
Algorithmica (2016) 76:890–909
DOI 10.1007/s00453-015-0101-z

Building Above Read-Once Polynomials: Identity
Testing and Hardness of Representation

Meena Mahajan1 · B. V. Raghavendra Rao2 ·
Karteek Sreenivasaiah3

Received: 14 October 2014 / Accepted: 10 December 2015 / Published online: 24 December 2015
© Springer Science+Business Media New York 2015

Abstract Polynomial Identity Testing (PIT) algorithms have focussed on polynomi-
als computed either by small alternation-depth arithmetic circuits, or by read-restricted
formulas. Read-once polynomials (ROPs) are computed by read-once formulas
(ROFs) and are the simplest of read-restricted polynomials. Building structures above
these, we show the following: (1) a deterministic polynomial-time non-black-box PIT
algorithm for

∑(2) ×∏ ×ROF. (2) Weak hardness of representation theorems for
sums of powers of constant-free ROPs and for ROFs of the form

∑×∏ ×∑
. (3)

A partial characterization of multilinear monotone constant-free ROPs.

Keywords Polynomial Identity Testing · Algebraic algorithms · Arithmetic circuits

Partially supported by the Indo-German Max Planck Center for Computer Science (IMPECS).

Karteek Sreenivasaiah: Much of this work was done while the author was working in The Institute of
Mathematical Sciences, Chennai, India.

B B. V. Raghavendra Rao
bvrr@cse.iitm.ac.in

Meena Mahajan
meena@imsc.res.in

Karteek Sreenivasaiah
karteek@mpi-inf.mpg.de

1 The Institute of Mathematical Sciences, Chennai, India

2 Indian Institute of Technology Madras, Chennai, India

3 Max Planck Institute for Informatics, Saarbrücken, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0101-z&domain=pdf

Algorithmica (2016) 76:890–909 891

1 Introduction

A polynomial is said to be identically zero if the coefficients of all monomials are
zero. The Polynomial Identity Testing (PIT) problem is the most fundamental compu-
tational question that can be asked about polynomials: Is the polynomial given by some
implicit representation identically zero? The implicit representations of the polyno-
mials can be arithmetic circuits, branching programs etc., or the polynomial could be
presented as a black-box, where the black-box takes a query in the form of an assign-
ment to the variables and outputs the evaluation of the polynomial on the assignment.
PIT has a randomized polynomial time algorithm on almost all input representations,
independently discovered by Schwartz [22], by Zippel [28] and byDemillo and Lipton
[7]. However, obtaining deterministic polynomial time algorithms for PIT remained
open since then. In 2004, Kabanets and Impagliazzo [11] showed that a deterministic
polynomial time algorithm for PIT implies lower bounds (either NEXP �⊂ P/poly or
permanent does not have polynomial size arithmetic circuits), thus making it one of
the central problems in algebraic complexity. Following [11], intense efforts over the
last decade have been directed towards de-randomizing PIT [21,25]. The attempts fall
into two categories: considering special cases [21], and optimizing the random bits
used in the Schwartz–Zippel–Demillo–Lipton test [5,6].

The recent progress on PIT mainly focuses on special cases where the polynomials
are computed by restricted forms of arithmetic circuits. They can be seen as following
one of the two main lines of restrictions: (1) shallow circuits based on alternation
depth of circuits computing the polynomial. (2) Restriction on the number of times a
variable is read by formulas (circuits with fanout 1) computing the polynomial.

The study of PIT on shallow circuits began with depth two circuits, where deter-
ministic polynomial time algorithms are known even when the polynomial is given
as a black-box [4,15]. Further, there were several interesting approaches that led to
deterministic PIT algorithms on depth three circuits with bounded top fan-in [8,14].
However, progressing from bounded top fan-in depth three circuits seemed to be a
big challenge. In 2008, Agrawal and Vinay [1] explained this difficulty, showing that
deterministic polynomial time algorithms for PIT on depth four circuits imply sub-
exponential time deterministic algorithms for general circuits. There has been a lot of
work towards obtaining black-box algorithms for PIT on restricted classes of depth
three and four circuits, see [21,25] for further details. Recently, Gupta et al. [10]
showed that, over infinite fields, deterministic polynomial time algorithms for PIT on
depth three circuits would also imply lower bounds for the permanent. Thus it is natural
to look for other restricted models where deterministic polynomial time algorithms
for PIT may be designed using current techniques.

A formula computing a polynomial that depends on all of its variables must read
each variable at least once (count each leaf labeled x as reading the variable x). The
simplest such formulas read each variable exactly once; these are Read-Once Formu-
las ROFs, and the polynomials computed by such formulas are known as read-once
polynomials (ROP). In the case of an ROP f presented by a read-once formula com-
puting it, a simple reachability algorithm on formulas can be applied to test if f ≡ 0.
Shpilka and Volkovich [23] gave a deterministic polynomial time algorithm for PIT on
ROPs in the black-box model. Generalizing this to formulas that read a variable more

123

892 Algorithmica (2016) 76:890–909

than once, they obtained a deterministic polynomial time algorithm for polynomials
explicitly presented as a sum of O(1)ROFs. Anderson et. al [3] showed that if a read-k
formula, with k ∈ O(1), is additionally restricted to compute multilinear polynomials
at every gate, then PIT on such formulas can be done in deterministic polynomial time.
The result by [3] subsumes the result in [23] since a k-sum of read-once formulas is
read-k and computesmultilinear polynomials at every gate. However, both [23] and [3]
crucially exploit the multilinearity property of the polynomials computed under the
respective models. In [16], the authors explored eliminating the multilinear-at-each-
gate restriction, and gave a non-blackbox deterministic polynomial time algorithm
for read-3 formulas. However for the case of Read-k formulas for k ≥ 4, even the
non-blackbox version of the problem is open. Note that multilinearity checking itself
is equivalent to PIT on general circuits [9].

1.1 Our Results

In this paper, we explore further structural properties of ROPs and polynomials that
can be expressed as polynomial functions of a small number of ROPs. Our structural
observations lead to efficient algorithms on special classes of bounded-read formulas.

We attempt to extend the class considered in [23] (namely, formulas of the form∑
i fi where each fi is an ROF) to the class of polynomials of the form

∑k
i=1 fi gi

where the fi s and gi s are presented as ROFs and k is some constant. These are read-
2k polynomials, not necessarily multilinear. When k = 2, this class can be seen as
a special case of read-4 polynomials. It turns out that we can in fact do much better.
We describe an efficient deterministic non-blackbox PIT algorithm even when the
number of polynomials in the product is unbounded. It solves PIT for polynomials
of the form f1 f2 f3 . . . fm + g1g2 . . . gs where fi s and gi s are presented as ROFs,
but m, s can be unbounded; that is, the class

∑(2) ×∏ ×ROF. Note that this class
of polynomials includes non-multilinear polynomials and also polynomials with no
bound on the number of times variables are read. Thus it is incomparable with the
classes considered in [3,16,23]. This result is presented in Sect. 3. First, we describe
the algorithm over the ring of integers and the field of rationals; Theorem 1. In this
case, even the bit-complexity is polynomial. Our algorithm exploits the structural
decomposition properties of ROPs and combines this with an algorithm that extracts
greatest common divisors of the coefficients in an ROP. We then describe how to
modify it to work over any field with polynomially many field operations; Theo-
rem 2. This modification was suggested to us by Amir Shpilka at Dagstuhl seminar
14121.

Central to thePITalgorithm in [23] is a “hardness of representation” lemma showing
that the polynomial Mn = x1x2 . . . xn , consisting of just a single monomial, cannot
be represented as a sum of less than n/3 ROPs of a particular form (0-justified).
More recently, a similar hardness of representation result appeared in [13]: if Mn is
represented as a sumof powers of low-degree (atmost d) polynomials, then the number
of summands is exp(Ω(n/d)). As is implicit in [13], such a hardness of representation
statement can be used to give a PIT algorithm. We analyze this connection explicitly,
and show that the results in [13] lead to a deterministic sub-exponential time algorithm

123

Algorithmica (2016) 76:890–909 893

for black-box PIT for sums of powers of polynomials with appropriate size and degree
(Sect. 4, Theorem 3).

Aminor drawback of both these statements is that they consider amodel that cannot
even individually compute all monomials. One would expect any reasonable model
of representing polynomials to be able to compute Mn . In Sect. 5, we consider the
restriction of read-once formulas to constant-free formulas that are only allowed leaf
labels ax , where x is a variable and a is a field element. This model can compute any
single monomial. We show (Theorem 4) that the elementary symmetric polynomial
Symn,d of degree d cannot be written as a sum of powers of such formulas unless the
number of summands is Ω(log(n/d)). This appears weak compared to the n/3 bound
from [23], but this is to be expected since unlike in [23] where the ROPs could only be
added, we allow sums of powers. We also consider 0-justified read-once formulas of
the form

∑×∏ ×∑
, and obtain a similar hardness-of-representation result for the

polynomialMn against sums of powers of polynomials computed by such formulas,

showing that n
1
2−ε summands are needed (Theorem 5). Again, this appears weak

compared to the exp(Ω(n/d)) bound from [13], but unlike in [13] where the degree of
the inner functions is a parameter, our inner ROPs could have arbitrarily high degree.

Finally we return to the question of characterizing which polynomials are ROPs.
This question has been recently answered by Volkovich [27]. We focus on the fields of
rationals or reals, and consider monotone polynomials (no negative coefficients). For
specific multilinear monotone polynomials, several tight lower bounds on the sizes
of monotone arithmetic circuits computing them are known, from [26] upto [20].
In the context of restricted-read circuits, our study explores the question of not size
but expressibility: When is a monotone polynomial computable at all by a constant-
free ROF? (We show that any such ROF will also have to be monotone.) Using the
characterization of Boolean read once formulas from [12], we answer this question
completely when the coefficients are all 0 or 1. This result, Theorem 6, is described
in Sect. 6.

2 Preliminaries

An arithmetic formula on n variables X = {x1, . . . , xn} is a rooted binary tree with
leaves labeled from F ∪ X and internal nodes labeled by ◦ ∈ {+,×}. Each node
computes a polynomial in the obvious way, and the formula computes the polynomial
computed at the root gate. An arithmetic formula is said to be read-once (ROF) if
each x ∈ X appears at most once at a leaf. Polynomials computed by ROFs are called
read-once polynomials ROPs.

It is more convenient for us to allow leaves to be labeled by forms ax + b for some
x ∈ X and some a, b ∈ F. This does not change the class of polynomials computed,
even when restricted to ROFs. Henceforth we assume that ROFs are of this form.

The alternation depth of the formula is the maximum number of maximal blocks
of + and × gates on any root-to-leaf path in the formula.

We say that an ROF is constant-free (denoted CF-ROF) if the labels at the leaves
are of the form ax for x ∈ X and a ∈ F \ {0}. We call polynomials computed by such
formulas constant-free ROPs, denoted CF-ROP.

123

894 Algorithmica (2016) 76:890–909

For a polynomial f ∈ F[x1, x2, . . . , xn], a set S ⊆ [n] and a possibly partial
assignment a that assigns values to all x j for j ∈ S, let f |S→aS denote the polynomial
on variables {xi : i /∈ S} obtained from f by setting x j = a j for j ∈ S. For a set of
assignments A ⊆ F

n , we say f |A ≡ 0 if and only if f vanishes on all assignments
in A. For any i ∈ [n], we say that the polynomial f depends on the variable xi
non-trivially if ∂ f

∂x is not identically zero. Using notation from [23], for a polynomial
f , var(f) denotes the set of variables that f depends on non-trivially. We say that
f is 0-justified if for all S ⊆ var(f), var(f |S→0S) = var(f) \ S. For multilinear
f �≡ z (and hence for ROPs), this is equivalent to the condition that for each variable
x ∈ var(f), the degree-1 monomial x has a non-zero coefficient in f (note that the
identically-zero polynomial is vacuously 0-justified).

We re-state an important result by Noga Alon here:

Proposition 1 (Combinatorial Nullstellensatz, [2]). Let P ∈ F[x1, . . . , xn] be a poly-
nomial where for every i ∈ [n], the degree of xi is bounded by t. Let R ⊆ F have size
at least t + 1, and S = Rn. Then P ≡ 0 ⇔ P|S ≡ 0.

3 Identity Testing for
∑(2)×∏× ROPs

In this section we show that PIT can be solved efficiently for formulas presented in
the form f1 f2 . . . fm + g1g2 . . . gs , where each of the fi , g j is an ROF.

The idea is to decompose each fi , g j into their irreducible factors, obtainingROFs
for these factors, and and then match them up using the PIT algorithm from [23].
However, the decomposition is unique only up to scalar multiples, and this presents
some difficulties. We first describe how to circumvent this difficulty when the field is
rationals. Then we describe how to do the same over arbitrary fields.

Theorem 1 Given Read-Once Formulas computing each of the polynomials f1,
f2, . . . , fr , g1, g2, . . . , gs ∈ Q[x1, . . . , xn], checking if f1× f2 · · · fr ≡ g1×g2 · · · gs
can be done in deterministic polynomial time.

A crucial ingredient in our proof is the following structural decomposition property
from [18,19] and its constructive version; this is a direct consequence of the properties
of ROPs given in [23].

Lemma 1 ([19]) Let f be an ROP. Then exactly one of the following holds:

1. k ≥ 1, there exist ROPs f1, . . . , fk , with var(fi) ∩ var(f j) = ∅ for all distinct
i, j ∈ [k], such that f = a + f1 + · · · + fk , for some a ∈ F, and each fi is either
uni-variate or decomposes into variable-disjoint factors.

2. k ≥ 2, there exist ROPs f1, . . . , fk , with var(fi) ∩ var(f j) = ∅ for all distinct
i, j ∈ [k], such that f = f1 × f2 × · · · × fk for some a ∈ F \ {0}, and none of the
fi s can be factorised into variable-disjoint factors.

Furthermore, ROFs computing such fi s can be constructed from an ROF computing
f in polynomial time.

123

Algorithmica (2016) 76:890–909 895

Given an ROF overQ, we can clear all denominators to get an ROF over Z, without
changing the status of the PIT question. So we now assume that all the numbers a, b
appearing in the ROF (recall, leaf labels are of the form ax + b) are integers. For a
polynomial p(X), let content(p(X)) denote the greatest common divisor (gcd) of the
non-zero coefficients of p. For an ROF f , we use content(f) to mean the content of
the polynomial computed by f . The next crucial ingredient in our proof is that for an
ROF f , we can efficiently compute content(f).

Lemma 2 There is a polynomial-time algorithm that, given an ROF f in Z[X], com-
putes content(f) and constructs an ROF f ′ inQ[X] such that f = content(f)× f ′.

Proof It suffices to show how to compute content(f); then the ROF f ′ is just
1

content(f) × f . We prove this by induction on the structure of f .
For a polynomial p ∈ Z[X], let p̂ = p − p(0), where p(0) = p(0, . . . , 0), and let

p̂′ be the polynomial such that p̂ = content(p̂) p̂′. We proceed bottom-up, computing
content(p) and content(p̂) for the polynomials p computed at each node of the ROF
f .
If f is a single leaf node, then computing content(f) and content(f̂) is trivial.

Otherwise, say f = g ◦ h. Since f is an ROF, var(g) ∩ var(h) = ∅.
Case f = g + h: then f̂ = ĝ + ĥ, and f (0) = g(0) + h(0). So

content(f) := gcd(content(ĝ), content(ĥ), g(0) + h(0)),

content(f̂) := gcd(content(ĝ), content(ĥ)).

Case f = g × h: then f̂ = ĝĥ + h(0)ĝ + g(0)ĥ, and f (0) = g(0)h(0).

Claim (Folklore). For any two variable-disjoint polynomials p, q ∈ Z[X], content
(pq) = content(p) × content(q).

Proof This is known as Gauss’s lemma.We include a proof for completeness. Let p =
content(p)(a1M1 +a2M2 +· · ·+akMk) and q = content(q)(b1N1 +b2N2 +· · ·+
b�N�), where Mi , N j are monomials. We have gcd(a1, . . . , ak) = gcd(b1, . . . , b�) =
1 by the definition of content. Since p and q are variable-disjoint, every monomial of
the form content(p)×content(q)×(aib j Mi N j) appears in the polynomial p×q, and
there are no other monomials, and hence content(p) × content(q)|content(p × q).
For the converse, it suffices to show that gcd(S) = 1, where S = {aib j | i ∈ [k], j ∈
[�]}. Suppose not. Let c be the largest prime that divides all numbers in S. Then,
∀i ∈ [k],

c|aib1 and c|aib2 and . . . and c|aibk .
Hence c|ai or (c|b1, c|b2, . . . , c|b�) .

Hence c|ai or c = 1, since gcd(b1, . . . , b�) = 1.

Thus we conclude that c divides gcd(a1, . . . , ak) = 1, a contradiction. ��

123

896 Algorithmica (2016) 76:890–909

Using this claim, we see that

content(f) := content(g) × content(h),

content(f̂) := gcd(content(ĝ)content(ĥ), h(0)content(ĝ), g(0)content(ĥ)).

��
Now we have all the ingredients for proving Theorem 1.

Proof (of Theorem 1) Let f = f1 × f2 · · · fr and g = g1 × g2 · · · gs .
As discussed above, without loss of generality, each fi , gi is in Z[X]. Using Lem-

mas 1 and 2, we can compute the irreducible variable-disjoint factors of each fi and
each gi , and also pull out the content for each factor. That is, we express each fi as
αi fi,1 . . . fi,ki , and each gi as βi gi,1 . . . gi,�i where the fi, j s, gi, j s are irreducible and
have content 1. Due to the content = 1 condition, this decomposition is unique. We
obtain ROFs in Q[X] for each of the fi, j s and gi, j s (the ROFs are in Q[X], but the
polynomials fi, j , gi, j they compute are in Z[X]).

Note that if
∑

i ki �= ∑
j � j , then there cannot be a component-wise matching

between the factors of f and g, and hence we conclude f �≡ g. Otherwise,
∑

i ki =∑
j � j .We now formmultisets of the factors of f and of g, andwe knock off equivalent

factors one by one (see Algorithm 1). Detecting equivalent factors (the condition in
Step 6) requires an identity test p ≡ q?, or p − q ≡ 0?, for ROFs in Q[X]. Since we
have explicit ROFs computing p and q, this can be done using [23].

Algorithm 1 Test if
∏r

i=1 αi
∏ki

j=1 fi, j ≡ ∏s
i=1 βi

∏�i
j=1 gi, j

1: S ← { f1,1, . . . , f1,k1 , f2,1, . . . , f2,k2 , . . . , fr,1, . . . , fr,kr }
2: T ← {g1,1, . . . , g1,�1 , g2,1, . . . , g2,�2 , . . . , gs,1, . . . , gs,�s }
3: (Both S and T are multisets; repeated factors are retained with multiplicity.)
4: for p ∈ S do
5: for q ∈ T do
6: if p ≡ q then
7: if S and T have unequal number of copies of p and q then
8: Return No
9: else
10: S ← S \ {p} (Remove all copies).
11: T ← T \ {q} (Remove all copies).
12: end if
13: end if
14: end for
15: end for
16: if (α1α2 . . . αr = β1β2 . . . βs) ∧ (S = T = ∅) then
17: Return Yes
18: else
19: Return No
20: end if

Consider the bit complexity of the above procedure. For moving over to Z[X],
polynomial time suffices. Before factorising the ROPs computed by the ROFs, we can
convert each ROF to an unbounded-fanin ROF where nodes strictly alternate between

123

Algorithmica (2016) 76:890–909 897

+ and×, ensure that no node has more than one input that is a scalar, and prune out all
zeroes. Applying Lemma 1 merely involves graph-theoretic navigation on the ROFs
computing each fi , g j , moving down from the root until a + gate is encountered.
Applying Lemma 2 involves applying a gcd algorithm polynomially many times on
numbers obtained from the coefficients in the formula. Since we have formulas, not
circuits, all computed numbers have polynomial bit complexity. To detect equivalent
factors, we use the PIT test from [23] on p−q, where p, q are computed by explicitly
given ROFs. The test amounts to settingW = {0, 1}, finding a common 0-1 “justifying
assignment” â by identifying the variables that p, or q (or both) depend on, and
evaluating p − q at O(n7) assignments (for each ŵ ∈ Wn with Hamming-weight at
most 6, evaluate p − q at ŵ − â). Clearly, the test has polynomial bit-complexity as
well. ��

3.1 Extension to Arbitrary Fields

Recently, Amir Shpilka pointed out to us (at Dagstuhl Seminar 14121) that the proof
of Theorem 1 can be modified to work for polynomials over any field F. Now time
refers to the number of field operations. We sketch the proof specifically for the part
that is different from proof of Theorem 1:

Theorem 2 (Amir Shpilka).Given Read-Once Formulas computing each of the poly-
nomials f1, f2, . . . , fr , g1, g2, . . . , gs ∈ F[x1, . . . , xn], checking if f1 × f2 · · · fr ≡
g1 × g2 · · · gs can be done in deterministic polynomial time.

Proof We use Lemma 1 to obtain a product of irreducible factors for each fi and gi .
That is, we express each fi as fi,1 . . . fi,ki , and each gi as gi,1 . . . gi,�i where the fi, j s
and gi, j s are irreducible. Since these polynomials are over an arbitrary field F, the
notion of content does not exist. The factorization is now unique only up to scalar
multiples. We show how to handle this.

Similar to proof of Theorem 1, we want to find a match on the right side for
each irreducible component from the left side. For ease of notation, let p = fi, j and
q = gu,v . We want to check if q is a match for p. i.e., is p = cq for some c ∈ F?
Since p and q are both ROPs, the individual degree of each variable is at most 1. We
know that p �≡ 0 and q �≡ 0. By Proposition 1, it must be the case that there is an
a ∈ {0, 1}n such that p(a) �= 0. We find a using Algorithm 2. Step 3 of the algorithm
can be achieved using the algorithm from [23].

Once we have a, we check that q(a) is non-zero (if it is zero, then q and p cannot be
matched). Now q is a scalar multiple of p if and only if p ≡ cq, where c = p(a)/q(a).
We then check if p − cq ≡ 0, again using the algorithm from [23]. If yes, then we
knock off p and q from their respective sides and continue this process of finding a
component wise matching while retaining c as a scalar multiple on the right side. If
p − cq �≡ 0, then q is not a match for p and we continue trying to find a match for
p exactly like in proof of Theorem 1. If no match is found, then the inputs are not
identically equal. If all factors from both sides have been knocked off, then we check
ifΠi ci = 1. If yes, we conclude that the polynomial (f1× f2 · · · fr)−(g1×g2 · · · gs)
is identically zero. Else, the polynomial is not identically zero. ��

123

898 Algorithmica (2016) 76:890–909

Algorithm 2 Find a ∈ {0, 1}n such that p(a) �= 0
1: for k = 1 to n do
2: a[k] ← 0
3: if p|xk=0 ≡ 0 then
4: a[k] ← 1
5: p ← p|xk=1
6: else
7: p ← p|xk=0
8: end if
9: end for

4 PIT for Sums of Powers of Low Degree Polynomials

In this section, we give a blackbox identity testing algorithm for the class ofmultilinear
polynomials that can be expressed as a sum of powers of low-degree polynomials.

We say that a polynomial f has a sum-powers representation of degree d and
size s if there are polynomials fi each of degree at most d, and a set of positive
integers ei , such that f = f e11 + · · · + f ess . In [13], it is shown that computing the
full multilinear monomial Mn = x1x2 . . . xn using sums of powers of low-degree
polynomials requires exponentially many summands:

Proposition 2 [13] There is a constant c such that for the polynomial x1x2 . . . xn, any
sum-powers representation of degree d requires size s ≥ 2

cn
d .

Recall that an ROP f is said to be 0-justified if for every S ⊆ {x1, . . . , xn},
var(f |S→0) = var(f)\S. Shpilka andVolkovich [23] proved that sumof less than n/3
0-justified-ROPs cannot equal Mn , and used it to obtain a black-box PIT algorithm
for bounded sums of ROPs. Using these ideas along with Proposition 2, we note
that such a hardness of representation for sums of powers of low-degree polynomials,
where the final sum ismultilinear, gives sub-exponential time algorithms for black-box
PIT for this class.

Let R = {0, 1} ⊆ F. For any k > 0, define

Wn
k (R) � {a ∈ Rn| a has at most k non-zero coordinates}.

In Theorem 7.4 of [24], it is shown that for a certain kind of formula F (k-sum of
degree-d 0-justified preprocessed ROP), and for any R ⊆ F containing 0 and of size
at least d + 1, F ≡ 0 if and only if F |Wn

3k (R)≡ 0. The proof uses Proposition 1, see
also Lemma 2.13 in [24].

Along similar lines, using Propositions 2,1, we show that

Lemma 3 Let C(n, s, d) be the class of all n-variate multilinear polynomials that
have a sum-powers representation of degree d and size s. Let c be the constant from
Proposition 2. For f ∈ C(n, s, d), R = {0, 1}, and k = (d log s)/c, f |Wn

k (R) ≡
0 ⇐⇒ f ≡ 0.

Proof The ⇐ direction in the claim is trivial. To prove the ⇒ direction, we proceed
by induction on n.

123

Algorithmica (2016) 76:890–909 899

Base case: n ≤ k. Then Wn
k (R) = Rn . Using Proposition 1 (since f is multilinear, R

is large enough), we conclude that f ≡ 0.
Induction Step: n > k. Suppose f �≡ 0. Consider any i ∈ [n], and let f ′

i = f |xi=0.
Then f ′

i ∈ C(n − 1, s, d). Since f |Wn
k (R) ≡ 0, we have f ′

i |Wn−1
k (R)

≡ 0. So by

the induction hypothesis, f ′
i ≡ 0. Hence xi | f . Since this holds for every i ∈ [n], the

monomial x1 . . . xn must divide f . Since f is multilinear, it must be that f = x1 . . . xn .
But n > k = (d log s)/c, so s < 2cn/d . This contradicts Proposition 2. Hence we
conclude f ≡ 0. ��

This gives the required black-box PIT algorithm: just query the black-box for f at
every point in Wn

k . For our choice of k in the above lemma, |Wn
k ({0, 1})| ∈ nO(k) ⊆

2O(d log s log n), and this bounds the running time. Thus

Theorem 3 Let C(n, s, d) be the class of all n-variate multilinear polynomials that
have a sum-powers representation of degree d and size s. There is a deterministic
black-box PIT algorithm for C(n, s, d) running in time 2O(d log n log s).

Remark 1 Though f is multilinear in Lemma 3 (and hence Theorem 3), the polyno-
mials fi in the sum-powers representation of f need not be multilinear.

5 Hardness of Representation for Sum of Powers of CF-ROPs

The hardness of representation result from [13], stated in Proposition 2, and its pre-
cursor from [23,24], are both for Mn , the former using low-degree polynomials and
the latter using a kind of ROPs called 0-justified-ROPs. Note that ROPs, even when
0-justified, can have high degree, so these results are incomparable. In this section,
we give two different hardness results.

Our first hardness result is for elementary symmetric polynomials Symn,d , not
just for d = n. It works against another subclass of ROPs, CF-ROF; as is the case in
[23,24], this class too can have high-degree polynomials. Recall that this class consists
of polynomials computed by read-once formulas that have + and × gates, and labels
ax at leaves (a �= 0). Hence for any f in this class, f (0) = 0 (However, it is not
the case that every ROP p with p(0) = 0 is computed by a CF-ROF. Consider for
instance, p(x̂) = ∏n

i=1(xi + 1) − 1. Even to write it as a sum of CF-ROFs would
need many summands). We show that powers of such polynomials cannot add up to
elementary symmetric polynomials of arbitrary degree d ≤ n unless there are many
such summands. First, we establish a useful property of this class.

Lemma 4 For every CF-ROP f ∈ F[x1, . . . , xn], there is a set S ⊆ [n] with |S| ≤
|var(f)|/2 such that deg(f |S→0) ≤ 1.

Proof Consider a CF-ROF F computing f . If F has a single node, then f is already
linear, so S = ∅. Otherwise, F = G1 ◦ G2, where G1,G2 are variable-disjoint CF-
ROFs computing CF-ROPs g1, g2, respectively.
Case 1: ◦ = ×. Without loss of generality, assume |var(g1)| ≤ |var(f)|/2. For
S = {i : xi ∈ var(g1)}, g1|S→0 ≡ f |S→0 ≡ 0.

123

900 Algorithmica (2016) 76:890–909

Case 2: ◦ = +. Inductively, we can find sets Si of at most half the variables of each
gi , such that gi |Si→0 has degree at most 1. Define S = S1 ∪ S2. Since G1,G2 are
variable-disjoint, |S| ≤ |var(f)|/2, and f |S→0 has degree at most 1. ��
We use this to get our hardness-of-representation result for CF-ROPs, irrespective of
degree.

Theorem 4 Fix any d ∈ [n]. Suppose there are CF-ROPs f1, . . . , fs , and positive
integers e1, . . . , es such that

s∑

i=1

f eii = Symn,d .

Then s ≥ min{log n
d , 2Ω(d)}.

Proof Let f = Symn,d .
We repeatedly apply Lemma 4 to restrictions of the fi ’s to obtain a formula of

degree at most 1. Let Q0 = T0 = ∅, and let Qi+1 be the set obtained by applying
the Lemma to fi+1|Ti→0, where each Ti = Q1 ∪ . . . ∪ Qi . Define Q = Ts . Since at
least half the variables survive in f at each stage, we see that r � |var(f |Q→0)| ≥
|var(f)|/2s = n/2s .

– If r < d, then n/2s ≤ r < d. So s > log(nd).
– If r ≥ d, then f |Q→0 = Symr,d �≡ 0. Add any r − d surviving variables to the
set Q to obtain the expression Symd,d = f |Q→0 = ∑s

i=1(fi |Q→0)
ei where each

fi is either linear or identically 0. Let s′ be the number of non-zero polynomials
fi |S→0. By Proposition 2, s′ ∈ 2Ω(d), and s ≥ s′.

Thus if s ≤ log n
d , then s ∈ 2Ω(d). ��

What this tells us is that there is a threshold r ∼ log log n such that any sum-
powers representation of Symn,d using CF-ROPs needs size 2Ω(d) for d ≤ r , and
size ≥ log n

d for d ≥ r .
Our second hardness result is forMn , but works against a different class of ROFs.

These ROFs may not be constant-free, but they have bounded alternation-depth, and
are also 0-justified. Again, first we establish a useful property of the class.

Lemma 5 Let F be any field of size at least 3. Let f ∈ F[x1, . . . , xn] be computed
by an ROF of the form

∑×∏ ×∑
. For any degree bound 1 ≤ d ≤ n, there is an

S ⊆ [n] of size at most |var(f)|/d, and an assignment of values AS to the variables
xi for i ∈ S, such that deg(f |S→A) ≤ d. Moreover, if f is 0-justified, then we can
find an AS with all non-zero values.

Proof Let f be computed by the
∑ ×∏ ×∑

ROF F , where no gate computes the 0
polynomial.

Since the top gate in F is a +, we can write F = ∑r
i=1 fi , where each summand

fi is of the form
∏ti

j=1 �i, j and the factors �i, j ’s are linear forms on disjoint variable
sets. We find a partial assignment that kills all summands of degree more than d. For

123

Algorithmica (2016) 76:890–909 901

each such summand fi , identify the factor with fewest variables, and assign values to
the variables in it to make it 0. We assign values to at most |var(fi)|/d variables, so
overall no more than |var(f)|/d variables are set.

Further, if f is 0-justified and read-once, then each fi is also a 0-justified ROF.
Hence no factor of fi vanishes at 0; each factor �i, j is of the form

∑p
k=1 ai, j,k xi, j,k−ci, j

where ci, j �= 0.We can kill such a factor with an assignment avoiding 0s. For instance,
over rationals or reals we can set xi, j,k = ci, j/pai, j,k . Over possibly smaller fields,
the following claim suffices. ��
Claim If F is a field of size at least 3, and a0, a1, . . . , ak are non-zero elements of F,
then there is an assignment b1, . . . , bk ∈ (F\{0})k such that a0+a1b1+· · ·+akbk = 0.

Proof Choose values bi sequentially. Let c0 = a0, and ci = ci−1 + aibi . Ensure that
for all 1 ≤ i < k, the ci values are non-zero. This is true initially. Setting bi to any
value other than 0 or a−1

i (−ci−1) ensures that ci �= 0. Now set bk = −(ck−1 × a−1
k).

This gives ck = 0 as required. ��
Using this, we get a hardness of representation result for 0-justified

∑ ×∏ ×∑

ROFs.

Theorem 5 Let F be any infinite field. For every ε ∈ (0, 1
2), there exists an nε ≥ 0

such that for every n ≥ nε , if there are 0-justified
∑∏∑

ROPs f1, . . . , fs , and
non-negative integers e1, . . . , es such that

s∑

i=1

f eii = x1 . . . xn

then s ≥ n
1
2−ε .

Proof Let d be a parameter to be chosen later. We identify a subset of variables S
and an assignment A avoiding zeroes to variables of S, such that under this partial
assignment, all the fi ’s are reduced to degree at most d. We show that for any d ∈ [n],
this is possible with |S| = t ≤ s2n

d . This gives a sum-powers representation of degree
d and size s for

∏
xi /∈S xi = Mn−t . Invoking Kayal’s result from Proposition 2, we

see that s ≥ 2c(n−t)/d , and hence log s + cns2

d2
≥ cn

d . Choose d = 4n1−2ε , then there

exists an nε > 0 that depends only on ε and c such that s ≥ n
1
2−ε for n ≥ nε .

The construction of S proceeds in stages.At the kth stage, polynomials f1, . . . , fi−1
have already been reduced to low-degree polynomials, and we consider fi . We want
to use Lemma 5 at each stage. This requires that each polynomial fi , after all the
substitutions from the previous stages, is still a 0-justified

∑×∏ ×∑
ROF. The∑×∏ ×∑

form is obvious; it is only maintaining 0-justified that is a bit tricky. We
describe the construction for stage 1; the other stages are similar.

Applying Lemma 5 to f1 with d as the parameter, we obtain a set R1 of variables
with |R1| ≤ n/d and an assignment AR1 avoiding 0, such that deg(f1|R1→AR1

) ≤ d. It
may be the case that for some i > 1, the polynomial fi |R1→AR1

is no longer0-justified.
We fix this by augmenting R1 as follows.

123

902 Algorithmica (2016) 76:890–909

As discussed in the proof of Lemma 5, each fi has the form
∑∏

� j,k where each
� j,k is a linear form. If fi |R1→AR1

is not 0-justified, then some of the linear forms in
it are homogeneous linear (no constant term). We identify such linear forms in each
fi , i ≥ 2. Call this set L1. That is,

L1 =
{

� |
� is a linear form at level-2 of some fi ;

�|R1→AR1
is homogeneous linear but not

identically 0.

}

Since each fi is a ROF, it contributes at most |R1| linear forms to L1. Hence |L1| ≤
(s − 1)|R1|. Now pick a minimal set T1 of variables from X \ R1 that intersects
each of the linear forms in L1. By minimality, |T| ≤ |L1| ≤ (s − 1)|R1|. We want
to assign non-zero values AT1 to variables in T1 in such a way that for all i ≥ 2,
the fi |R1→AR1 ;T1→AT1

are 0-justified. We must ensure that the linear forms in L1
become homogeneous (or vanish altogether), and we must also ensure that previously
non-homogeneous forms do not become homogeneous. To achieve this, consider

L2 =
{

� |
� is a linear form at level-2 of some fi ;

�|R1→AR1
�≡ 0; �|R1→AR1

contains a variable
from T1.

}

Clearly, L1 ⊆ L2. It suffices to find an assignment AT1 to variables in T1, avoiding
zeroes, such that under the partial assignment R1 → AR1; T1 → AT1 , every linear
form in L2 becomes either zero or non-homogeneous. That is,

∀� ∈ L2, either �|R1→AR1 ;T1→AT1
≡ 0 or �|R1→AR1 ;T1→AT1

(0) �= 0 (1)

This can be done in a sequential greedy fashion as follows. Choose any variable x ∈ T1.
There is a finite number of values b for which setting x = b can potentially violate
(1). As F is infinite, there is a value a such that assigning x = a is safe and will not
immediately violate (1). Set x = a in AT1 . Continuing the process with the remaining
variables in T1, we get the required assignment AT1 that satisfies (1).

Now we set S1 = R1 ∪ T1, and A1 = AR1 ∪ AT1 . We have ensured the following:

1. deg(f1|S1→A1) ≤ d; and
2. for i ≥ 2, fi |S1→A1 is 0-justified.

Furthermore, |S1| = |R1| + |T1| ≤ |R1|(1 + (s − 1)) ≤ sn/d.
Other stages are identical, working on the polynomials restricted by the already-

chosen assignments. Finally, S = S1 ∪ · · · ∪ Ss , and so |S| ≤ s2n/d, as required.
��

Our result may well be far from optimal. For instance, an old idea of Ben-Or
(see [23] for more details) yields depth-3 ROFs for Symn,d for any d ≤ n. We repeat
the argument here for completeness, and note that the summands are in fact0-justified.
However, Theorem 5 only says that we need at least n1/2−ε such summands.

Proposition 3 Over any infinite field F, for any d ≤ n, Symn,d can be represented
as a sum of n + 1 ΠΣ 0-justified-ROPs.

123

Algorithmica (2016) 76:890–909 903

Proof View the polynomial
∏n

i=1(xi + t), where t is an indeterminate, as a univariate
polynomial p(t) with coefficients from F[X]. Then Symn,d(X) is the coefficient of
tn−d in p(t), and all coefficients can be computed by interpolation throughn+1distinct
points. That is, for any n + 1 distinct non-zero elements α0, . . . , αn in F, Symn,d(X)

is an F-linear combination of p(α0), . . . , p(αn). Each p(α j) = ∏n
i=1(xi + α j), 0 ≤

j ≤ n, is a ΠΣ ROP in the variables X = {x1, . . . , xn}. Choosing α j values avoiding
zero ensures that each p(α j) is 0-justified. ��

6 Characterizing Monotone CF-ROPs

Every ROP is multilinear. But the converse is not true. So we can ask:

Question 1 When is a multilinear polynomial p(x1, . . . , xn) an ROP?

Volkovich gave an answer to this:

Proposition 4 ([27]). For sufficiently large fields, p(x̄) is an ROP if and only if for
every assignment ā in the field, p is ā-three-locally read-once.

Without getting into the details of what the terms in this characterization mean,
let us examine a variant of this question. We consider monotone polynomials and
monotone formulas / circuits. To keep things simple, we fix the field F to be reals or
rationals, so that we can meaningfully talk about negative and positive values. Then
a polynomial with real coefficients is monotone if it has no negative coefficients, and
a formula (or a circuit) is monotone if it has no negative constants (note that a more
general notion of monotonicity, applicable to more fields, is defined in [26]. Over
rationals and reals, it specialises to these definitions, which are also quite standard.
See for instance [20]).

A monotone read-once formula computes a polynomial that is multilinear, an ROP,
and monotone. But the converse is not true. For instance, p(x, y) = x + y + xy is a
multilinear monotone polynomial computed by the ROF (x + 1)(y + 1) − 1. But we
can show that it has no monotone ROF. Suppose it does; let F be that formula, with
root r , a leaf labeled x , another leaf labeled y, and all other leaves labeled by positive
constants. Let � be the node that is the least common ancestor of the leaves labeled
x and y. Then � computes a polynomial p�, and the polynomial pr computed at the
root is of the form Ap� + B. Further, p� is of the form (Cx + D) ◦ (Ey + F). And
the constants A, B,C, D, E, F are all non-negative. Since pr = x + y + xy, ◦ must
be × (to generate the monomial xy), so pr = A(Cx + D)(Ey + F) + B. Equating
the coefficients, we get B + ADF = 0. Since there are no negative values, we must
have B = ADF = 0. If A = 0, then pr = 0, a contradiction. So DF = 0. Say
D = 0. Then pr = ACx(Ey + F), and the monomial y is not generated. So there is
no monotone ROF for p.

So now we can ask:

Question 2 When is a multilinear monotone read-once polynomial p(x1, . . . , xn)
computable by a monotone ROF?

123

904 Algorithmica (2016) 76:890–909

The above example x + y + xy motivates studying the restriction of formulas with
no additive constants. These are formulas where each leaf is labeled axi for some
non-zero a ∈ F. We have called such formulas constant-free, though technically they
do use multiplicative constants. A constant-free read-once formula (CF-ROF) with n
leaves depends on n variables and computes a multilinear polynomial p(x̄) satisfying
p(0̄) = 0. A monotone CF-ROF computes a polynomial p(x̄) that is monotone,
multilinear, an ROP, and satisfies p(0̄) = 0. Is the converse true? The polynomial
x + y + xy shows that it is not. So we can ask:

Question 3 When is amultilinearmonotone read-once polynomial p(x1, . . . , xn)with
p(0̄) = 0 computable by a monotone CF-ROF?

What if we relax monotonicity but insist on no additive constants? That is, we ask:

Question 4 When is amultilinearmonotone read-once polynomial p(x1, . . . , xn)with
p(0̄) = 0 computable by a CF-ROF?

That does not help; monotonocity is still forced, as shown below.

Lemma 6 If p(x̄) is monotone and is computed by a CF-ROF, then it is computed
by a monotone CF-ROF.

Proof Induction on n, the number of variables that p depends on. Note that the CF-
ROF F computing p will have exactly n leaves.

Base case n = 1; p = a1x1 for some a1 > 0; trivially true.
Induction: let F be of the formG ◦H , for ◦ ∈ {+,×}. ThenG, H areCF-ROFs on

disjoint sets of variables, computing polynomials g and h such that p ≡ g ◦ h. Since
p is monotone and g and h are variable-disjoint, either g and h are both monotone, or
◦ = × and both −g and −h are monotone. In the first case, by induction, G and H
are monotone CF-ROFs, and hence so is F . In the second case, note that (−1)×G is
a ROF computing −g. We can move the −1 down to the leaves to get a CF-ROF G ′
computing−g (if f = f1 × f2, then (−1)× f = [(−1)× f1]×[f2]. If f = f1 + f2,
then (−1) × f = [(−1) × f1] + [(−1) × f2]). Similarly, −h is computed by a CF-
ROF H ′. By induction, −g and −h are computed by monotone CF-ROFs G ′′ and
H ′′ respectively. Now the monotone CF-ROF F ′ = G ′′ × H ′′ computes p. ��

Polynomials computed byCF-ROFs have another interesting property: theirmono-
mials are incomparable with respect to divisibility. More precisely, for a multilinear
polynomial p in n variables, define

M(p) =
{

T ⊆ [n] | mT �
∏

i∈T
xi is a monomial of p

}

.

Lemma 7 Let p(x1, . . . , xn) be computed by a CF-ROF. In the poset (P([n]),⊆),
the sets in M(p) form an antichain.

Proof Suppose not. Then the poset (M(p),⊆) has at least one chain of length 2 or
more. Let S, T be the lowest two elements of this chain with S ⊆ T ; mS , mT are
monomials of p(.).

123

Algorithmica (2016) 76:890–909 905

Let F be the CF-ROF computing p(.). Setting variables outside T to 0 in F
and removing subformulas evaluating to 0 should give a CF-ROF F ′ computing
p′(x) = p(x) |T̄→0. Since p′(.) has the monomials mT and mS , F ′ must compute
both these monomials. To computemT , F ′ must have a leaf ai xi for each i ∈ T (it has
no other leaves anyway), and must multiply all the leaves. So F ′ computes the single
monomial mT and cannot compute mS , a contradiction. ��

We now give a partial answer to Question 4 (or 3).
We approach one direction by associating with any monotone CF-ROF F a

monotone Boolean function f . Recall that a Boolean function f is monotone if and
only if for all ā, b̄ ∈ {0, 1}n , whenever ā � b̄ (in the pointwise ordering), then also
f (ā) ≤ f (b̄). A minterm (maxterm, respectively) of a monotone Boolean function is
a minimal cardinality subset S of variables such that assigning all variables in S to 1
(0, resp.) forces the function to evaluate to 1 (0 resp.) irrespective of the assignment to
the remaining variables. For a monotone Boolean function f , letminterm(f) denote
the set of all minterms of f and maxterm(f) the set of all maxterms of f . It is easy
to see that ∀S ∈ maxterm(f),∀T ∈ minterm(f), S ∩ T �= ∅. The following result
characterises monotone read-once Boolean functions with respect to its minterms and
maxterms:

Proposition 5 ([12]). A monotone Boolean function f is read-once if and only if

∀(S, T), S ∈ maxterm(f) and T ∈ minterm(f) �⇒ |S ∩ T | = 1.

In the above, note that when f is read-once, the read-once formula computing it is
also monotone.

Let p be amultilinearmonotone polynomial computed by aCF-ROF. ByLemma6,
it is computed by amonotoneCF-ROF F . Construct the Boolean formula F ′ by doing
the following replacements

1. Change leaf label ai xi (where ai > 0) to xi .
2. Change all × to ∧.
3. Change all + to ∨.
The formula F ′ is monotone and read-once, so the Boolean function f computed by
it is monotone and read-once. Hence by Proposition 5, if S is a maxterm of f and
T is a minterm of f , then |S ∩ T | = 1. However, by construction, the minterms of
f are precisely the monomials m of p. Similarly, the maxterms of f are precisely
the multilinear monomials that “hit” every monomial of p (they share a variable with
every monomial of p). Call the minimal such monomials the hitting monomials of p,
and denote the collection of these monomials as M∗(p).

Hitting(M(p)) = {S ⊆ [n] | ∀T ∈ M(p), S ∩ T �= ∅} .

M∗(p) = {S ∈ Hitting(M(p)) | ∀T ⊆ S, T �= S ⇒ T /∈ Hitting(M(p))} .

Remark 2 It should be noted that in the literature of combinatorial commutative alge-
bra, the square-free ideal generated by M∗(p) is known as the Alexander Dual ideal
of the square-free monomial ideal generated by M(p). See [17] for more details.

123

906 Algorithmica (2016) 76:890–909

Lemma 8 Let p be amonotone polynomial computed byCF-ROF F. Let f denote the
Boolean function computed by the Boolean formula F ′ obtained from F as described
above. Then,

1. The monomials in M(p) are in bijective correspondence with the minterms of f .
2. The monomials in M∗(p) are in bijective correspondence with the maxterms of f .

Proof We prove the first statement; the second one follows immediately since the
maxterms of a Boolean function are precisely the minimal hitting sets of the set of all
minterms.

By Lemma 6, we can assume that the CF-ROF F computing p is monotone. We
proceed by induction on the number of leaves in F . The base case n = 1 is trivially
true. For n > 1, for some ◦ ∈ {+,×} (type of the root gate of F), F = F1 ◦ F2,
and each Fi computes polynomial pi . The variables of F1 and F2 are disjoint. By
induction, M(pi) is in bijection with minterm(fi), for associated Boolean function
fi . Consider the two cases.

– ◦ = +; then p = p1 + p2, and f = f1 ∨ f2. So M(p) = M(p1) ∪ M(p2).
minterm(f) = minterm(f1) ∪ minterm(f2), and the statement follows.

– ◦ = ×; then p = p1 × p2, and f = f1 ∧ f2. Then

M(p) = {m1 × m2 | m1 ∈ M(p1),m2 ∈ M(p2)}
minterm(f) = {m1 ∧ m2 | m1 ∈ minterm(f1),m2 ∈ minterm(f2)}

Hence the statement follows. ��
The above discussion (including Lemmas 6, 7, 8, Proposition 5) amounts to the

following:

Lemma 9 Let p(x̄) be a multilinear monotone polynomial p(x̄) computable by a
CF-ROF. Then

1. (M(p),⊆) is an antichain, and
2. for every monomial m ∈ M(p), and every hitting monomial m∗ ∈ M∗(p), m and

m∗ share exactly one variable. That is, |m ∩ m∗| = 1.

If we could show that the converse is also true, then we would have a char-
acterisation, answering Question 4. Unfortunately, the converse is not true. For
instance, consider the polynomials p = x1y1 + 4x2y1 + 2x1y2 + 5x2y2 and q =
x1y1 + x2y1 + x1y2 + x2y2 = (x1 + x2)(y1 + y2). Since q is computed by a monotone
CF-ROF, its monomials satisfy the properties in Lemma 9. Since q and p have the
same set of monomials, the monomials of p also satisfy these properties. But no CF-
ROF, let alone monotone CF-ROF, can compute p; this follows from Proposition 4
(consider the restriction y2 = 1). This is not surprising because the coefficients play no
role in the properties in Lemma 9 but are crucial for determining whether a polyomial
is an ROP.

However, we can establish a weaker version: for polynomials with 0-1 coefficients,
the converse is indeed true.

123

Algorithmica (2016) 76:890–909 907

Lemma 10 Let p(x̄) be amultilinear monotone polynomial p(x̄)with 0-1 coefficients
satisfying

1. (M(p),⊆) is an antichain, and
2. for every monomial m ∈ M(p), and every hitting monomial m∗ ∈ M∗(p), |m ∩

m∗| = 1.

Then p is computable by a CF-ROF.

Proof Consider the monotone Boolean function f defined as

f (x) =
∨

T∈M(p)

∧i∈T xi .

Since M(p) is an antichain, every monomial in M(p) is a minterm of f . By
construction, f has no other minterms;minterm(f) = M(p). Hencemaxterm(f) =
M∗(p). Along with the last property of p, we can hence invoke Proposition 5 to
conclude that f is computed by a monotone read-once Boolean formula F . Now
construct arithmetic formula F ′ by replacing all ∨ gates in F by + gates and ∧ gates
by × gates. Then F ′ is the desired CF-ROF: the read-once property of F ensures
every minterm of f has exactly one parse tree1, and hence F ′ correctly computes p.

��
Lemmas 9 and 10 give us the theorem:

Theorem 6 Let p(x̄) be any multilinear monotone polynomial with 0-1 coefficients.
Then p(x̄) is computable by a CF-ROF if and only if

1. (M(p),⊆) is an antichain, and
2. for every monomial m ∈ M(p), and every hitting monomial m∗ ∈ M∗(p), |m ∩

m∗| = 1.

7 Further Questions

– Can the results of [23] be extended to the case
∑k

i=1 f rii , where f ′
i s are ROFs?

– Do the results of [3] extend to read-k-multilinear branching programs?
– Can a hardness of representation for Symn,d be transformed into a polynomial
identity test for a related model?

– Can the bound given by Theorem 5 be improved? As noted in Proposition 3,
n+1 0-justified depth-two ROPs are sufficient to represent any of the elementary
symmetric polynomials. We conjecture:

Conjecture 1 There is a constant ε > 0 such that if there are 0-justified depth-three
ROPs f1, . . . , fk , and integers e1, . . . ek ≥ 0 satisfying

k∑

i=1

f eii = Symn,n/2,

then k = Ω(nε).

1 A parse tree is a sub-formula of F (i) containing the output gate, (ii) including, for every included ∨ gate,
exactly one child, and (iii) including, for every included ∧ gate, both its children.

123

908 Algorithmica (2016) 76:890–909

– Similarly, how tight is the lower bound fromTheorem 4? The question of obtaining
even a polynomial, let alone linear, upper bound on the number of CF-ROPs
required to represent the Symn,n/2 is wide open.

– Does the class of CF-ROPs have a deterministic polynomial-time blackbox PIT
algorithm?

– Can we completely characterize polynomials computed by monotone CF-ROFs?

Acknowledgments The authors gratefully acknowledge Amir Shpilka’s pointer regarding Theorem 2,
when he and the first author were at the Dagstuhl Seminar 14121 on Computational Complexity of Discrete
Problems. The authors are grateful to anonymous reviewers for their careful reading of the manuscript,
several comments to improve readability, and for pointing out why the converse of Lemma 9 fails.

References

1. Agrawal, M., Vinay, V.: Arithmetic circuits: a chasm at depth four. In: Foundations of Computer
Science (FOCS), pp. 67–75 (2008)

2. Alon, N.: Combinatorial nullstellensatz. Comb. Probab. Comput. 8, 7–30 (1999)
3. Anderson, M., van Melkebeek, D., Volkovich, I.: Derandomizing polynomial identity testing for mul-

tilinear constant-read formulae. In: CCC, pp. 273–282 (2011)
4. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynominal interpolation

(extended abstract). In: Symposium on Theory of Computing (STOC), pp. 301–309 (1988)
5. Bläser,M., Engels, C.: Randomness efficient testing of sparse black box identities of unbounded degree

over the reals. In: Symposium on Theoretical Aspects of Computing (STACS), pp. 555–566, (2011)
6. Bläser, M., Hardt, M., Steurer, D.: Asymptotically optimal hitting sets against polynomials. In:

International Colloquium on Automata, Languages and Programming (ICALP), vol. 1, pp. 345–356
(2008)

7. Demillo, R.A., Lipton, R.J.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7,
193–195 (1978)

8. Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial identity testing for
depth 3 circuits. SIAM J. Comput. 36(5), 1404–1434 (2007)

9. Fournier, H., Malod, G., Mengel, S.: Monomials in arithmetic circuits: complete problems in the
counting hierarchy. In: Symposium on Theoretical Aspects of Computing (STACS), pp. 362–373
(2012)

10. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic circuits: a chasm at depth three. In:
Foundations of Computer Science (FOCS), pp. 578–587 (2013)

11. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower
bounds. Comput. Complex. 13(1–2), 1–46 (2004)

12. Karchmer, M., Linial, N., Newman, I., Saks, M.E., Wigderson, A.: Combinatorial characterization of
read-once formulae. Discrete Math. 114(1–3), 275–282 (1993)

13. Kayal, N.: An exponential lower bound for the sum of powers of bounded degree polynomials. ECCC
19(TR12-081), 81 (2012)

14. Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. Comput. Complex. 16(2),
115–138 (2007)

15. Klivans, A., Spielman, D.A.: Randomness efficient identity testing of multivariate polynomials. In:
Symposium on Theory of Computing (STOC), pp. 216–223 (2001)

16. Mahajan, M., Rao, B.V.R., Sreenivasaiah, K.: Monomials, multilinearity and identity testing in simple
read-restricted circuits. Theor. Comput. Sci. 524, 90–102 (2014). (preliminary version in MFCS 2012)

17. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Springer, New York (2005)
18. Raghavendra Rao, B.V., Sarma, J.M.N.: Isomorphism testing of read-once functions and polynomials.

In: Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 115–126
(2011)

19. Raghavendra Rao, B.V., Sarma, J.M.N.: Isomorphism testing of read-once functions and polynomials.
submitted manuscript (2013)

20. Raz, R., Yehudayoff, A.: Multilinear formulas, maximal-partition discrepancy and mixed-sources
extractors. J. Comput. Syst. Sci. 77(1), 167–190 (2011)

123

Algorithmica (2016) 76:890–909 909

21. Saxena, N.: Progress on polynomial identity testing-II. CoRR, arXiv:1401.0976 (2014)
22. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4),

701–717 (1980)
23. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: Symposium on Theory of Com-

puting (STOC), pp. 507–516 (2008) (See also ECCC TR-2010-011)
24. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: Technical Report 011, ECCC

(2010) (Preliminary version in STOC 2008)
25. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open questions. Found.

Trends Theor. Comput. Sci. 5(3), 207–388 (2010)
26. Valiant, L.G.: Negation can be exponentially powerful. In: Symposium on Theory of Computing

(STOC), pp. 189–196 (1979)
27. Volkovich, I.: Characterizing arithmetic read-once formulae. ArXiv, arXiv:1408.1995 (2014)
28. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: EUROSAM, pp. 216–226 (1979)

123

http://arxiv.org/abs/1401.0976
http://arxiv.org/abs/1408.1995

	Building Above Read-Once Polynomials: Identity Testing and Hardness of Representation
	Abstract
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	3 Identity Testing for sum(2)timesprodtimes ROPs
	3.1 Extension to Arbitrary Fields

	4 PIT for Sums of Powers of Low Degree Polynomials
	5 Hardness of Representation for Sum of Powers of CF-ROPs
	6 Characterizing Monotone CF-ROPs
	7 Further Questions
	Acknowledgments
	References

