Li are also fixed by x and z (even if x, z are representatives). If y434

is of Type 4 or 5, what remains to be determined is if there is a coloring y′ of Li, consistent with435
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the representative coloring y, such that all the vertices of Li see a uniquely colored neighbor.436

The point to note is that the layers Li of G need not be independent sets.437

We will explain the case assuming that y is a Type 4 coloring with at least two vertices of438

Li colored 1, and exactly one vertex of Li colored 2. Let Xi be the set of indifferent vertices (as439

defined in Equation (1)) in Li. This means that any recoloring of the vertices in Xi using the440

colors {0, 1} do not impact the sets Li−1 and Li+1. To begin with, we consider all the vertices441

in Xi as not assigned any color. Given the colorings {x, y, z}, we could classify the vertices in442

Li as follows:443

Class a: Vertices v which have a uniquely colored neighbor and N(v) ∩Xi = ∅.444

Class b: Vertices v which see a uniquely colored neighbor which is colored 2.445

Class c: Vertices v which see a uniquely colored neighbor which is colored 1, sees 0 or multiple446

neighbors colored 2, and N(v) ∩Xi ̸= ∅.447

Class d: Vertices v which see no neighbors colored 1, see 0 or multiple neighbors colored 2, and448

N(v) ∩Xi ̸= ∅.449

Class e: Vertices v which see multiple neighbors colored 1, see 0 or multiple neighbors colored450

2, and N(v) ∩Xi ̸= ∅.451

Class f: Vertices v which do not see a uniquely colored neighbor and N(v) ∩Xi = ∅.452

Vertices that belong to classes a and b, regardless of which way we assign colors from {0, 1} to
the vertices of Xi, will continue to see a uniquely colored neighbor. Vertices in classes e and f
cannot have a uniquely colored neighbor, regardless of how we color Xi. If we have vertices in
classes e or f, we can conclude that the triplet {x, y, z} /∈ E . Now we consider vertices in class
c. If a neighbor (from Xi) of a class c vertex is assigned the color 1, then it will cause the class
c vertex to see at least two vertices colored 1. Hence we assign color 0 to those neighbors and
update Xi as follows:

Xi = Xi \

 ⋃
v:v in class c

N(v)

 .

As a consequence of coloring some vertices 0 and updating Xi, some vertices in class d may now453

have no neighbors in the updated set Xi. If there are such vertices, we can conclude that the454

triplet {x, y, z} /∈ E . If not, we consider the vertices in class d. Let Di ⊆ Li denote those vertices455

of Li that are in class d.456

We may now focus on the graph H = G[Di ∪Xi]. We retain the colors of the vertices in Di457

which have already been assigned a color (note that Di may intersect with Xi). Notice that H458

is an induced subgraph of an interval graph G and hence H is also an interval graph. The goal is459

to assign {0, 1} colors to the vertices in Xi so that all the vertices in Di see a unique vertex with460

the color 1. We can use a procedure similar to that in the proof of Theorem 17 to determine461

this. The main differences are:462

• Instead of checking all the valid colorings, we will only check those valid colorings that are463

consistent with the colors already assigned. For instance, there may be a vertex in H that464

is already colored 2.465

• While considering a coloring, instead of checking whether all the vertices in H see a uniquely466

colored neighbor, we only need to check if the vertices in Di see a uniquely colored neighbor.467
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The above points imply that we only need to check a subset of possibilities. Hence the running468

time of this process will be at most O(|Di ∪Xi|5) which is upper bounded by O(n5).469

A similar approach works in the color-inverted setting, and when y is a Type 5 coloring. The470

time taken to check if {x, y, z} is a valid triplet of colorings is calculated as follows: For each471

vertex in Li, we need O(n) time to check its neighbors in the graph G. This requires O(n2) time.472

If y is Type 4 or 5, then we need to run Theorem 17, which takes O(n5) time.473

The number of possible colorings to check for each layer Li was upper bounded by 8|Li|5 ≤474

O(n5) (see Claim 22). Hence we may have to consider O(n15) possible triplets. Since it takes475

O(n5) time to check if {x, y, z} ∈ E , the running time for constructing the layered hypergraph476

G is at most O(n20). Once we have G, we can apply Lemma 18 with α = O(n5) and β = n,477

obtaining a running time of O(n16). The construction of G dominates the running time, and478

thus we have an O(n20) time algorithm to check if there is a CFON∗ coloring of the entire graph479

G.480

Using Theorems 17 and 19, we can now infer Theorem 3.481

Remark: Recently, the work of Gonzalez and Mann [22] (done simultaneously and independently482

from ours) on mim-width showed that the CFON∗ coloring problem is polynomial-time solvable483

on graph classes for which a branch decomposition of constant mim-width can be computed in484

polynomial time. This includes the class of interval graphs. We note that our work gives a more485

explicit algorithm without having to go through the machinery of mim-width. We also note486

that the mim-width algorithm, as presented in [22], requires a running time in excess of Ω(n300).487

Hence our algorithm is better in this regard as well.488

5 Biconvex Graphs489

It is known that there exists a family of bipartite graphs G for which χ∗
ON (G) = Θ(

√
n), where490

n is the number of vertices of G. As discussed in Section 1.1, CFON∗ coloring is NP-hard491

on bipartite graphs. In this section, we study CFON∗ coloring on biconvex graphs, which is492

a subclass of bipartite graphs. We show that CFON∗ coloring is polynomial time solvable on493

biconvex graphs.494

Definition 23 (Biconvex Graph). We say that an ordering σ of X in a bipartite graph B =495

(X,Y,E) satisfies the consecutive adjacency property (with respect to Y ) if for every vertex496

y ∈ Y , the neighborhood N(y) is a set of vertices that are consecutive in the ordering σ of X. A497

bipartite graph (X,Y,E) is biconvex if there are orderings of X (with respect to Y ) and Y (with498

respect to X) that fulfill the consecutive adjacency property.499

We first observe the following on chain graphs, previously defined in Definition 11. It is500

known that a biconvex graph admits multi-chain ordering [9, 13,15].501

Observation 24. If G is a chain graph, then χ∗
ON (G) = 1.502

Proof. Let G = (A,B) be a chain graph. Without loss of generality, we may assume G is503

connected. If not, we can CFON∗ color each connected component using one color. Then there504

exist two vertices u ∈ A and v ∈ B such that N(u) = B and N(v) = A. This follows by an505

argument similar to what we saw in Observation 15. We assign the color 1 to u and v, and the506

remaining vertices are assigned the color 0. It is easy to see that u and v are the uniquely colored507

neighbors for every vertex in B and A respectively.508

Lemma 25. If G is a biconvex graph, then χ∗
ON (G) ≤ 2.509
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Proof. Let L0, L1, . . . , Lp be the distance layers that form a multichain ordering of G. Since G510

is bipartite, each distance layer Li is an independent set. For each layer Li, where 0 ≤ i ≤ p− 1,511

let ri ∈ Li be the vertex such that N(ri) ⊇ Li+1. as As the subgraph induced on Li ∪ Li+1512

forms a chain graph, such a vertex ri exists. Let f : V (G) → {0, 1, 2} be a function that assigns513

colors to V (G). We assign f(r0) = 1, f(r1) = 1. For each i ≥ 2, we assign f(ri) = 2 if514

(f(ri−1), f(ri−2)) = (1, 1) or (f(ri−1), f(ri−2)) = (2, 1) and f(ri) = 1 otherwise. The remaining515

uncolored vertices are assigned the color 0.516

Each vertex in Li, where 1 ≤ i ≤ q, has the vertex ri−1 as the uniquely colored neighbor, and517

the vertex r0 ∈ L0 has the vertex r1 as its uniquely colored neighbor.518

Proof of Theorem 4. Let G be a biconvex graph. From Lemma 25, we get that χ∗
ON (G) ≤ 2.519

We characterize graphs that require one color by using Theorem 17 in time O(n5). This is520

possible because the key property used by Theorem 17 is the multi-chain ordering of the interval521

graph. Biconvex graphs too admit multi-chain ordering, with the added property that the graph522

induced on each distance layer Li is an independent set. This possibly simplifies the algorithm.523

We omit the details for brevity.524

6 Conclusion525

In this paper, we study CFCN∗ coloring on chordal graphs and show that it is NP-complete. We526

show that CFON∗ coloring is polynomial time solvable on interval graphs and biconvex graphs527

by using the multi-chain ordering property of these graphs. We believe that this property may528

be useful in designing polynomial time algorithms for other problems on these graph classes. We529

also believe that a similar adaptation of the results to the full coloring variant of the problem530

(that requires each vertex to be assigned a color) is polynomial time solvable on these graph531

classes. One obvious research direction is to improve the running time of the algorithm for532

interval graphs, given in Theorem 3. It may be of interest to study the CFON∗ problem on other533

subclasses of bipartite graphs, such as convex bipartite graphs, chordal bipartite graphs and534

tree-convex bipartite graphs. It may also be interesting to settle the complexity of the problems535

on AT-free graphs and permutation graphs.536
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