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We construct point vortex equilibria with strengths quantized by multiples of 2π in a fixed

background vorticity field on the surface of a curved torus. The background vorticity

consists of two terms, first a term exponentially related to the stream function, and a second

term arising from the curvature of the torus, which leads to a Liouville-type equation for

the stream function. By using a stereographic projection of the torus onto an annulus

in a complex plane, the Liouville-type equation admits a class of exact solutions given

in terms of a loxodromic function on the annulus. We show that appropriate choices of

the loxodromic function in the solution leads to stationary vortex patterns with 4n̂ point

vortices of identical strengths, n̂ ∈ N. The quantized point vortices are stationary in the

sense that they are equilibria of a ‘one-way interaction’ model where the evolution of point

vortices is subject to the continuous background vorticity, while the background vorticity

distribution is not affected by the velocity field induced by the point vortices. By choosing

loxodromic functions continuously dependent on a parameter and taking appropriate limits

with respect this parameter, we show that there are solutions with inhomogeneous point

vortex strengths, in which the exponential part of the background vorticity disappears. The

point vortices are always located at the innermost and outermost rings of the torus owing

to the curvature effects. The topological features of the streamlines are found to change as

the modulus of the torus changes.
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I. INTRODUCTION

Formation of a vortex-like tube having its circulation quantized by the Planck constant h̄ in

superfluid helium was theoretically predicted by Feynman (1955). This prediction was confirmed

later in a laboratory experiment of a rotating superfluid (two-dimensional) thin film by Yarm-

chuk, Gordon, and Packard (1979), who found identical vortex-like cores organized in polygonal

patterns. More recently many lattice patterns of quantized vortices have been observed in Bose–

Einstein condensates (BECs) (Abo-Shaeer et al., 2001; Engels et al., 2002, 2003). Abrisokov,

in his Nobel lecture (Abrikosov, 2004), suggested vortex lattice theory as a theoretical model for

investigating such quantized vortex patterns. Suppose that the velocity field in the azimuthal di-

rection induced by a localized vortex core depends only on the distance s from the core and its

magnitude decays as 1/s for s� 1. Vortex lattice patterns are then characterized by equilibrium

states of vortex cores under their mutual interaction through the induced velocity field. Although

it is a simple phenomenological model, the theoretical treatment of this model is much easier

than that of physical models based on partial differential equations such as the Gross–Pitaevskii

equation and the Ginzburg–Landau equation.

If we assume that the vorticity in the vortex core is concentrated at a discrete point, i.e., Dirac’s

δ -measure, then the vortex lattice is equivalent to a system of n point vortices with the circulation

around a core corresponding to the strength of the point vortex there. The n-vortex problem has

been utilized as a theoretical model to describe the equilibria and dynamics of vortices in the

literature of hydrodynamics. See the book by Newton (2001) and the review article by Newton and

Chamoun (2009) for references. Stationary lattice patterns formed by point vortices are referred

to as vortex crystals (Aref et al., 2003), whose investigation originated in the theory of vortex

atoms due to Thomson in the 19th century. When we use vortex crystals as a model for vortex

lattice patterns in superfluids and BECs, the strengths of the point vortices must be quantized. This

means that the ratios of the strengths of all point vortex pairs must be integers. This is an important

condition, since it is in contrast to the vortex motion of hydrodynamics in which the strengths of

point vortices can be chosen to be arbitrary real numbers. It is known that vortex crystals with the

same strength in the plane tend to acquire a certain symmetry, but, in general, vortex crystals in an

asymmetric configuration do not usually have quantized strengths. In addition, most of the vortex

crystals obtained so far are relative equilibria that translate or rotate at a constant speed without

changing their relative configuration. To study vortex lattice patterns, we need to obtain fixed (or
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stationary) equilibria where all of the point vortices remain completely stationary. However, lesser

number of fixed equilibria are known than relative equilibria.

Vortex crystals can also be considered on two-dimensional Riemannian manifolds. Vortex

dynamics on a sphere (Newton, 2001) is well-studied due to its geophysical relevance. Kimura

(1999) considered vortex dynamics on surfaces of constant curvature, including the sphere S2 and

a hyperbolic sphere H2. The review by Turner, Vitelli, and Nelson (2010) discusses the general

significance of vortices on surfaces with a non-constant Gaussian curvature and the effects of

the non-constant curvature on the vortex dynamics. We are interested in how the non-constant

curvature and the handle structure of a torus affect vortex crystal patterns on the torus. On a

compact surface like a torus, just like on a sphere, the condition that the total vorticity needs to

vanish has to be satisfied. Sakajo (2019b) formulated a numerical method to find vortex crystals

on a torus, and found that the sum of the vortex circulations does not vanish in general for such

crystals. This means that a constant background vorticity needs to be added in order for the total

vorticity to vanish. Sakajo (2019b) further found that, in general, the point vortex strengths are

not quantized when the background vorticity is constant. In order to overcome these difficulties

and obtain vortex crystals with quantized strengths, in this paper we introduce a non-constant

background vorticity distribution, given by a modified Liouville equation on the torus.

Consider that the stream function ψ and the vorticity Ω associated with an incompressible

velocity field in R2 satisfy Ω = −cedψ for c,d ∈ R with cd < 0. Without loss of generality, we

take c = 1 and d = −2 so that cd = −2. Since Ω = −∇2ψ , where ∇2 is the planar Laplacian

operator, this results in the planar Liouville equation

∇
2
ψ = e−2ψ (1)

for the stream function ψ . In the vorticity-stream function formulation of ideal fluid flow in R2,

solutions to (1) also provide steady solutions of the Euler equation (Majda and Bertozzi, 2001).

This is because the vorticity equation in this case reads Ωt +J (Ω ,ψ) = 0, where J is the Ja-

cobian, and any vorticity functional of the form Ω = V (ψ), where V is a differentiable function,

solves this vorticity equation. Furthermore, the Liouville equation is a fundamental nonlinear el-

liptic partial differential equation that appears in field theory and plasma physics. Mathematically,

an important class of exact solutions to the planar Liouville equation are known (Bhutani, Moussa,

and Vijayakumar, 1994; Calogero and Degasperis, 1982), and Crowdy (1997) has obtained the

most general form of these solutions.
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Vortex solutions of the Liouville equation have been studied in a variety of contexts. For ex-

ample, see Horváthy and Yéra (1998); Akerblom et al. (2011) for a discussion in the context

of field theory. In the context of hydrodynamics, Stuart (1967) constructed singly-periodic, ev-

erywhere smooth solutions to (1) that he used to model planar shear flows. Crowdy (2003) con-

structed solutions with a single point vortex surrounded by polygonal patterns of smooth vortices.

Such solutions have been described as forming a “rational necklace” due to the rational functions

appearing in the theory (Tur and Yanovsky, 2004; Tur, Yanovsky, and Kulik, 2011). Krishna-

murthy et al. (2019) constructed exact solutions with two embedded point vortices in stationary

equilibrium with the background vorticity term −e−2ψ . Indefinitely iterated solutions called “Li-

ouville chains,” containing increasing numbers of embedded point vortices in each iteration, have

been constructed recently by Krishnamurthy et al. (2021), see Krishnamurthy et al. (2020) for the

closely-related ‘pure’ point vortex equilibria which are limiting solutions in which the background

vorticity vanishes.

The class of exact solutions to (1) can be written as

ψ(ζ ,ζ ) =− log
[
| f ′(ζ )|

1+ | f (ζ )|2

]
. (2)

This formula is given in terms of an arbitrary complex-valued analytic function f (ζ ) and its deriva-

tive f ′(ζ ), with various choices of this function allowing us to construct many exact solutions in

the complex ζ -plane in a systematic manner. If the analytic function f (ζ ) is chosen so that f ′(ζ )

has zeros at points ζ = νk ∈ C, k = 1, . . . ,n, then the stream function (2) has logarithmic singu-

larities at each of the points νk. These logarithmic singularities represent embedded point vortices

in the flow. For n point vortices with strengths Γk ∈ R, k = 1, . . . ,n, embedded in the background

vorticity given by −e−2ψ , we are in fact solving the Liouville-type equation

∇
2
ψ = e−2ψ −

n

∑
k=1

Γkδνk . (3)

To show that a solution ψ of (3) is a stationary solution, it is necessary and sufficient to confirm

that the point vortices in (3) remain stationary under the interaction with the other point vortices

and the Liouville-type background vorticity field.

When we construct solutions to the Liouville-type equation on a torus based on the analytic

formula (2), the equation (1) needs to be modified by adding a term corresponding to the curvature

on the right hand side (Sakajo (2019a)):

∇
2
Tα

ψ = e−2ψ −κ (Tα) . (4)
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Here, Tα is the torus with aspect ratio α , ∇2
Tα

is the Laplace-Beltrami operator on Tα , and κ (Tα)

is the non-constant Gaussian curvature of Tα . The vorticity and stream function on Tα are related

by Ω =−∇2
Tα

ψ . This class of exact solutions is found by the same method as in Crowdy (2004)

who constructed solutions to a modified Liouville equation on the unit sphere. The class of solu-

tions on the torus described by Sakajo (2019a) are smooth solutions except for two point vortices

of equal strengths embedded at the two antipodal points.

As discussed in the planar case, when there are n point vortices on the torus, we have the

following modified Liouville equation for the stream function:

∇
2
Tα

ψ = e−2ψ −κ(Tα)−
n

∑
j=1

Γjδν j . (5)

By recasting the Euler equation on a torus as a vorticity equation in the vorticity-stream function

formulation, it can be shown that this vorticity equation has the important Jacobian term J (Ω ,ψ).

The vorticity Ω = −e−2ψ + κ(Tα) +∑
n
j=1 Γjδν j is not a functional of ψ , because of the non-

constant Gaussian curvature κ (Tα). This implies that solutions of (5) are not, in general, solutions

of the Euler equation on Tα . However, the solutions of the Liouville equation (5) can still be

regarded as stationary configurations of quantized point vortices, in the following sense. We adopt

(5) as a kinematic ‘one-way interaction’ model of localized vortex structures in superfluids and

BECs. This means that the evolution of point vortices is subject to the continuous background

vorticity, whilst the background vorticity distribution is not affected by the velocity field induced

by the point vortices. This is the same situation as in the study of point vortex dynamics on a

rotating sphere as considered by Newton and Shokraneh (2005), who introduce a one-way model

in which point vortices are advected by the fixed continuous vorticity field corresponding to the

solid body rotation of the sphere. In contrast to such a one-way interaction model, we can consider

a ‘two-way interaction’ model where the background also evolves under the velocity field induced

by the point vortices. The relation between the solutions of the Liouville equation and those of the

Euler equation is further discussed in §VI.

The purpose of the present paper is to create a catalog of stationary lattice patterns of quantized

point vortices embedded in background vorticity of Liouville-type on the surface of a curved torus.

Since the toroidal surface is the simplest model of porous media having one handle structure,

it is of theoretical significance to consider the formation of vortex lattice patterns in superfluid

thin film as discussed by Corrada-Emmanuel (1994) and Machta and Guyer (1988). The exact

solution gives rise to various quantized point vortices by specifying loxodromic functions that are
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doubly periodic in an annulus in the complex domain. The locations of quantized point vortices

corresponds to zeros and poles of the loxodromic functions. To show that these quantized point

vortices form a fixed equilibrium, we need to confirm two conditions. First is the Gauss condition,

which requires that the total vorticity vanish on the toroidal surface. The second is a stationary

condition, where the velocity field induced by point vortices and the Liouville-type background

vorticity vanishes at the location of each quantized point vortex.

This paper is organized as follows. In Section 2, we review the exact solution of the modified

Liouville equation on the surface of a curved torus given by Sakajo (2019a). We then provide the

two conditions to be confirmed. In Section 3, we show the existence of stationary lattice patterns

consisting of quantized point vortices with the choice of Weierstrass ℘-function. In Section 4, we

obtain a continuous parametric family of stationary quantized point vortices when a loxodromic

function is considered. After deriving a new solution formula of the modified Liouville equa-

tion, we construct another series of lattice pattern of quantized vortices in Section 5, called ‘limit

solutions’. The last section is summary and discussion for future studies.

II. LIOUVILLE-TYPE EQUATION ON THE TOROIDAL SURFACE AND POINT

VORTEX EQUILIBRIA

The geometry of a toroidal surface is generally characterized by the major radius R and the

minor radius r with R > r. However, by its scale invariance, it is sufficient to deal with a canonical

one, say Tα , with modulus α = R/r > 1 in this paper. With the toroidal coordinates (θ ,φ) ∈

(R/2πZ)× (R/2πZ), it is embedded in the three-dimensional Euclidean space E3, which is rep-

resented by

(θ ,φ) 7→ ((α− cosθ)cosφ ,(α− cosθ)sinφ ,sinθ) ∈ E3. (6)

Equation (4) is Liouville-type quasi-linear elliptic equation with respect to a scalar function

ψ(θ ,φ) on the torus. The Laplace-Beltrami operator ∇2
Tα

and the Gauss curvature of the toroidal

surface κ (Tα), are respectively represented by

∇
2
Tα
≡ 1

(α− cosθ)

∂

∂θ

(
(α− cosθ)

∂

∂θ

)
+

1
(α− cosθ)2

∂ 2

∂φ 2 ,

κ(Tα)≡−
cosθ

α− cosθ
.

We also introduce a complex structure on the surface through a stereographic projection from

the torus Tα to the annulus {Dζ : ρ < |ζ | ≤ 1} in a complex ζ -plane as shown in figure 1. This
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FIG. 1. Stereographic projection of the torus Tα , α = R/r > 1, on the annulus {Dζ | ρ < |ζ | ≤ 1}. The

toroidal angle φ ∈ [0,2π) and the poloidal angle θ ∈ [0,2π) are related to ζ through (7). Due to symmetry,

the lower half of the torus (viz. (θ ,φ) = [0,π)× [0,2π)) is mapped to
√

ρ < |ζ | ≤ 1 whereas the upper half

of the torus (viz. (θ ,φ) = [π,2π)× [0,2π)) is mapped to ρ < |ζ | ≤ √ρ . The identity of θ = 0 and θ = 2π

corresponds to the identity of |ζ |= 1 and |ζ |= ρ .

stereographic projection is defined by

ζ (θ ,φ) = eiφ exp(rc(θ)) ∈ C, rc(θ) =−
∫

θ

0

dθ̂

α− cos θ̂
. (7)

The function rc(θ) is monotonically decreasing owing to r′c(θ) < 0 for 1 < α , and satisfies the

following quasi periodicity (Sakajo and Shimizu, 2016):

rc(θ ±2π) =∓2πA + rc(θ), A = (α2−1)−
1
2 .

For later use, we evaluate rc(θ) over the interval [0,2π):

rc(0) = 0, rc(θ) = 2A tan−1
[
B cot

(
θ

2

)]
−πA for θ 6= 0, (8)

where B =
√

α−1
α+1 . The parameter ρ associated with the conformal structure is related to the

modulus α via the equation ρ = exp(−2πA ) = exp(−2π/
√

α2−1). Under the stereographic

projection (7), θ = 0 is mapped to the circle |ζ | = 1, θ = 2π is mapped to the circle |ζ | = ρ

and for − logρ < rc(θ) ≤ 0 the torus is mapped to the annulus ρ < |ζ | ≤ 1. In particular, θ = π

is mapped to the circle |ζ | = √ρ . The periodicity of the torus in θ is thus transferred to the

periodicity in ρ on the ζ -plane.
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When the solution of (4) is regarded as the stream function, it gives rise to the incompressible

velocity field on the toroidal surface: Suppose that a passive particle at (θ(t),φ(t)) on the toroidal

surface at time t is advected by the velocity field induced by the stream function ψ . Then, its

governing equation is described by

dζ

dt
=−2iλ−2(ζ ,ζ )

∂ψ

∂ζ
(9)

in the complex form (Sakajo and Shimizu, 2016). Here, ζ is the conjugate of ζ , and λ (ζ ,ζ ) is the

conformal factor associated with the metric g on the toroidal surface (Green and Marshall, 2013),

which is given by

λ (ζ ,ζ ) =
α− cosθ

|ζ |
. (10)

Based on (9), we rewrite the angular velocity fields on the toroidal surface in the θ -direction as

well as the φ -direction explicitly. Substituting (7) and (10) into (9), we have

d
dt

[
e−iφ(t) exp(rc(θ(t)))

]
=−iζ

dφ

dt
− ζ

α− cosθ

dθ

dt
=−2i

|ζ |2

(α− cosθ)2
∂ψ

∂ζ
,

which yields
i

α− cosθ

dθ

dt
− dφ

dt
=− 2

(α− cosθ)2 ζ
∂ψ

∂ζ
. (11)

This indicates that the passive particle is at rest if ζ
∂ψ

∂ζ
= 0. On the other hand, it follows from

∂

∂θ

∣∣∣∣
φ

=− ζ

α− cosθ

∂

∂ζ
− ζ

α− cosθ

∂

∂ζ
,

∂

∂φ

∣∣∣∣
θ

= iζ
∂

∂ζ
− iζ

∂

∂ζ

that

ζ
∂

∂ζ
=−α− cosθ

2
∂

∂θ
− i

2
∂

∂φ
(12)

and thus we have

− i
α− cosθ

dθ

dt
+

dφ

dt
=

2
(α− cosθ)2

(
−α− cosθ

2
∂ψ

∂θ
− i

2
∂ψ

∂φ

)
.

Accordingly, the angular velocity uθ in the θ -direction and uφ in the φ -direction of the toroidal

surface Tα is given by

uθ ≡
dθ

dt
=

1
α− cosθ

∂ψ

∂φ
, uφ ≡ (α− cosθ)

dφ

dt
=−∂ψ

∂θ
, (13)

which is a divergence-free vector field on Tα . Introducing the vorticity Ω as the curl of the velocity

field (13), we obtain the elliptic equation ∇2
Tα

ψ =−Ω , in which the vorticity distribution is given

by

−Ω = e−2ψ −κ (Tα) . (14)
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The analytic solution of the equation (4) has been provided explicitly in Sakajo (2019a):

ψ(ζ ,ζ ) =−1
2

log
[

4| f ′(ζ )|2

(1+ | f (ζ )|2)2

]
− 1

2
log
[

|ζ |2

(α− cosθ)2

]
, (15)

in which f (ζ ) is a given analytic function on a domain Dζ . The second term originates from the

conformal factor, representing the curvature effect of the toroidal surface. It is regular, since we

consider the function f (ζ ) the domain Dζ = {ζ ∈ C |ρ < |ζ |5 1} in the present paper. The first

term is coming from the general solution to the Liouville equation in the plane (Liouville, 1853;

Stuart, 1967). Crowdy (2004) has made two remarks on the nature of the analytic function f (ζ )

so that the first term becomes non-singular. First, f (ζ ) is not necessarily analytic everywhere in

Dζ and it can admit the finite number of simple poles in Dζ . Second, f ′(ζ ) 6= 0 everywhere in Dζ .

Additionally, in order to define the solution on the toroidal surface, the function is required to be

doubly periodic in the domain Dζ .

As a matter of fact, as is discussed in Krishnamurthy et al. (2019, 2021), even if we allow

the existence of simple zeros in f ′(ζ ) and double poles in f (ζ ), one can still define the stream

function (15) as a physical solution. Suppose that f ′(ζ ) has a simple zero or f (ζ ) has a double

pole at ζ = ν0. Then the solution has the local behaviour,

ψ(ζ ,ζ )∼− log |ζ −ν0|+ regular, ζ → ν0.

On the other hand, the stream function of a point vortex located at ζ = ν0 with the strength (cir-

culation) Γ on the toroidal surface has the following asymptotic expansion (Sakajo and Shimizu,

2016):

ψ(ζ ,ζ )∼− Γ

2π
log d̂(ζ ,ν0) =−

Γ

2π
log |ζ −ν0|+ regular, ζ → ν0, (16)

in which the geodesic distance d̂(ζ ,ν0) between ζ and ν0 is asymptotically represented by

d̂(ζ ,ν0) = λ (ν0, ν̄0)|ζ −ν0|+o(ζ −ν0), ζ → ν0.

This indicates that the stream function (15) contains a point vortex at ζ = ν0 with the strength

Γ = 2π . Hence, when there exist n simple zeros of f ′(ζ ) and double poles of f (ζ ), say ν j,

j = 1,2, . . . ,n, the solution contains n point vortices at ν j with the same strength Γj = 2π in a field

of Liouville-type vorticity distribution (14) on Tα . The vorticity distribution is thus given by

−Ω = e−2ψ −κ(Tα)−
n

∑
j=1

Γjδν j , (17)
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where δν j denotes the δ -measure at ν j. In this paper, we consider exact solutions to the modified

Liouville equation (5) which corresponds to the vorticity distribution given by (17).

It is important to notice that the strengths of the point vortices are identical to 2π . That is to

say, the solution is regarded as the configuration of quantized point vortices on the surface of a

torus in the background Liouville-type vorticity distribution. Such a stream function with point

vortex singularities on the toroidal surface has already been obtained in Sakajo (2019a), in which

f (ζ ) = sn(logζ )/cn(logζ ) with the Jacobi’s elliptic functions sn(z) and cn(z) is chosen. The

stream function yields stationary configuration of identical point vortices located at two antipodals

of the toroidal surface, since f ′(ζ ) has two simple zeros in the fundamental domain.

Since Tα is a compact surface without boundary, Gauss’s divergence theorem gives rise to a

global constraint on the vorticity distribution

x

Tα

Ω dσ = 0, (18)

in which dσ denotes the area element of the toroidal surface. When there are M point vortices

located at νk with the strength Γk, k = 1, . . . ,n on the surface of the torus, the Gauss constraint (18)

for the vorticity distribution (17) is equivalent to

x

Tα

e−2ψ dσ −
n

∑
j=1

Γj = 0, (19)

since the Gauss-Bonnet theorem and the definition of the δ -measure assure that

x

Tα

κ(Tα)dσ = 2πχ(Tα) = 0,
x

Tα

δν j dσ = 1 for j = 1, . . . ,n,

where χ(M ) is the Euler characteristic of the manifold M . The first term in (19) is calculated as

follows:

x

Tα

e−2ψ dσ = 4
x

Tα

|ζ |2| f ′(ζ )|2

(1+ | f (ζ )|2)2(α− cosθ)2 dσ

=−2i
x

Dζ

| f ′(ζ )|2

(1+ | f (ζ )|2)2 dζ ∧dζ

=−2i
x

Dζ

∂

∂ζ

(
f ′(ζ ) f (ζ )

1+ | f (ζ )|2

)
dζ ∧dζ

= 2i
∮

∂Dζ

f ′(ζ ) f (ζ )
1+ | f (ζ )|2

dζ . (20)
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The Gauss constraint (19) now takes the form

2i
∮

∂Dζ

f ′(ζ ) f (ζ )
1+ | f (ζ )|2

dζ −
n

∑
j=1

Γj = 0, (21)

and needs to be independently verified for every choice of the function f (ζ ).

Finally, in order that the solution becomes a vortex crystal, it is sufficient and necessary that

the configuration of point vortices is in an equilibrium state, which yields an additional constraint.

Suppose that ν0 ∈Dζ is a zero of f ′(ζ ) with degree m. Then there is a point vortex at ζ = ν0 with

the strength 2πm. The velocity field at this point is then calculated by subtracting the self-induced

singular component (16) from the stream function Newton (2001); Saffman (1992); Sakajo and

Shimizu (2016). That is to say, the evolution equation of the point vortex is given by

dν0

dt
= 2iλ−2(ν0,ν0)

∂

∂ν0
ψ̃(ν0,ν0), (22)

in which the modified stream function ψ̃(ν0,ν0) is defined by

ψ̃(ν0,ν0) = lim
ζ→ν0

(
ψ(ζ ,ζ )+m log d̂(ζ ,ν0)

)
= lim

ζ→ν0

(
ψ(ζ ,ζ )+m log

[
(α− cosθ0)

|ν0|
|ζ −ν0|

])
. (23)

With the same calculation as (11), the point vortex at ζ = ν0 stays at the same location, when we

have

ν0
∂

∂ν0
ψ̃(ν0,ν0) = 0. (24)

For a given doubly periodic function f (ζ ) on Dζ , substituting it into the formula (15), we identify

the locations of point vortices from the solution and confirm whether the Gauss condition (19) as

well as the stationary condition (24).

III. STEADY SOLUTIONS IN TERMS OF WEIERSTRASS ℘-FUNCTION

A. A solution with four antipodal quantized point vortices

In this section we describe solutions to the modified Liouville equation (5) given in terms of

the doubly-periodic Weierstrass ℘-function. A brief discussion of the ℘-function is provided

in appendix A. We choose the analytic function f (ζ ) in the stream function (15) as f (ζ ) =

℘(−i logζ ), which is defined on the annular domain Dζ = {ζ ∈ C |ρ < |ζ |5 1} shown in figure

11



1. The domain Dζ is related to the fundamental domain Dz given by (A1) via the simple mapping

z =−i logζ . The half-periods of℘(z) are ω1 = π and ω3 =− i
2 logρ . The function f (ζ ) is doubly

periodic in Dζ , since

f (ζ (θ +2π,φ)) = f (ρζ ) =℘(−i log(ρζ )) =℘(−i logζ − i logρ) =℘(−i logζ ) = f (ζ ),

f (ζ (θ ,φ +2π)) = f (ζ ),

by the definition of the stereographic projection (7). Substituting for f (ζ ) and using f ′(ζ ) =

− i
ζ
℘′(−i logζ ) in (15), we obtain the stream function

ψ(ζ ,ζ ) =−1
2

log
[

4|℘′(−i logζ )|2

(1+ |℘(−i logζ )|2)2(α− cosθ)2

]
. (25)

Recall that ℘(z) has a double pole at the origin z = 0 ≡ ω0, and ℘′(z) has three simple zeros at

the half-periods ω1,ω3 and at ω2 = ω1+ω3. Hence, the stream function (25) has four logarithmic

singularities, located at the points νk = exp(iωk) ∈ Dζ , k = 0,1,2,3, i.e., ν0 = 1, ν1 = −1, ν2 =

−√ρ and ν3 =
√

ρ . Each of these logarithmic singularities corresponds to a point vortex, and

it can be verified using (A3) and (A4) that they all have the same strength +2π . There are thus

four identical point vortices located at the antipodal positions of the toroidal surface Tα , namely

(θ0,φ0) = (0,0), (θ1,φ1) = (0,π), (θ2,φ2) = (π,π) and (θ3,φ3) = (π,0).

The Gauss condition (21) is calculated as in Sakajo (2019a). The second term gives ∑Γk =

+8π , and after substituting for f (ζ ) the first term is

2i
∮

∂Dζ

f ′(ζ ) f (ζ )
1+ | f (ζ )|2

dζ = 2i
∮

∂Dζ

℘′(−i logζ )℘(−i logζ )

1+ |℘(−i logζ )|2

(
− i

ζ

)
dζ = 2i

∮
∂Dz

℘′(z)℘(z)
1+ |℘(z)|2

dz. (26)

Using (A3) and (A4) we find

℘
′(z)℘(z) =− 2

z|z|4
(1+o(z3))(1+o(z3)), 1+ |℘(z)|2 = 1

|z|4
(1+o(|z|3)),

so that we have
℘′(z)℘(z)
1+ |℘(z)|2

=−2
z
(1+o(|z|)), |z| → 0,

which means that the integrand of (26) has a simple pole at the origin with residue −2. Accord-

ingly, owing to the doubly periodicity of the integrand, the integral (26) becomes

2i
∮

∂Dz

℘′(z)℘(z)
1+ |℘(z)|2

dz = 2i · lim
ε→0

∮
|z|=ε

℘′(z)℘(z)
1+ |℘(z)|2

dz = 2i ·2πi · (−2) = 8π.
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This shows that the Gauss condition (21) is satisfied.

We turn now to the stationary condition (24) for the point vortices at ζ = νk, k = 0,1,2,3. The

modified stream function (23) is given by (using m = 1)

ψ̃(νk,νk) = lim
ζ→νk

(
−1

2
log
[

4|℘′(−i logζ )|2

(1+ |℘(−i logζ )|2)2(α− cosθ)2

]
+ log

[
(α− cosθk)

|νk|
|ζ −νk|

])
= lim

ζ→νk

(
−1

2
log
[

4|νk℘
′(−i logζ )|2

(1+ |℘(−i logζ )|2)2|ζ −νk|2

])
+2log(α− cosθk).

To proceed, we split into two cases, considering first the point vortices at ζ = νk, k = 1,2,3. Owing

to ℘′(ωk) = 0 for ωk =−i logνk, k = 1,2,3, we have the local behaviour

℘
′(−i logζ )−℘

′(−i logνk) =−
i

νk
℘
′′(−i logνk)(ζ −νk)+o(ζ −νk), ζ → νk,

from which we can calculate the limit

lim
ζ→νk

|νk℘
′(−i logζ )|2

(1+ |℘(−i logζ )|2)2|ζ −νk|2
=

|℘′′(−i logνk)|2

(1+ |℘(−i logνk)|2)2 .

After a little algebra, this gives us the modified stream function

ψ̃(νk,νk) =− log2− 1
2

log |℘′′(−i logνk)|2 + log(1+ |℘(−i logνk)|2)+2log(α− cosθk).

The velocity field at ζ = νk is then

νk
∂

∂νk
ψ̃(νk,νk) =

i
2

℘′′′(−i logνk)

℘′′(−i logνk)
− i

℘′(−i logνk)℘(−i logνk)

1+ |℘(−i logνk)|2
− sinθk = 0,

where we have used (A2) and the fact that θk = 0 or π for k = 1,2,3.

In the case k = 0 (z = 0, ν0 = 1, and θ0 = 0) it follows from (A3) and (A4) that

|℘′(z)|2

(1+ |℘(z)|2)2 =

4
|z|6 (1+o(|z|3))
1
|z|8 (1+o(|z|3))

= 4|z|2(1+o(|z|3)), z→ 0.

Accordingly, we have

log
[

|℘′(−i logζ )|2

(1+ |℘(−i logζ )|2)2|ζ −1|2

]
= log

[∣∣∣∣2logζ

ζ −1

∣∣∣∣2 (1+o(|ζ −1|3)
)]
→ log4, ζ → 1,

which yields

ν0
∂

∂ν0
ψ̃(ν0,ν0) =−sinθ0 = 0.

Thus the four point vortices at the antipodal locations of the toroidal surface are stationary and the

stream function (25) provides a steady solution of the incompressible Euler equation.
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FIG. 2. Streamline contour plots, vorticity heatmaps, and embedded point vortices (+) corresponding to the

stream function (25).

Figure 2 shows some example solutions for selected values of α and we see the topology of the

flow change as α is varied. There are four point vortices with strength 2π embedded in the smooth

background vorticity Ωsm = −e−2ψ +κ(Tα) at (θ ,φ) ∈ {(0,0),(0,π),(π,0),(π,π)}. A ring of

smooth vorticity around the point vortex at (0,0) is seen in (a) and (b). As α increases, we see

the predominant flow direction shift from along φ to along θ . The background vorticity becomes

smoother with increasing α in the sense that the difference between the minima and maxima of

Ωsm decreases.
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B. N-ring configuration

We construct a steady solution with more quantized point vortices. Instead of using the stereo-

graphic projection (7), we introduce a map

ζ = ζN(θ ,φ) = exp(rc(θ))eiNφ

for a fixed positive integer N. For each k = 0, . . . ,N−1, the map ζN defines a bijection from T N
k

to Dζ , where

T N
k = (θ ,φ) ∈ (R/2πZ)×

[
2π

N
k,

2π

N
(k+1)

)
for k = 0, . . . ,N − 1. Since the toroidal surface is divided into N domains with T N

k , the map

z = −i logζ gives rise to a many-to-one map from Tα to Dz. Hence, the pre-image of a point Dz

with respect to this map consists of N points on Tα that are equally spaced along the line of a

latitude of the toroidal surface, i.e. an N-ring configuration.

The choice of the analytic function is then

f (ζ ) = f (ζN(θ ,φ)) =℘(−i logζN(θ ,φ)).

Since

f ′(ζ ) =
(

1
2iζ

∂

∂φ
− α− cosθ

2ζ

∂

∂θ

)
℘(−i logζN(θ ,φ)) =−

i(N +1)
2ζ

℘
′(−i logζN(θ ,φ)),

we obtain the following new analytic solution,

ψ(ζ ,ζ ) =−1
2

log
[

(N +1)2|℘′(−i logζN(θ ,φ))|
(1+ |℘(−i logζN(θ ,φ))|2)2(α− cosθ)2

]
. (27)

The analytic solution is apparently doubly periodic on Dζ owing to the definition of f (ζ ). Since

there exist the three zeros of ℘′(z) at z = ω1,ω2,ω3 and the double zero at z = 0(= ω0) in Dz

and they are pulled back to 4N points on Tα , this solution contains a 4N quantized point vortices

with the strength 2π . The configuration of the 4N point vortices is two 2N-rings where 2N point

vortices are equally arranged along the line of latitudes θ = 0, π , namely (θk,φk) = (0, πk
N ) and

(π, πk
N ) for k = 0, . . . ,2N−1. The solution satisfies the Gauss constraint (18), since the integration

of e−2ψ over the toroidal surface is divided into N identical integrations over Dz, for each of

which the Gauss constraint is satisfied. It is also easy to show the 4N point vortices are in a fixed

equilibrium state, since the calculation of (24) proceeds in the same way as in the antipodal case

on Dz and, additionally, their locations are θk = 0 and π .
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Let us finally note another choice of the function

f (ζ ) =℘
(
−i logζ

N) (28)

for a fixed positive integer N. Owing to ζ N = exp(Nrc(θ))eiNφ , it gives rise to a bijection from

T N
k1,k2

from Dz, in which

T N
k1,k2

= (θ ,φ) ∈
[

2π

N
k1,

2π

N
(k1 +1)

)
×
[

2π

N
k2,

2π

N
(k2 +1)

)
for k1,k2 = 0,1, . . . ,N−1. Since the toroidal surface is divided into the N2 subdomains, the map

z = −i logζ N(θ ,φ) becomes a many-to-one map from Tα to Dz. Substitution of (28) into (15)

yields an analytic solution formally. It is easy to see that the solution is doubly periodic and

satisfies the Gauss constraint. The zeros of ℘′(z) and the double pole of ℘(z) in the fundamental

domain Dz are pulled back on the 4N2 point vortices with the strength 2π consisting of 2N 2N-

rings on the toroidal surface. However, this configuration is not a fixed equilibrium, since they do

not satisfy the stationary condition.

IV. STEADY SOLUTIONS IN TERMS OF LOXODROMIC FUNCTIONS

In this section we consider solutions to the modified Liouville equation (5) given in terms

of loxodromic functions. The special functions used here are the Schottky-Klein prime func-

tion (Crowdy, 2020) and its derivatives defined on the annulus Dζ = {ζ ∈C |ρ < |ζ |5 1} shown

in figure 1. We call any function G(ζ ) defined on Dζ a loxodromic function if it is invariant un-

der ζ 7→ ρζ , i.e. G(ζ ) = G(ρζ ). Basic properties of the prime function and its derivatives are

reviewed in appendix B and will be referred to throughout this section. We consider the function

f (ζ ) =W0(ζ )≡
n̂

∑
k=1

(
K(ζ/ak,

√
ρ)−K(ζ/bk,

√
ρ)
)
, n̂ ∈ N, (29)

on Dζ , where ak,bk ∈ Dζ with ak 6= bk, k = 1, . . . , n̂, are parameters. Here, the K-function is

defined by (B2). It can be proven using (B3) that W0(ζ ) is a loxodromic function satisfying

W0(ρζ ) = W0(ζ ). Note that it follows from (B4) that W0(ζ ) has 2n̂ simple poles, located at

ζ = ak,bk for k = 1, . . . , n̂.

We now introduce a second function

W1(ζ )≡ ζ f ′(ζ ) =
n̂

∑
k=1

(
L(ζ/ak,

√
ρ)−L(ζ/bk,

√
ρ)
)
, (30)
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where the L-function is defined by (B5). We see using (B10) that W1(ζ ) is also a loxodromic

function, and from (B9) we see that it has 2n̂ double poles, one each at ζ = ak and ζ = bk, for

k = 1, . . . , n̂. It thus has 4n̂ zeros, located at say ζ = ν j, j = 1, . . . ,4n̂, with multiplicity in the

annulus Dζ according to the general theory of elliptic functions Hurwitz and Courant (1944). We

can now rewrite the stream function (15) as

ψ(ζ ,ζ ) =−1
2

log
[

4|W1(ζ )|2

(1+ |W0(ζ )|2)2(α− cosθ)2

]
(31)

The function W0(ζ ) consists of n̂ simple poles at ak and n̂ simple poles at bk. Following the

discussion in §II, we see that the stream function (31) is regular at the 2n̂ simple poles ζ = ak,bk,

k = 1, . . . , n̂. However, the stream function has 4n̂ point vortices (logarithmic singularities) at the

zeros ν j of W1(ζ ). If these point vortices are stationary, and if further the Gauss constraint (21) is

satisfied, then (31) provides a steady solution of the modified Liouville equation (5).

Let us next confirm whether the stream function (31) satisfies the Gauss condition (21). Since

the exact solution contains n = 4n̂ point vortices with the identical strength Γj = 2π , the total

circulation owing to the point vortices is given by ∑
n
j=1 Γj = 8π n̂. In the meantime, we need to

evaluate the integral in the Gauss constraint (21) with f (ζ ) given by (29). To do this, note that

the only singularities of the quantity W ′0(ζ )W0(ζ )/(1+ |W0(ζ )|2) are at the poles of W0(ζ ), so we

investigate its behavior in the neighborhood of ζ = ak and ζ = bk. We find from (29) and (B4)

that near these singularities

W ′0(ζ )W0(ζ )

1+ |W0(ζ )|2
∼

W ′0(ζ )
W0(ζ )

=
d
dζ

logW0(ζ ) =


− 1

ζ −ak
+O(1) as ζ → ak,

− 1
ζ −bk

+O(1) as ζ → bk,

for k = 1, . . . , n̂. This indicates that this function has a simple pole with residue −1 at each ζ =

ak,bk, k = 1, . . . , n̂. Notice that the residues at ζ = ak and ζ = bk are both equal. Accordingly, the

first term in (21) gives,

2i
∮

∂Dζ

W ′0(ζ )W0(ζ )

1+ |W0(ζ )|2
dζ = 2i · lim

ε→0

n̂

∑
k=1

 ∮
|ζ−ak|=ε

W ′0(ζ )W0(ζ )

1+ |W0(ζ )|2
dζ +

∮
|ζ−bk|=ε

W ′0(ζ )W0(ζ )

1+ |W0(ζ )|2
dζ


= 2i ·2πi ·

n̂

∑
k=1

[(−1)+(−1)]

= 8π n̂,
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showing that the Gauss condition (21) is satisfied by the stream function (31).

Finally, we derive the stationary condition (24) for the point vortex at ζ = ν j, j = 1, . . . ,4n̂.

Since this point vortex (of strength 2π) appears as a simple zero of W1(ζ ), we have m = 1 in (23).

By definition, let us first compute from (31):

ψ(ζ ,ζ )+ log
[

α− cosθ

|ν j|
|ζ −ν j|

]
=−1

2
log
∣∣∣∣ν j(W1(ζ )−W1(ν j))

ζ −ν j

∣∣∣∣2 + log
(
1+ |W0(ζ )|2

)
+ log(α− cosθ)+ log(α− cosθ j)− log2,

where we have used the fact that W1(ν j) = 0. The modified stream function is then obtained by

taking the limit ζ → ν j:

ψ̃(ν j,ν j) =−
1
2

log |W2(ν j)|2 + log(1+ |W0(ν j)|2)+2log(α− cosθ j)− log2. (32)

Here we have defined the new function

W2(ζ )≡ ζW ′1(ζ ) =
n̂

∑
k=1

(
M(ζ/ak,

√
ρ)−M(ζ/bk,

√
ρ)
)
, (33)

in terms of the M-function in (B6). Applying ν j
∂

∂ν j
to the modified stream function (32) we get

ν j
∂ψ̃

∂ν j
=−1

2
W3(ν j)

W2(ν j)
+

W ′0(ν j)W0(ν j)

1+ |W0(ν j)|2
− sinθ j =−

1
2

W3(ν j)

W2(ν j)
− sinθ j,

where we have defined the new functions

W3(ζ )≡ ζW ′2(ζ ) =
n̂

∑
k=1

(
N(ζ/ak,

√
ρ)−N(ζ/bk,

√
ρ)
)
, (34)

in terms of the N-function in (B7). We have also used W1(ν j) = ν jW ′0(ν j) = 0, and calculated

using (12) that

2ν j
∂

∂ν j
log(α− cosθ j) =−sinθ j.

In summary, the stationary condition (24) is reduced to

W3(ν j)

W2(ν j)
+2sinθ j = 0 for j = 1, . . . ,4n̂. (35)

In (35) the angle θ j is related to ν j via log |ν j| = rc(θ j), where rc(θ j) is given by (8). The

stationary condition can be further simplified by considering symmetric solutions, which have

θ j = 0 or π so that sinθ j = 0 for all j. This provides a restriction on the location of the zeros ν j,
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FIG. 3. Schematic showing the location of poles ak,bk ( ) and point vortices (+), in the annulus Dζ , for the

stream function (31). (a) We have taken n̂ = 1 and set b1 = ρ/a1. The stream function is then a function of

the arbitrary parameter a1, with the four point vortices in the solution fixed at ±1,±√ρ . (b) We have taken

n̂ = 2 and set b1 = ρ/a1, a2 = −a1, and b2 = −ρ/a1. The stream function is again a function of a1 with

eight point vortices fixed at ±1,±√ρ,±i,±i
√

ρ . See §IV A for details. Some examples of vorticity and

streamline plots for different choices of a1 are shown in figures 4 and 5 for n̂ = 1 and in figure 6 for n̂ = 2.

since from (8) we get log |ν j| = rc(0) = 0 or log |ν j| = rc(π) = −πA = log
√

ρ . Thus for such

symmetric solutions we must have |ν j| = 1 or |ν j| =
√

ρ leading to the stationary point vortex

condition in the form

W3(ν j) = 0, |ν j|= 1 or
√

ρ, for j = 1, . . . ,4n̂. (36)

We note that W2(ν j) 6= 0 for all j. The M and N-functions, and hence W2 and W3, are all loxo-

dromic functions. The properties (B10) and (B12) satisfied by the L and N-functions are identical,

while the corresponding property in (B11) differs by a sign. The condition (36) means that the

four point vortices of the stationary solution are necessarily on the innermost and the outermost

antipodal locations of the toroidal surface. We construct symmetric families of solutions to the

modified Liouville equation, continuously dependent on a parameter, which satisfy (36), using

these properties for any n̂.
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A. Examples with four point vortices

We consider the case when n̂ = 1, in which W1(ζ ) has double poles at a1,b1 ∈ Dζ , a1 6= b1,

and four zeros. We now solve W1(ζ ) = 0 to obtain the locations ν1,ν2,ν3,ν4 of point vortices

contained in the exact solution (31). It is easy to verify that ±
√

a1b1 and ±
√

a1b1/ρ are four

zeros of W1(ζ ). Indeed using the properties (B10), we have

W1(±
√

a1b1) = L(±
√

a1b1/a1,
√

ρ)−L(±
√

a1b1/b1,
√

ρ)

= L(±
√

b1/a1,
√

ρ)−L(±
√

a1/b1,
√

ρ)

= 0.

We can similarly show that W1(±
√

a1b1/ρ) = 0:

W1(±
√

a1b1/ρ) = L(±
√

a1b1/ρ/a1,
√

ρ)−L(±
√

a1b1/ρ/b1,
√

ρ)

= L(±
√

b1/ρa1,
√

ρ)−L(±
√

a1/ρb1,
√

ρ)

= L(±
√

ρa1/b1,
√

ρ)−L(±ρ
√

a1/ρb1,
√

ρ)

= 0,

where we have used (B10). Since W1(ζ ) is loxodromic, it follows that any ρ-multiple of these

zeros are further zeros of W1(ζ ), for example W1(±
√

ρa1b1) = 0. Depending on the values of a1

and b1 we can locate the four zeros of W1(ζ ) in Dζ .

The N-function satisfies the same properties as the L-function (see (B12)), and since we have

used only these properties to find the zeros of W1(ζ ), we see that the function W3(ζ ) must also

vanish at the zeros of W1(ζ ). The point vortex stationary condition (36) is thus automatically

satisfied if we choose ν j to be these zeros with |ν j|= 1 or
√

ρ . This last requirement is met if we

choose a1 and b1 such that |a1b1|= ρ , so that the positions of the point vortices are ν1 = 1, ν2 =

−1, ν3 =
√

ρ , and ν4 = −
√

ρ (see figure 3(a)). We thus have a family of solutions parametrised

by a1 (if we choose b1 = ρ/a1) in which the four stationary point vortices are fixed at ±1,±√ρ

as |a1| varies in the range
√

ρ < |a1| < 1. We can restrict |a1| to be in this range without loss

of generality because of the symmetry between a1 and b1; we disallow the value a1 = 1 since

then b1 = ρ and so W1(ζ ) is identically zero. Although setting |a1b1|= 1 would also satisfy (36),

this does not lead to a parametrised family of solutions since we need a1,b1 ∈ Dζ . However we

obtain solutions when |a1| = |b1| = 1, for example a1 = i, b1 = −i leads to four point vortices at

±1,±√ρ .
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FIG. 4. Streamline contour plots, vorticity heatmaps, and embedded point vortices (+) in the θ -φ plane

corresponding to the stream function (31) for n̂ = 1 and α = 1.5.

Figure 4 shows chosen example solutions for n̂ = 1, corresponding to the schematic shown in

figure 3(a). There are four point vortices embedded in the smooth background vorticity Ωsm =

−e−2ψ +κ(Tα). These point vortices remain fixed at (θ ,φ) ∈ {(0,0),(0,π),(π,0),(π,π)} when

a1 is changed, as shown in the panels (a)–(d). However, the centers of the smooth vorticity move

around and the values of the vorticity minima change as a1 is varied. The solution behaves simi-

larly in the parameter range π < arg(a1)< 2π . Figure 5 shows the same plots for α = 3, in which

we observe the changing of the flow topology, the motion of the smooth vorticity centers and the

values of the vorticity minima (compare figures 4 and 5).
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FIG. 5. Streamline contour plots, vorticity heatmaps, and embedded point vortices (+) in the θ -φ plane

corresponding to the stream function (31) for n̂ = 1 and α = 3.

B. Example with eight point vortices

We can generalise the preceding arguments for any n̂. Let us assume that ak and bk, k = 1, . . . , n̂,

satisfy the following condition.

akbk = ρ, ak = a1ei(k−1)2π/n̂, k = 1, . . . , n̂. (37)

Then, it is straightforward to show that

ν j =

ei( j−1)π/n̂ for j = 1, . . . ,2n̂,
√

ρ ei( j−1)π/n̂ for j = 2n̂+1, . . . ,4n̂,
(38)
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FIG. 6. Streamline contours projected on the torus, along with embedded point vortices (+), in the case

n̂ = 2 (vorticity heatmaps are not shown here).

are the zeros of W1(ζ ). Namely, we have using (B10) that

W1(ν j) =
n̂

∑
k=1

L(1/a1ei(− j+2k−1)π/n̂,
√

ρ)−L(a1ei( j+2k−3)π/n̂,
√

ρ) = 0,

for j = 1, . . . ,2n̂, since − j+2k−1 and j+2k−3 run from 0 to n̂−1 for fixed j and k = 1, . . . , n̂

with the periodicity ei(n̂)2π/n̂ = 1. We also have, using (B10), that

W1(ν j) =
n̂

∑
k=1

L(
√

ρ/a1ei(− j+2k−1)π/n̂,
√

ρ)−L(
√

ρa1ei( j+2k−3)π/n̂,
√

ρ) = 0,

for j = 2n̂+ 1, . . . ,4n̂. Since the function N(ζ ) satisfies the same properties as L(ζ ), we have

W3(ν j) = 0 for j = 1, . . . ,4n̂. Moreover, these zeros correspond to point vortices at the innermost

and outermost locations of the torus, i.e., θ j = 0 or π (in other words |ν j| = 1 or
√

ρ) for any j.

Hence, the stationary condition (36) is satisfied.

The situation in the annulus for n̂ = 2 and solutions parametrised by a1 is shown as a schematic

in figure 3(b). The streamline contours are projected onto the torus in figure 6 for (a) α = 2 and

(b) α = 3. We choose a1 = 0.9ei2π/3, b1 = ρ/a1, a2 =−a1 and b2 = ρ/a1. Four of the eight point

vortices and one of the four smooth centers are visible from the viewing angle in figure 6.

V. LIMIT SOLUTIONS

We can construct classes of “limit solutions” to the Liouville-type equation (5) by substituting

f (ζ ) = A(h(ζ )+C), where A ∈ R, A > 0 and C ∈ C are constants, into the stream function (15):

ψ(ζ ,ζ ) =−1
2

log
[

A|h′(ζ )|
1+A2|h(ζ )+C|2

]2

− 1
2

log
[

4|ζ |2

(α− cosθ)2

]
=+ log

[
1

A|h′(ζ )|
+A
|h(ζ )+C|2

|h′(ζ )|

]
− 1

2
log
[

4|ζ |2

(α− cosθ)2

]
.
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Note that since only |A| would appear in the stream function above, we can take A to be real and

non-negative without any loss of generality. By adding and subtracting the constant term logA and

taking the limits A→ 0 and A→ ∞, we obtain the following two limit solutions:

ψ0(ζ ,ζ ) = lim
A→0

[
ψ(ζ ,ζ )+ logA

]
=− log |h′(ζ )|− 1

2
log
[

4|ζ |2

(α− cosθ)2

]
, (39)

ψ∞(ζ ,ζ ) = lim
A→∞

[
ψ(ζ ,ζ )− logA

]
=− log

[
|h′(ζ )|
|h(ζ )+C|2

]
− 1

2
log
[

4|ζ |2

(α− cosθ)2

]
. (40)

When we act the Laplace-Beltrami operator ∇2
Tα

on these limit solutions, the first terms vanish

and the second terms become −κ(Tα). Moreover, they contain pole vortices with the strength

quantized by 2mπ , m ∈ Z, at poles and zeros of the functions h′(ζ ) and h(ζ )+C of degree m.

Hence, they are solutions of

∇
2
Tα

ψ =−κ(Tα)−
n

∑
j=1

Γjδν j , (41)

where n point vortices with the strength Γj exist at ν j for j = 1, . . . ,n. The vorticity distribution on

the toroidal surface is thus given by

−Ω =−κ(Tα)−
n

∑
j=1

Γjδν j . (42)

It indicates that the limit solutions represent flows of n point vortices embedded in the background

vorticity distribution κ(Tα). The Gauss condition is reduced to
x

Tα

Ω dσ =
n

∑
j=1

Γj = 0, (43)

in which the contribution from the nonlinear term e−2ψ is not included.

In what follows, as in Section 3, we consider two functions, i.e., the Weierstrass ℘ function

h(ζ )=℘(−i logζ ) and a loxodromic function h(ζ )=K(ζ/a)−K(ζ/b) for a,b∈Dζ as examples

of limit solutions.

A. Weierstrass ℘-function

Choosing h(ζ ) =℘(−i logζ ), the limit solution ψ0(ζ ,ζ ) given by (39) becomes

ψ0(ζ ,ζ ) =−
1
2

log
[

4|℘′(−i logζ )|2

(α− cosθ)2

]
. (44)

The derivative of the Weierstrass ℘-function, ℘′(z), has three simple zeros at z = ω1, ω2, ω3, and

a pole of degree three at ω0 = 0 (see §III). The stream function (44) thus contains three point
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vortices with strength Γk = +2π each, at νk = exp(iωk) for k = 1,2,3, and a point vortex with

strength Γ0 =−6π at ν0 = exp(iω0) = 1. Then the total point vortex circulation vanishes, namely

Γ0 +Γ1 +Γ2 +Γ3 = 0. Hence, the Gauss condition (43) is satisfied.

The stationary condition on the point vortices is checked for ζ = νk, k = 1,2,3 and ζ = ν0 sep-

arately, since the strengths of the point vortices are different. For the point vortices with strengths

Γk =+2π at ζ = νk, k = 1,2,3, we get from (23) (where m = 1)

ψ̃0(νk,νk) = lim
ζ→νk

(
−1

2
log
[

4|℘′(−i logζ )|2

(α− cosθ)2

]
+ log

[
(α− cosθk)

|νk|
|ζ −νk|

])
=− log2+2log(α− cosθk)−

1
2

log |νk|2−
1
2

lim
ζ→νk

log
∣∣∣∣℘′(−i logζ )−℘′(−i logνk)

ζ −νk

∣∣∣∣2
=− log2+2log(α− cosθk)−

1
2

log |℘′′(−i logνk)|2.

Hence, it follows from (12) that

νk
∂

∂νk
ψ̃0(νk,νk) =−sinθk +

i
2

℘′′′(−i logνk)

℘′′(−i logνk)
= 0, k = 1,2,3,

owing to (A2) and θ1 = θ2 = π , θ3 = 0. For the point vortex at ζ = ν0 = 1 with strength Γ0 =−6π ,

we get using (23) (with m =−3),

ψ̃0(ν0,ν0) = lim
ζ→ν0

(
−1

2
log
[

4|℘′(−i logζ )|2

(α− cosθ)2

]
−3log

[
(α− cosθ0)

|ν0|
|ζ −ν0|

])
=− log2−2log(α− cosθ0)+3log |ν0|− lim

ζ→ν0
log |(ζ −ν0)

3
℘
′(−i logζ )|

=−2log2−2log(α− cosθ0).

Here, we have used (A4) to calculate

lim
ζ→ν0

log |(ζ −ν0)
3
℘
′(−i logζ )|= lim

ζ→ν0
log
∣∣∣∣− 2ν3

0 (ζ/ν0−1)3

(−i log(ζ/ν0))3 (1+o(−i logζ )3)

∣∣∣∣= log |2ν
3
0 |.

Hence, we obtain

ν0
∂

∂ν0
ψ̃0(ν0,ν0) = sinθ0 = 0.

Consequently, the stream function ψ0(ν0,ν0) gives rise to a stationary solution of the Euler equa-

tion. It is important to notice that it contains the quantized point vortices with the different

strengths at the innermost and the outermost locations.

The other limit solution ψ∞(ζ ,ζ ) is given by

ψ∞(ζ ,ζ ) =−
1
2

log
[

4
(α− cosθ)2

|℘′(−i logζ )|2

|℘(−i logζ )+C|4

]
. (45)
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Since ℘(z) has a double pole at z = ω0 = 0, the equation ℘(z) +C = 0 has two zeros, say at

z = ω̂1 and ω̂2. Hence, the solution contains four point vortices at νk = exp(iωk) with strengths

Γk =+2π for k = 0,1,2,3. There are two additional point vortices at ν̂k = exp(iω̂k) with strengths

Γ̂k = −4π for k = 1,2. Hence, the total circulation satisfies ∑
4
k=1 Γk +∑

2
k=1 Γ̂k = 0. Hence, the

Gauss condition (19) holds true.

We confirm if the stationary condition is satisfied by these six point vortices. First, consider

the point vortices with strength Γk = +2π at ζ = νk = exp(iωk), k = 1,2,3. These point vortices

are located at the zeros of ℘′(−i logζ ) and the modified stream function (23) in this case is (with

m = 1)

ψ̃∞(νk,νk) = lim
ζ→νk

(
−1

2
log
[

4
(α− cosθ)2

|℘′(−i logζ )|2

|℘(−i logζ )+C|4

]
+ log

[
(α− cosθk)

|νk|
|ζ −νk|

])
= − log2+2log(α− cosθk)+ log |℘(−i logνk)+C|2

− 1
2

lim
ζ→νk

log
∣∣∣∣νk(℘

′(−i logζ )−℘′(−i logνk))

ζ −νk

∣∣∣∣2
=− log2+2log(α− cosθk)+ log |℘(−i logνk)+C|2− 1

2
log
∣∣℘′′(−i logνk)

∣∣2 .
We can see that the stationary condition is satisfied:

νk
∂

∂νk
ψ̃∞(νk,νk) =−sinθk− i

℘′(−i logνk)

℘(−i logνk)+C
+

i
2

℘′′′(−i logνk)

℘′′(−i logνk)
= 0,

using (A2) and θk = 0 or π for k = 1,2,3. Second, for the point vortex with the strength Γ0 =+2π

at ζ = ν0 = 1, we have (again with m = 1)

ψ̃∞(ν0,ν0) = lim
ζ→ν0

(
−1

2
log
[

4
(α− cosθ)2

|℘′(−i logζ )|2

|℘(−i logζ )+C|4

]
+ log

[
(α− cosθ0)

|ν0|
|ζ −ν0|

])
=− log2+2log(α− cosθ0)−

1
2

lim
ζ→ν0

log
∣∣∣∣ ν0℘

′(−i logζ )

(ζ −ν0)(℘(−i logζ )+C)2

∣∣∣∣2
=−2log2+2log(α− cosθ0),

since using (A3) and (A4) we find

lim
ζ→ν0

log
∣∣∣∣ ν0℘

′(−i logζ )

(ζ −ν0)(℘(−i logζ )+C)2

∣∣∣∣2 = lim
ζ→ν0

log

∣∣∣∣∣
(

2i log(ζ/ν0)

ζ/ν0−1

)2

(1+o(−i logζ ))

∣∣∣∣∣= log4.

From this, we find that the stationary condition is satisfied: ν0
∂

∂ν0
ψ̃∞(ν0,ν0) =−sinθ0 = 0.

Lastly, the point vortices at ζ = ν̂k = exp(iω̂k) with℘(ω̂k)+C = 0 and |ν̂k|= exp(rc(θ̂k)) have

the same strength Γ̂k = −4π for k = 1,2. The modified stream function (23) in this case is given
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by (with m =−2)

ψ̃∞(ν̂k, ν̂k) = lim
ζ→ν̂k

(
−1

2
log

[
4

(α− cos θ̂k)2

|℘′(−i logζ )|2

|℘(−i logζ )+C|4

]
−2log

[
(α− cos θ̂k)

|ν̂k|
|ζ − ν̂k|

])

=− log2− log(α− cos θ̂k)− log |℘′(−i log ν̂k)|+ lim
ζ→ν̂k

log
∣∣∣∣ ν̂k(℘(−i logζ )+C)

ζ − ν̂k

∣∣∣∣2
=− log2− log(α− cos θ̂k)+ log |℘′(−i log ν̂k)|.

Here we have used

lim
ζ→ν̂k

log
∣∣∣∣ ν̂k(℘(−i logζ )+C)

ζ − ν̂k

∣∣∣∣2 = lim
ζ→ν̂k

log
∣∣∣∣ ν̂k(℘(−i logζ )−℘(−i log ν̂k))

ζ − ν̂k

∣∣∣∣2
= log |℘′(−i log ν̂k)|2.

Hence, the stationary condition is reduced to

H(ν̂k)≡ ν̂k
∂

∂ ν̂k
ψ̃∞(ν̂k, ν̂k) =

sin θ̂k

2
− i

2
℘′′(−i log ν̂k)

℘′(−i log ν̂k)
= 0, k = 1,2.

Let us now suppose that C is real. Since ℘ is even, i.e., ℘(z) =℘(−z), it follows that 0 =

℘(ω̂1)+C =℘(−ω̂1)+C, and so ω̂2 = −ω̂1. We then have H(ν̂1) = −H(ν̂2) since using ω̂2 =

−ω̂1 we first get

℘
′(ω̂2) =℘

′(−ω̂1) =−℘
′(ω̂1) =⇒ ℘

′′(ω̂2) =℘
′′(−ω̂1) =℘

′′(ω̂1),

and also θ̂2 = 2π− θ̂1. It is thus sufficient to confirm that H(ν̂1) = 0. We first show that θ̂1 = π .

The double periodicity of ℘(z) gives a formula for ω̂2:

℘(ω̂2) =℘(−ω̂1) =℘(2ω1 +2ω3− ω̂1) =⇒ ω̂2 = 2ω1 +2ω3− ω̂1 ∈ Dz, (46)

for ω̂1 ∈ Dz. The series expansion for ℘(ω1 + z) near z = 0 is given by

℘(ω1 + z) =℘(ω1)+
z2

2
℘
′′(ω1)+

z4

4!
℘

(4)(ω1)+ · · ·

where the odd derivative terms must be zero because of the z 7→ −z symmetry ℘(ω1 + z) =

℘(−ω1− z) =℘(2ω1−ω1− z) =℘(ω1− z). In addition, since all the even derivatives ℘(2k)(ω1)

are real, we have ℘(ω1− z) =℘(ω1 + z). Choosing the point z = ω1− ω̂1, we obtain another

formula for ω̂2:

0 =℘(ω̂1)+C =℘(2ω1− ω̂1)+C =℘(2ω1− ω̂1)+C =⇒ ω̂2 = 2ω1− ω̂1. (47)

27



0 :
2 : 3:

2 2:
0

:
2

:

3:
2

2:
(a) , =3, A = 0

0 :
2 : 3:

2 2:
0

:
2

:

3:
2

2:
(b) , =3, A = 1

Poloidal angle, 0 5 3 < 2:

T
or

o
id

a
l
a
n
g
le
,
0
5
?

<
2
:

FIG. 7. Streamline contour plots with embedded point vortices (+,�, ) with inhomogeneous strengths in

(a) the A = 0 limit (44) and (b) the A = ∞ limit (45).

Equating the two formulas (46) and (47) for ω̂2 we obtain 2ω1− ω̂1 = 2ω1 + 2ω3− ω̂1, which

reduces to Im ω̂1 = −iω3 = −1
2 logρ . It follows from Im ω̂1 = −rc(θ̂1) = − log

√
ρ that θ̂1 = π .

For the second term in H(ν̂1), we use the formula (A5) and ℘(ω̂1)+C = 0 to get

|℘′(ω̂k)|2 = |4(C+ e1)(C+ e2)(C+ e3)| 6= 0 and ℘
′′(ω̂1) =−6C− 1

2
(e2

1 + e2
2 + e2

3).

Accordingly, if we choose C = − 1
12(e

2
1 + e2

2 + e2
3), then ℘′′(ω̂1) = 0, and we get a stationary

solution.

Figure 7 shows the streamline patterns in the two limiting cases. The vorticity in the limiting

case A = 0 (panel (a)) consists of three positive point vortices (+) with circulations +2π each,

together with one negative point vortex (�) with circulation −6π , so that the total circulation is

zero. In the limiting case A = ∞ (panel (b)) there are four point vortices (+) with circulations

+2π each and two negative vortices ( ) with circulations −4π each. The limiting solutions in

both panels (a) and (b) thus contain point vortices of inhomogeneous strengths. The locations of

the negative point vortices in panel (b) show rotational asymmetry in the toroidal direction. The

background vorticity is due solely to the curvature term κ(Tα) and does not contribute to the total

circulation. This background vorticity is not shown in the figure.
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B. Loxodromic function

We can also obtain limiting solutions by substituting loxodromic functions for h(ζ ) in (39) and

(40). Taking h(ζ ) = K(ζ/a,
√

ρ)−K(ζ/b,
√

ρ) for a,b ∈ Dζ in (39), the limiting solution ψ0 is

ψ0(ζ ,ζ ) =−
1
2

log
[

4|L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ)|2

(α− cosθ)2

]
. (48)

The four solutions of L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ) = 0 are ζ = νk =±
√

ab,±
√

ab/ρ , k = 1,2,3,4

(see §IV A), so that there are four point vortices at these points, each with strength +2π . In

addition, it follows from (B9) that the function L(ζ/a,
√

ρ)− L(ζ/b,
√

ρ) has double poles at

ζ = a and ζ = b. Hence, the stream function (48) also contains two point vortices at ζ = a,b, each

with strength −4π , and the total circulation of these six point vortices therefore vanishes. That is

to say, the Gauss condition (43) is satisfied.

We confirm the stationary condition separately for the point vortices at ζ = νk and at ζ = a,b.

For the four point vortices with strength +2π at ζ = νk, k = 1,2,3,4, the modified stream function

is (using m = 1 in (23))

ψ̃0(νk,νk) = lim
ζ→νk

(
−1

2
log
[

4|L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ)|2

(α− cosθ)2

]
+ log

[
(α− cosθk)

|νk|
|ζ −νk|

])
=− log2+2log(α− cosθk)−

1
2

log |M(νk/a,
√

ρ)−M(νk/b,
√

ρ)|2,

where rc(θk) = log |νk|. We thus have the stationary condition

νk
∂

∂νk
ψ̃0(νk,νk) =−sinθk−

1
2

N(νk/a,
√

ρ)−N(νk/b,
√

ρ)

M(νk/a,
√

ρ)−M(νk/b,
√

ρ)
=−sinθk = 0,

since the zeros νk also satisfy N(νk/a,
√

ρ)−N(νk/b,
√

ρ) = 0 due to (B10) and (B12). Hence,

the stationary condition is reduced to θk = 0 or π . For the point vortex at ζ = a with strength−4π ,

the modified stream function (23) is given by (taking m =−2)

ψ̃0(a,a) = lim
ζ→a

(
−1

2
log
[

4|L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ)|2

(α− cosθ)2

]
−2log

[
(α− cosθa)

|a|
|ζ −a|

])
=− log2− log(α− cosθa)+2log |a|− lim

ζ→a
log |(ζ −a)2(L(ζ/a,

√
ρ)−L(ζ/b,

√
ρ))|

=− log2− log(α− cosθa).

Here log |a| = rc(θa), and we have used (ζ − a)2(L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ))→−a2 as ζ → a,

which follows from (B9). Hence, we get the stationary condition

a
∂

∂a
ψ̃0(a,a) =

1
2

sinθa = 0,
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FIG. 8. Streamline contour plots with embedded point vortices (+, ) for the limiting stream function (48).

which shows that θa = 0 or π . In the same way, we can also show that for the point vortex at b,

we must have θb = 0 or π (θb is defined by log |b|= rc(θb)).

Thus, in order for the stream function to be a steady solution, we need all six point vortices

to be on the circles |ζ | = 1 or
√

ρ . If we choose |a| = |b| = 1 or |a| = |b| = √ρ , then we also

have |νk|= 1 or
√

ρ and the necessary conditions for the vortices to be stationary are satisfied. An

example is the choice a = i, b = −i which leads to ν1 = 1, ν2 = −1, ν3 =
√

ρ and ν4 = −√ρ .

Note that the situation for the stream function ψ0 is somewhat different from the case of n̂ = 1

discussed in §IV A, as the point vortex stationary conditions impose further conditions on a and b.

Figure 8 shows example solutions in the limit A = 0. In (a) we choose a1 = i and b1 = −i

and in (b) we choose a1 = eiπ/3 and b1 = ei2π/3. There are four positive point vortices (+) with

circulations +2π each and two negative point vortices ( ) of circulations −4π each, so that the

total circulation is zero. Only the curvature term contributes to the background vorticity and is not

shown in the figure.

We now turn to a description of the other limiting solution ψ∞ given by (40). Taking h(ζ ) =

K(ζ/a,
√

ρ)−K(ζ/b,
√

ρ) for a,b ∈ Dζ with a 6= b, we get

ψ∞(ζ ,ζ ) =−
1
2

log
[

4
(α− cosθ)2

|L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ)|2

|K(ζ/a,
√

ρ)−K(ζ/b,
√

ρ)+C|4

]
. (49)

The stream function ψ∞ contains point vortices with strength +2π at the four zeros νk = ±
√

ab,

±
√

ab/ρ of L(ζ/a,
√

ρ)− L(ζ/b,
√

ρ), k = 1,2,3,4. It also contains two point vortices with

strength −4π at the two zeros, say ν̂k, k = 1,2, of h(ζ ) +C. Note that the poles of h(ζ ), at
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ζ = a,b, are removable. Since the total circulation vanishes, the Gauss condition (21) is satisfied

Turning to the stationary condition for the six point vortices, we first consider the four point

vortices with strength +2π at νk, k = 1,2,3,4. The modified stream function (23) is given by (with

m = 1)

ψ̃∞(νk,νk) = lim
ζ→νk

(
−1

2
log
[

4
(α− cosθ)2

|L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ)|2

|K(ζ/a,
√

ρ)−K(ζ/b,
√

ρ)+C|4

]
+ log

(α− cosθk)

|νk|
|ζ −νk|

)
= − log2+2log(α− cosθk)+ log |K(νk/a,

√
ρ)−K(νk/b,

√
ρ)+C|2

− 1
2

log |M(νk/a,
√

ρ)−M(νk/b,
√

ρ)|2,

where rc(θk) = log |νk|. Hence, the stationary condition is given by

νk
∂

∂νk
ψ̃∞(νk,νk) = − sinθk +

L(νk/a,
√

ρ)−L(νk/b,
√

ρ)

K(νk/a,
√

ρ)−K(νk/b,
√

ρ)+C

− 1
2

N(νk/a,
√

ρ)−N(νk/b,
√

ρ)

M(νk/a,
√

ρ)−M(νk/b,
√

ρ)

=−sinθk = 0,

where we have used (B10) and (B12). The stationary condition is once again reduced to θk = 0 or

π , which is equivalent to |νk|= 1 or
√

ρ .

Next, for the point vortices with strength −4π at the zeros ζ = ν̂k satisfying

h(ζ )+C = K(ν̂k/a,
√

ρ)−K(ν̂k/b,
√

ρ)+C = 0, (50)

we have (using m =−2 in (23))

ψ̃∞(ν̂k, ν̂k) = lim
ζ→ν̂k

(
−1

2
log
[

4
(α− cosθ)2

|L(ζ/a,
√

ρ)−L(ζ/b,
√

ρ)|2

|K(ζ/a,
√

ρ)−K(ζ/b,
√

ρ)+C|4

]
−2log

(α− cos θ̂k)

|ν̂k|
|ζ − ν̂k|

)
=− log2− log(α− cos θ̂k)+

1
2

log |L(ν̂k/a,
√

ρ)−L(ν̂k/b,
√

ρ)|2,

where log |ν̂k|= rc(θ̂k). This gives rise to the following stationary condition,

ν̂k
∂

∂ ν̂k
ψ̃∞(ν̂k, ν̂k) =

1
2

sin θ̂k +
1
2

M(ν̂k/a,
√

ρ)−M(ν̂k/b,
√

ρ)

L(ν̂k/a,
√

ρ)−L(ν̂k/b,
√

ρ)
.

Hence, we need to check if

sin θ̂k +
M(ν̂k/a,

√
ρ)−M(ν̂k/b,

√
ρ)

L(ν̂k/a,
√

ρ)−L(ν̂k/b,
√

ρ)
= 0 (51)
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FIG. 9. Streamline contour plots for the limiting stream function (49). In this case there are four point

vortices with circulations +2π each (+), and two point vortices with circulations −4π each ( ) making the

total circulation zero. The background vorticity due to κ(Tα) is not shown.

for given a, b and C.

When we take a = 1, b = −1 and C = 0 for instance, we have six point vortices at νk = ±i,

±i
√

ρ and ν̂k =±
√

ρ . The zeros ν̂k can be obtained by noting that K(±√ρ,
√

ρ) = 0 due to (B3).

Since |ab| = 1, the point vortices at νk with strengths +2π are stationary. The point vortices at

ν̂k with the strength −4π satisfy (51), since θ̂k = π and M(±√ρ,
√

ρ) = 0 due to (B11). This

example is shown in figure 9. Note that it is not easy to obtain point vortex equilibria for other

choices of a, b and C, since (50) and (51) give rise to three complex equations for two complex

numbers, which is over-determined in general.

VI. SUMMARY AND DISCUSSION

We have constructed a class of vortex solutions to the modified Liouville equation (5) on the

surface of a curved torus, in which point vortices are in equilibrium with a fixed background

vorticity. The non-trivial part of the background vorticity is exponentially related to the stream

function, and this allows us to construct stationary point vortex configurations with the strengths

of the embedded point vortices being quantized. The Liouville solutions are regarded as equilibria

of the point-vortex system (22) in the sense of the one-way interaction model discussed in §I. They
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are not stationary solutions to the incompressible Euler equation, since the background Liouville-

type vorticity (5) is not a functional of the stream function ψ . This is in contrast to the solutions of

the Liouville-type equation in the plane (Krishnamurthy et al., 2019) and on the sphere (Crowdy,

2004) providing steady solutions of the Euler equation.

Various solutions can be constructed by making different choices for the analytic function in

the Liouville solution (15). We have chosen such functions in terms of the Weierstrass ℘-function

and in terms of the Schottky–Klein prime function on an annulus. We also find limiting solu-

tions in which the background Liouville-type vorticity can be turned off, leaving a set of quan-

tized point vortices in equilibrium with only the background vorticity due to the curvature of the

torus. The examples discussed show several interesting features of the solutions. The point vortex

strengths are all equal and of the same sign for solutions containing both point vortices and the

background Liouville-type vorticity. There are also regions of concentrated but smooth vorticity,

which can move around smoothly as some parameter is varied, while the point vortex positions

are independent of the parameter. In the limiting cases, we get point vortices with quantized but

inhomogeneous strengths with some of the solutions lacking rotational symmetry. We find that the

curvature of the torus restricts the poloidal locations of the point vortices to the innermost (θ = 0)

and outermost (θ = π) circles of the torus. This restriction originating from the curvature shows

up in the point vortex stationary condition as the sinθ term, for example in (35).

In the planar case, point vortex equilibria with no background vorticity have been shown to be

closely related to the Liouville-type equation (3) (Krishnamurthy et al., 2020). These ‘pure’ point

vortex equilibria were obtained as limiting solutions. The limiting solutions that we find in §V

result in quantized point vortex equilibria on the torus, but embedded in background vorticity due

to the curvature of the torus. More general families of solutions called “Liouville chains” have

been found in the planar case (Krishnamurthy et al., 2021), finding such iterated solutions on the

torus is an open problem. One important difference between the planar case and the torus is the

absence of the Gauss condition in the former. We can also consider the problem on other manifolds

such as a sphere. Since the Euler characteristic of a sphere is non-zero, the curvature term affects

the Gauss condition differently. The point vortex stationary condition is however simpler in the

case of a sphere due to its constant curvature.

A two-way interaction model has been considered by Newton and Sakajo (2007) in the numer-

ical computation of point vortices embedded in a continuous background vorticity corresponding

to solid body rotation on a sphere. They discretize the background vorticity distribution into a
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collection of strips of constant vorticity and tracked the evolutions of these strips and the point

vortices simultaneously. For the case of an intially rigidly rotating ring of point vortices embed-

ded in the background, they observe the formation of Rossby waves in the solution, which destroy

the ring structure of the point vortex equilibria.

We can consider a similar two-way interaction model on the torus with a set of quantized point

vortices embedded in a Liouville-type background vorticity distribution. It must be noted here that

numerical solution of the Euler equation on a torus is itself a challenging problem. Since the two-

way interaction model is a useful discretization of Euler flow on a rotating sphere (Newton and

Sakajo, 2007), it is interesting to ask whether such a model can be considered on the torus. The

solutions obtained here can be used as computationally convenient initial vorticity distributions

for a two-way interaction model on the surface of a torus. Such investigations will be reported in

the future.
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Appendix A: The Weierstrass ℘ function.

In this appendix, we provide a short review of the doubly periodic Weierstrass℘ function using

formulae provided in the handbook of Abramowitz and Stegun (1992). Consider the fundamental
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domain Dz, in a complex z-plane, over which ℘(z) is defined:

Dz = {z ∈ C |05 Re(z)< 2π,− logρ < Im(z)5 0}. (A1)

Here ρ ∈ R, 0 < ρ < 1 is a parameter and the half periods of ℘(z), ω1 and ω3, are given by

ω1 = π and ω3 =− i
2 logρ . We first note that the derivative of |℘(z)| is also doubly periodic, since

℘′(z)2 = (℘(z)− e1)(℘(z)− e2)(℘(z)− e3) for some constants e1,e2,e3 ∈ C. Second, ℘(z) has

a double pole at z = 0≡ ω0 and its derivative ℘′(z) has three simple zeros, one each at the points

of half periods z = ω1, ω3, and one at the center of the fundamental domain z = ω2 = ω1 +ω3 =

π − i
2 logρ . The following useful formula shows that the third derivative ℘′′′(z) also vanishes at

the points ωk:

℘
′′′(ωk) = 12℘(ωk)℘

′(ωk) = 0, k = 1,2,3. (A2)

Finally, the ℘-function admits a Laurent series expansion in the neighborhood of the origin:

℘(z) =
1
z2 + c2z2 + c3z4 + · · ·= 1

z2 (1+o(z3)), z→ 0, (A3)

for some non-zero constants c2 and c4. Thereby the derivative is represented by

℘
′(z) =− 2

z3 +2c2z+4c3z3 + · · ·=− 2
z3 (1+o(z3)), z→ 0. (A4)

We have the standard definition ℘(ωk) = ek ∈ R, k = 1,2,3, with e1 > 0 > e3 and e1 > e2 > e3.

We recall the formulas

(℘′(z))2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3), ℘
′′(z) = 6℘(z)− 1

2
(e2

1 + e2
2 + e2

3). (A5)

Appendix B: Schottky–Klein prime functions

The Schottky-Klein prime function is a special function defined on multiply-connected circular

domains (Crowdy, 2020). The prime function defined on the annulus Dζ = {ζ ∈C |ρ < |ζ |5 1},

is essentially the P-function given by the infinite product:

P(ζ ,
√

ρ) = (1−ζ )
∞

∏
k=1

(1−ρ
k
ζ )(1−ρ

k/ζ ). (B1)

Note that P(ζ ,
√

ρ) has a simple zero in Dζ , at ζ = 1. The K-function defined in terms of the

logarithmic derivative of P(ζ ,
√

ρ) is

K(ζ ,
√

ρ) =
ζ P′(ζ ,

√
ρ)

P(ζ ,
√

ρ)
. (B2)
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Here, the prime denotes derivatives with respect to the first argument, thus P′(ζ ,
√

ρ) =
dP(ζ ,

√
ρ)

dζ
.

It can be verified from these definitions that the K-function satisfies the useful identity

K(ρζ ,
√

ρ) = K(ζ ,
√

ρ)−1 =−K(1/ζ ,
√

ρ). (B3)

Further, we can deduce the infinite series formula

K(ζ ,
√

ρ) =
ζ

ζ −1
+

∞

∑
k=1

(
−ρkζ

1−ρkζ
+

ρk/ζ

1−ρk/ζ

)
=

1
ζ −1

+O(1) as ζ → 1, (B4)

showing that K(ζ ,
√

ρ) has a simple pole singularity at ζ = 1.

We can define further functions via derivatives. The L, M, and N-functions are defined by

L(ζ ,
√

ρ) = ζ K′(ζ ,
√

ρ), (B5)

M(ζ ,
√

ρ) = ζ L′(ζ ,
√

ρ), (B6)

N(ζ ,
√

ρ) = ζ M′(ζ ,
√

ρ). (B7)

The infinite series expansion for the L-function can be worked out using (B4) and (B5) to be

L(ζ ,
√

ρ) =− ζ

(ζ −1)2 −
∞

∑
k=1

(
ρkζ

(1−ρkζ )2 +
ρk/ζ

(1−ρk/ζ )2

)
, (B8)

showing that it has a double pole at ζ = 1, since

L(ζ ,
√

ρ) =− 1
(ζ −1)2 −

1
ζ −1

+O(1) as ζ → 1. (B9)

The following important properties of the L-function can be proven using (B8):

L(ζ ,
√

ρ) = L(ρζ ,
√

ρ) = L(1/ζ ,
√

ρ). (B10)

The properties of the M-function can be found by taking derivatives of (B10). We find

M(ζ ,
√

ρ) = M(ρζ ,
√

ρ) =−M(1/ζ ,
√

ρ). (B11)

Then from (B11), we can find the properties of the N-function:

N(ζ ,
√

ρ) = N(ρζ ,
√

ρ) = N(1/ζ ,
√

ρ). (B12)

These properties show that the L, M and N-functions are all loxodromic functions, i.e. they are

unchanged under ζ 7→ ρζ . Further, the L and N-functions are unchanged under ζ 7→ 1/ζ , whereas

the M-function picks up a minus sign under this mapping.

We finally mention that for the purpose of numerical computations, the above special functions

are all evaluated using a rapidly convergent Laurent series for the prime function in the annulus,

see Crowdy (2010, 2020) for details.
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