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Abstract. The material conservation of vorticity in fluid flows confined to

a thin layer on the surface of a large rotating sphere, is a central result of
geophysical fluid dynamics. In this paper we revisit the conservation of vorticity

in the context of global scale flows on a rotating sphere. Starting from the

vorticity equation instead of the Euler equation, we examine the kinematical
and dynamical assumptions that are necessary to arrive at this result. We

argue that, in contrast to the planar case, a two-dimensional velocity field does

not lead to a single component vorticity equation on the sphere. The shallow
fluid approximation is then used to argue that only one component of the

vorticity equation is significant for global scale flows. Spherical coordinates are

employed throughout, and no planar approximation is used.

1. Introduction. The evolution of the vorticity field in a fluid flow is governed by
the dynamical vorticity equation, and understanding the behavior of the vorticity
often provides crucial information about the nature of the flow [1, 2]. The material
conservation of vorticity [18] plays a crucial role in our understanding of many
geophysical flows of interest [6, 3], see [21, 20, 16, 19] for some recent studies in
this regard. The vorticity equation is obtained by eliminating the pressure (or
geopotential) terms from the Euler equations, which are the governing equations of
fluid flow. An alternative formulation is the streamfunction-vorticity formulation of
the equations of motion [2], which also forms the basis for numerical approaches to
geophysical problems [4]. The theoretical importance of vorticity may be contrasted
with the fact that the vorticity is usually calculated from velocity measurements,
rather than being measured directly [4]. In this paper, we focus on the vorticity
equation itself, for a discussion of vortex solutions in geophysical flows, see [12], for
a discussion of vortex motion on a sphere see [8, 10].

In the context of geophysical flows, the earth can be considered to be a sphere
with a radius equal to the mean radius of the oblate spheroidal earth, R ≈ 6368 km [3,
4, 5]. A spherical coordinate system is a natural choice to describe flows on the
surface of the earth. For an early study utilising spherical coordinates to study
waves on a rotating sphere see [11], and for more recent studies with applications
to geophysical flow features such as the Equatorial Undercurrent and the Antarctic
Circumpolar Current, see [21, 22]. We are mostly concerned with application of
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our discussion of the vorticity equation to large scale, global flows in the ocean,
and for such flows the horizontal velocity scales are taken to be U = 0.1 m/s [3, 4].
We can calculate the time scale T from the global length scale R and the velocity
scale U to be T = R/U = 6.368× 107 s, or equivalently T ≈ 2.02 years. This is in
agreement with the time scale corresponding to the large scale motions (eg. gyres)
in the ocean [5]. The earth rotates with an angular velocity Ω = 7.29× 10−5 rad/s
which corresponds to the duration of a sidereal day [4]. We evaluate below a few
numbers for later use in this paper. This first set of numbers is valid for large scale
flows in the ocean:

U2

R2
= 2.46× 10−16 s−2 and

UΩ

R
= 1.14× 10−12 s−2. (1)

If we consider large scale flows in the atmosphere, then the velocity scale changes
to Ua = 10 m/s [3], and the time scale changes to Ta = 6.638 × 105 s ≈ 7.4 days.
This time scale is in accordance with the time scale for large scale motions in the
atmosphere (eg. cyclones) [4]. The numbers in (1) become

U2
a

R2
= 2.46× 10−12 s−2 and

UaΩ

R
= 1.14× 10−10 s−2. (2)

The ratios of different length scales in geophysical flows are of central importance
in theoretical analyses. Let H = 10 km be the typical vertical (i.e. radial) length
scale for both oceanic and atmospheric flows. We can use the same length scale in
both cases since, the average depth of the oceans is O(10 km) (and not o(10 km)),
and the height of the atmospheric layer relevant to weather phenomena is also
O(10 km) [4, 5]. The length scale H is much smaller than the radius of the earth
R. We define the shallow fluid approximation as the case when in an expansion of
the small parameter

ε ≡ H

R
≈ 1.57× 10−3, (3)

we only retain terms of the leading order. The large scale flow of a fluid on the sur-
face of a stationary or rotating sphere can effectively be regarded as two-dimensional
(2D) flow due to the smallness of ε. The flow of water and air in the earth’s oceans
and atmosphere is a prototypical example of such flows.

For our purposes, we consider the fluid flow to be incompressible since, the vari-
ation of density in the ocean is very small, as is the variation in density in the
first 10 km of the atmosphere above the surface of the earth [4, 5]. The effects of
viscosity are neglected throughout this paper since the relevant Reynolds number
is very large, O(1010), and the Ekman number is very small, O(10−15).

This paper is organised as follows. We consider first fluid flow on the surface of
a stationary sphere in §2. We discuss the general vorticity equation in an inertial
reference frame in §2.1 and consider the two-dimensional planar vorticity equation
in §2.2. In §2.3, we consider 2D flows on a stationary sphere and obtain the required
form of the velocity field and the corresponding vorticity equation. We introduce
scaling arguments to neglect the horizontal (i.e. zonal and meridional) components
of the vorticity equation. In §3, we discuss fluid flow on the surface of a rotating
sphere. The vorticity equation for flow in a non-inertial reference frame is discussed
in §3.1 and 2D flow on a rotating sphere is considered in §3.2, once again making
use of scaling arguments. The streamfunction-vorticity formulation of the governing
equations is derived in §4. An appendix with vector calculus identities and their
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application to vector calculus algebra in spherical coordinates has been provided at
the end. These identities are used throughout the rest of this paper.

2. Flow on the surface of a stationary sphere.

2.1. Vorticity equation for flow in an inertial reference frame. Consider
the three-dimensional (3D) flow of an inviscid fluid in an inertial frame of reference.
We use vector notation and take the position vector in the inertial frame to be
denoted by r, time by t, the density of the fluid by ρ = ρ(r, t), the velocity field by
u = u(r, t), the pressure field by p = p(r, t) and the body forces acting on the fluid
(per unit mass of the fluid) by F = F (r, t). The slight abuse of notation committed
here by providing the same names to variables and their corresponding functions
should not cause any confusion. Conservation of momentum for this fluid flow takes
the form of the Euler equation

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ F , (4)

and conservation of mass takes the form of the ‘continuity equation’

∂ρ

∂t
+∇ · (ρu) = 0. (5)

Here ∇ is the gradient operator in three dimensions. The reader may consult
the standard textbooks of fluid dynamics for derivation and discussion of these
formulas [1, 2].

We denote the material derivative operator i.e. the derivative following a fluid
element, by

D

Dt
=
∂

∂t
+ (u · ∇). (6)

The material derivative may act on any scalar or vector quantity of interest. We
can rewrite (4) in terms of the material derivative as

Du

Dt
= −∇p

ρ
+ F , (7)

with the material derivative acting on the velocity field in this case. We can also
rewrite (5) using (6) and (A.1c) as

Dρ

Dt
+ ρ∇ · u = 0, (8)

with the material derivative acting on the density field in this case.
The vorticity field ω = ω(r, t) for a fluid flow is defined as

ω =∇× u, (9)

and has the interpretation of being twice the local angular velocity in the fluid [2].
An equation of motion for the vorticity field may be derived by taking the curl of
(4). Assuming that the derivatives are continuous allows us to apply the curl and
the time derivative interchangeably, and we get

∂ω

∂t
+∇× (u · ∇)u = −∇×

(
∇p
ρ

)
+∇× F , (10)
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Using the standard vector calculus identities (A.1) we can rewrite some of the terms
in this equation as

∇× (u · ∇)u =∇×
[

1

2
∇(u · u) + ω × u

]
(11a)

=∇× (ω × u) (11b)

= (u · ∇)ω − (ω · ∇)u + ω(∇ · u), (11c)

−∇×
(
∇p
ρ

)
=
∇ρ×∇p

ρ2
. (11d)

Substituting into (10), we obtain the vorticity equation in an inertial frame of
reference:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u + ω(∇ · u) =

∇ρ×∇p
ρ2

+∇× F . (12)

The basic texts [1, 2, 3] may be consulted for discussion and interpretation of the
various terms in the vorticity equation.

We can simplify the vorticity equation if we assume that the fluid is incompress-
ible, barotropic and is acted on only by conservative body forces such as gravity.
Since the fluid is incompressible the density of every fluid element is constant i.e.
Dρ/Dt = 0, and the continuity equation (8) takes the form

∇ · u = 0. (13)

As stated in §1, we neglect the effects of density stratification throughout this pa-
per. In this case the continuity equation reduces to the incompressibility condition
(13) [3]. The fluid is said to be barotropic [3] if the pressure and density fields
satisfy a relationship of the form p = p(ρ) at every point in the flow, in which case
we will have

∇ρ×∇p = 0. (14)

Fluid flows in which (14) is not satisfied are said to be baroclinic, and are associated
with the production of vorticity [5]. In this paper, we are interested in the evolution
of vorticity, and so consider the fluid to be barotropic. If the body forces acting
on the fluid are conservative (such as gravity and the centrifugal force), then by
definition we will have

∇× F = 0. (15)

Substituting (13), (14) and (15) into (12) we get the vorticity equation for the flow
of an incompressible, barotropic fluid, acted on by conservative body forces, in the
form [1, 2]

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = 0. (16)

2.2. Two-dimensional planar flow. The vorticity equation (16) simplifies fur-
ther if we consider two-dimensional (2D) flows. Let us first consider a globally
planar 2D flow. Let the flow be described by the Cartesian co-ordinate system
(x, y, z) with unit vectors (ex, ey, ez). The velocity field for a planar 2D flow can
be defined in Cartesian coordinates as

u = u(x, y, t) ex + v(x, y, t) ey, (17)
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Figure 1. A spherical co-ordinate system (r, θ, φ), with θ being
the polar angle (or colatitude) and φ (azimuth) defined with respect
to the x-axis of the corresponding Cartesian system (x, y, z). In this
paper, we consider a stationary sphere, as well as a rotating sphere
with angular velocity Ω = Ωez.

where u and v are respectively the x- and y-components of the velocity. These com-
ponents are independent of the z-coordinate since the flow is 2D. The corresponding
vorticity field can be obtained from (9) as

ω = ζ(x, y, t) ez =

(
∂v

∂x
− ∂u

∂y

)
ez, (18)

and hence for such a 2D planar flow the vorticity has only one non-zero component
viz. ζ(x, y, t), that is everywhere perpendicular to the velocity field. The vorticity
equation (16) in this case has a single non-zero component (the ez component):

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= 0, (19)

so that the vorticity equation is a transport equation for ζ(x, y, t). Indeed (19) is
equivalent to

Dζ

Dt
= 0, (20)

which shows the dynamical conservation of vorticity of every fluid particle in planar
2D flow [1, 2].

2.3. 2D flow on a stationary sphere. If we consider a 2D fluid flow which is not
globally planar, such as flow on the surface of a sphere, the vorticity need not have
a single non-zero component. It is convenient to work in the spherical coordinate
system (r, θ, φ) with unit vectors (er, eθ, eφ), see Fig. (1). In order to bring out
the subtleties and differences in this case when compared to 2D flow on a plane, we
start with the spherical coordinate form of (16). Let us define the 3D velocity field
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u and vorticity field ω in component form as

u = urer + uθeθ + uφeφ (21a)

ω = ωrer + ωθeθ + ωφeφ. (21b)

The components of the vorticity ω = ∇ × u have the expressions in spherical
coordinates

ωr =
1

r

[
∂uφ
∂θ
− 1

sin θ

∂uθ
∂φ

+ uφ cot θ

]
(22a)

ωθ =
1

r sin θ

∂ur
∂φ
− ∂uφ

∂r
− uφ

r
(22b)

ωφ =
∂uθ
∂r
− 1

r

∂ur
∂θ

+
uθ
r
, (22c)

which can be derived using the identities (A.8). Substituting (21) into (16) and
using the identities (A.9), we obtain the three components of the vorticity equation
in spherical coordinates

er :
∂ωr
∂t

+ (u · ∇)ωr − (ω · ∇)ur = 0 (23a)

eθ :
∂ωθ
∂t

+ (u · ∇)ωθ − (ω · ∇)uθ +
ωruθ
r
− ωθur

r
= 0 (23b)

eφ :
∂ωφ
∂t

+ (u · ∇)ωφ − (ω · ∇)uφ +
ωruφ
r
− ωφur

r
+
ωθuφ cot θ

r
− ωφuθ cot θ

r
= 0.

(23c)

In analogy with 2D fluid flow on a plane, a 2D flow on the surface of a sphere
may be defined in spherical coordinates as

u(θ, φ, t) = uθ(θ, φ, t)eθ + uφ(θ, φ, t)eφ, (24)

where the velocity is independent of the radial coordinate and uθ, uφ are the θ- and
φ-components respectively of the velocity. The vorticity (22) may then be expected
to be purely radial. In contrast to 2D planar flow however, it is seen from (22)
that the corresponding vorticity field is not 2D, but instead has non-zero θ- and
φ-components which are

ωθ = −uφ
r

ωφ =
uθ
r
. (25a)

These components may not in general be neglected arbitrarily for flows on the entire
surface of the sphere. Some of the terms in the vorticity originate from the variation
of the unit vectors over the surface of the sphere, for example ωφ originates from

∇× (uθeθ) = uθ(∇× eθ) +∇uθ × eφ (26a)

=
uθ
r
eφ + other terms, (26b)

where the identities (A.1) and (A.6) have been used. Further, some of the terms in
the different components of the vorticity share a common origin. For example, we
have

∇× (uφeφ) = uφ(∇× eφ) +∇uφ × eφ (26c)

=
uφ
r

(cot θ er − eθ) + other terms, (26d)

where, again, the identities (A.1) and (A.6) have been used. Thus the terms
uφ cot θ/r in ωr and −uφ/r in ωθ originate from the variation of eφ over the surface
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of the sphere. In the range 0 ≤ θ ≤ π, we have −∞ < cot θ < +∞, and therefore
| cot θ| does not dominate over unity at all latitudes.

Lemma 2.1. We can choose the form of the 2D velocity field u such that the
vorticity has zero θ- and φ-components.

It is seen from (22) that this velocity field should obey

∂uφ
∂r

+
uφ
r

= 0 and
∂uθ
∂r

+
uθ
r

= 0, (27)

and that this unique choice is

u(r, θ, φ, t) =
R

r

[
v(θ, φ, t) eθ + u(θ, φ, t) eφ

]
. (28)

Here R is a length scale which can conveniently be taken to be the radius of the
sphere, v and u are respectively “almost” the θ- and φ-components of the velocity.
The velocity field in (28) is a locally planar velocity field everywhere on the sphere,
but also has a “frozen-in” r-dependence. Calculating the vorticity from (22), we
find that it only has a non-zero r-component:

ω =
R

r2

(
∂u

∂θ
− 1

sin θ

∂v

∂φ
+ u cot θ

)
er =

R

r2
ζ(θ, φ, t) er, (29)

where ζ(θ, φ, t) is part of the radial component of the vorticity, and is defined as

ζ(θ, φ, t) ≡ ∂u

∂θ
− 1

sin θ

∂v

∂φ
+ u cot θ. (30)

The vorticity equation (23) becomes

er :
∂ζ

∂t
+
R

r2

(
v
∂ζ

∂θ
+

u

sin θ

∂ζ

∂φ

)
= 0 (31a)

eθ :
2R2vζ

r4
= 0 (31b)

eφ :
2R2uζ

r4
= 0. (31c)

The terms in the θ- and φ-components of (31) have two origins, each with an equal
contribution. First, the variation of er over the surface of the sphere as a fluid
element undergoes motion on it, creates the terms

ωr
Der
Dt

= ωr(u · ∇)er =
R2ζ

r4
(veθ + ueφ). (32)

Second, the particular form of the velocity that we have chosen in (28) means that
there is a contribution to the vorticity equation from the term (ω · ∇)u:

−(ω · ∇)u =
R2ζ

r4
(veθ + ueφ). (33)

We provide some scaling arguments later in this section to show that the θ- and
φ-components of the vorticity equation are very small and may be neglected. With-
out reference to these scaling arguments, it may be thought that the θ- and φ-
components of the vorticity equation can be neglected since they arise from dy-
namical effects due to motion on a curved surface. However, this argument is
dissatisfactory since the kinematical effects due to motion on a curved surface, such
as the uφ cot θ term in ωr (22) is not simultaneously neglected.
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Theorem 2.2. Under the shallow water approximation, the vorticity equation (31)
reduces to the two-dimensional vorticity equation on the surface of a stationary
sphere.

A common factor of R/r2 has been dropped from the radial component of
(31) since it is a dynamical evolution equation for the vorticity. We can non-
dimensionalise the vorticity equation as follows. Let overhead hats denote dimen-
sionless quantities. It is natural to choose the length scale R to be the radius of the
sphere. Then, we have

u = Uû, v = Uv̂, r = Rr̂, t = T t̂, (34a)

ζ = Uζ̂. (34b)

Here ζ̂ is as defined in (30), but with u and v replaced by û and v̂ respectively. The
θ- and φ-components of the vorticity equation become respectively,

2U2v̂ζ̂

R2r̂2
= 0 and

2U2ûζ̂

R2r̂2
= 0. (35)

These components therefore scale as U2/R2 and we see from (1) that this is a very
small number for large scale flows in the ocean. In the case of large scale flows
in the atmosphere, we scale by Ua instead of U , but the ratio U2

a/R
2 is still very

small as seen from (2). The θ- and φ-components (35) can therefore be neglected.
If we choose the time scale as T = R/U (or Ta = R/Ua in the case of large scale
atmospheric flows), then the unsteady and advection terms in the radial component
of the vorticity equation scale similarly. The non-dimensional form of the radial
component is

∂ζ̂

∂t̂
+

1

r̂2

(
v̂
∂ζ̂

∂θ
+

û

sin θ

∂ζ̂

∂φ

)
= 0. (36)

We consider the motion of the fluid to be limited to a shallow layer of height
H above the surface of the sphere (see §1). Let us define the height coordinate
h in terms of the radial coordinate r as h = r − R, and the dimensionless height

coordinate ĥ as h = Hĥ. Then we have r̂ = 1 + εĥ, and since ε� 1,

1

r̂2
= 1− 2εĥ+O(ε2). (37)

Thus to leading order in ε, we have 1/r̂2 ∼ O(1). It is seen from (35) and (37)
that the shallow fluid approximation is consistent with neglecting the θ- and φ-
components of the vorticity equation. To leading order in the shallow-fluid approx-
imation, the radial vorticity equation is

∂ζ̂

∂t̂
+ v̂

∂ζ̂

∂θ
+

û

sin θ

∂ζ̂

∂φ
= 0. (38)

This equation shows the conservation of vorticity of a fluid element as it moves
through the shallow fluid layer. See for ex. [13], where kinematic arguments are
presented to define vortices on the surface of a sphere, but the dynamical evolution
equation is taken to be (38) without the aid of any scaling arguments.

3. Flow on the surface of a rotating sphere.
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3.1. Vorticity equation for flow in a non-inertial reference frame. We have
so far restricted our attention to flow on the surface of a stationary sphere. To
include the effects of rotation, we begin with the 3D Euler equation in a non-inertial
frame of reference rotating with a steady angular velocity Ω . The Euler equation
in this case is obtained by adding to the left hand side of (4) two additional terms,
namely the Coriolis term and the centrifugal term [3], respectively

2Ω × u and Ω × (Ω × r). (39)

Then we get the Euler equation in a non-inertial frame:

∂u

∂t
+ (u · ∇)u + 2Ω × u + Ω × (Ω × r) = −∇p

ρ
+ F . (40)

The conservation of mass continues to hold in the same form (5) as before [3]. It
must be emphasized that the position r, velocity u and the fluid particle acceleration
Du/Dt are all measured with respect to the non-inertial reference frame.

The vorticity equation in the non-inertial frame can be obtained by taking the
curl of (40). We follow the same procedure as in obtaining (12). The additional
terms in the vorticity equation due to the Coriolis and centrifugal terms are, re-
spectively,

2∇× (Ω × u) and ∇× (Ω × (Ω × r)). (41)

Using the identities (A.1) and the fact that Ω is a constant, we can show that

2∇× (Ω × u) = 2Ω(∇ · u)− 2 (Ω · ∇)u, (42a)

∇× (Ω × (Ω × r)) = 0. (42b)

Using these identities we obtain the vorticity equation in a non-inertial reference
frame:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u + ω(∇ · u) + 2Ω(∇ · u)− 2 (Ω · ∇)u

=
∇ρ×∇p

ρ2
+∇× F . (43)

The form of the non-inertial vorticity equation (43) is not surprising since the fluid
vorticity due to a constant background rotation is equal to twice the angular velocity
of rotation. The vorticity ω in (43) is measured with respect to the non-inertial
reference frame. It is called the relative vorticity, and is distinguished from the
planetary vorticity 2Ω . The non-inertial vorticity equation (43) is equivalent to
(12), but for the effective vorticity ωeff = ω + 2Ω .

We can simplify (43) for the flow of an incompressible, barotropic fluid acted on
by conservative body forces, using the conditions (13), (14) and (15). The resulting
vorticity equation generalizes (16) to include the effects of a non-inertial reference
frame:

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u− 2 (Ω · ∇)u = 0. (44)

3.2. 2D flow on a rotating sphere. Consider first a 2D, globally planar fluid
flow in the form of (17); then the corresponding vorticity field will be in the form
of (18). In addition, let us consider a constant background rotation in the form
Ω = Ωez. Then the vorticity equation (44) becomes

∂ω

∂t
+ (u · ∇)ω = 0 or

Dω

Dt
= 0. (45)
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The absence of an Ω term in (45) is not surprising since it is a constant. In fact
one simple solution of (19) is a constant vorticity field i.e. solid-body rotation.

Consider next a 2D velocity field in the form of (28) on a rotating sphere, and the
corresponding vorticity field in the form of (29). Let the constant rotation of the
sphere be given by Ω = Ωez; it is then seen that the rotation term does contribute
to the vorticity equation. Since (16) and (44) differ only by the presence of the term
−2 (Ω · ∇)u in the latter, this term has to be added to (31) to obtain the relevant
vorticity equation. The angular velocity of the sphere is (see Fig. (1))

Ω = Ωez = Ω cos θ er − Ω sin θ eθ. (46)

Using (A.4), we get the operator

Ω · ∇ = Ω cos θ
∂

∂r
− Ω sin θ

r

∂

∂θ
. (47)

Using (A.3), we find

(Ω · ∇)eθ =
Ω sin θ

r
er and (Ω · ∇)eφ = 0. (48)

If u is given by (28), then we have

(Ω · ∇)u =
RΩ

r2

[
v sin θ er −

(
v cos θ + sin θ

∂v

∂θ

)
eθ

−
(
u cos θ + sin θ

∂u

∂θ

)
eφ

]
. (49)

Therefore, for a 2D flow in the form of (28) on a rotating sphere, the vorticity
equation (44) takes the form

er :
∂ζ

∂t
+
R

r2

(
v
∂ζ

∂θ
+

u

sin θ

∂ζ

∂φ

)
− 2Ωv sin θ = 0 (50a)

eθ :
2R2vζ

r4
+

2RΩ

r2

(
v cos θ + sin θ

∂v

∂θ

)
= 0 (50b)

eφ :
2R2uζ

r4
+

2RΩ

r2

(
u cos θ + sin θ

∂u

∂θ

)
= 0. (50c)

Theorem 3.1. Under the shallow water approximation, the vorticity equation (50)
reduces to the two-dimensional vorticity equation on a rotating sphere.

A common factor of R/r2 has been dropped from the radial component of (50),
but similar terms in the θ- and φ-components have been retained. We obtain by
substituting (34) into (50)

∂ζ̂

∂t̂
+

1

r̂2

(
v̂
∂ζ̂

∂θ
+

û

sin θ

∂ζ̂

∂φ

)
− v̂ sin θ

Ro
= 0, (51)

for the radial component of the vorticity equation. Here Ro = U/2ΩR is a Rossby
number. For the θ- and φ-components of (50), we get

2U2v̂ζ̂

R2r̂2
+

2UΩ

Rr̂2

(
v̂ cos θ + sin θ

∂v̂

∂θ

)
= 0 (52a)

2U2ûζ̂

R2r̂2
+

2UΩ

Rr̂2

(
û cos θ + sin θ

∂û

∂θ

)
= 0. (52b)



THE VORTICITY EQUATION ON A ROTATING SPHERE 11

In the case of large scale flows in the atmosphere, U must be replaced by Ua in
(52). Whether in the case of flows in the oceans or the atmosphere, it is seen from
(1) and (2) that the terms in (52) are very small, and can therefore be neglected.
If we make a shallow-fluid approximation, then by using (37), we find for the radial
component of the vorticity equation

∂ζ̂

∂t̂
+ v̂

∂ζ̂

∂θ
+

û

sin θ

∂ζ̂

∂φ
− v̂ sin θ

Ro
= 0. (53)

This equation shows the conservation of the absolute vorticity ζ̂a = ζ̂+ cos θ/Ro of
every fluid element in the flow.

4. Streamfunction-vorticity formulation. We have so far considered the con-
servation of momentum and the vorticity equation in §2 and §3. Let us now turn
to the conservation of mass and look at the continuity equation (5). Since the flow
is incompressible, the continuity equation takes the simpler form ∇ · u = 0, which
in spherical coordinates looks like

∂v

∂θ
+

1

sin θ

∂u

∂φ
+ v cot θ = 0 (54)

on using (A.4) and (28). It must be noted that the incompressible continuity equa-
tion retains its form ∇ · u = 0 in the non-inertial frame of reference [3]. We may
rewrite (54) using elementary trigonometry as

∂

∂θ
(v sin θ) +

∂u

∂φ
= 0. (55)

Expanding (55) and dividing by sin θ throughout, we get (54). Equation (55) allows
us to introduce a streamfunction ψ(θ, φ, t) which satisfies

u = −∂ψ
∂θ

and v =
1

sin θ

∂ψ

∂φ
. (56)

Substituting (56) into (30), we obtain a relationship between the radial vorticity
ζ(θ, φ, t) and the streamfunction:

∇2
Σψ = −ζ. (57)

Here ∇2
Σ is the Laplace-Beltrami operator on the sphere defined by

∇2
Σ ≡

∂2

∂θ2
+

1

sin2 θ

∂2

∂φ2
+ cot θ

∂

∂θ
. (58)

Defining the gradient operator ∇Σ as

∇Σ ≡ eθ
∂

∂θ
+

eφ
sin θ

∂

∂φ
, (59)

and using (A.3), we can find the expression (58) for the Laplace-Beltrami operator
∇2

Σ ≡∇Σ · ∇Σ.
The relation (57) is a kinematic relationship between the streamfunction and the

vorticity. To obtain a dynamical relationship, first consider the case of 2D flow on
a stationary sphere discussed in §2.3. Substituting (56) into the radial component
of (31), we find the dynamic streamfunction-vorticity relationship:

∂ζ

∂t
+

R

r2 sin θ

[
∂ψ

∂φ

∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂φ

]
= 0. (60)
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When the flow is steady ∂ζ/∂t = 0, and the above equation simplifies to

∂ψ

∂φ

∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂φ
= 0, (61)

which admits solutions of the form [9]

−ζ =∇2
Σψ = h(ψ), (62)

where h is some arbitrary function. A general discussion of (62) in Euclidean
geometry, both 2D and 3D, can be found in [2]. In the case of the rotating sphere
discussed in §3.2, we find by substituting (56) into the radial component of (50),

∂ζ

∂t
+

R

r2 sin θ

[
∂ψ

∂φ

∂ζ

∂θ
− ∂ψ

∂θ

∂ζ

∂φ

]
− 2Ω

∂ψ

∂φ
= 0. (63)

For steady flow on a rotating sphere the above equation can be written as

∂ψ

∂φ

(
∂ζ

∂θ
− 2r2Ω sin θ

R

)
− ∂ψ

∂θ

∂ζ

∂φ
= 0, (64)

which admits solutions of the form [9]

−ζ =∇2
Σψ = h(ψ) +

2r2Ω cos θ

R
, (65)

where h is an arbitrary function. Let us non-dimensionalise the streamfunction

using ψ̂ = Uψ. If we make a shallow-fluid approximation and use

r2 = R2r̂2 = R2 +O(ε), (66)

we get

−ζ =∇2
Σψ̂ = ĥ(ψ̂) +

cos θ

Ro
, (67)

where we have used the fact that h has the same dimensions as the streamfunction,

to define h(·) = Uĥ(·). Equation (67) can be rewritten using

∇2
Σ (cos θ) = −2 cos θ, (68)

and defining Ψ̂ = ψ̂ + cos θ/2 Ro, as

∇2
ΣΨ̂ = ĥ(Ψ̂− cos θ/2 Ro). (69)

Equation (69) is the same equation as derived in [16], where the authors start
out with the effectively 2D Euler equation obtained after appropriate scaling. The
derivation of the vorticity equation then proceeds in the usual manner, via elimina-
tion of the pressure terms. Various exact solutions to (69) are derived and discussed
in [11].

5. Summary and discussion. We have considered the vorticity equation for 2D
fluid flows on the surface of a sphere. We have shown that a general 2D velocity
field on the sphere does not lead to a strictly radial vorticity field, unless it has
a particular radial dependence. Turning to the dynamics of the vorticity field,
we have shown the material conservation of the radial vorticity for dynamics on
the entire sphere. At the same time, the meridional and zonal components of the
vorticity equation are not strictly zero due to curvature effects on the dynamics.
We have then presented scaling arguments for why these latter components can be
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neglected for global scale flows. Finally, we have considered the streamfunction-
vorticity formulation, and retrieved the vorticity equation derived in [16], using our
direct approach.

The difference between fluid flow on a two-dimensional Cartesian plane and flow
on the surface of a sphere comes about due to the effects of curvature, both on the
kinematics and dynamics of vorticity, as explored in this paper. Scaling arguments
arise naturally in the setting of a sphere of finite radius, which can be taken to be
a natural length scale, at first approximation. These scaling arguments allow us to
estimate the sizes of the different components of the vorticity equation.

The material conservation of vorticity is an old result in geophysical fluid dynam-
ics and in the theoretical literature can be traced back to [14]. For a recent study
in the same spirit, see [15]. Although simple physical arguments for the material
conservation of vorticity can be made (as found for ex. in [11]), they fail to take
full account of the effects of curvature on the dynamics of vorticity. These effects
can be especially important in the case of a rotating sphere and lead to non-trivial
terms in the zonal and meridional components of the vorticity equation, as in (50).
The physical effects of these latter components have been reviewed in [17].

The present paper is limited to discussion of the material conservation of vorticity,
but can be extended to include the material conservation of potential vorticity
(Ertel’s theorem), which is of greater importance to geophysical flows [18]. The
condition that the length scale of the flow is on the order of the radius of the earth
may be relaxed in order to capture sub-global scale geophysical phenomena, where
nevertheless a β-plane approach is too restrictive. An interaction between a global
scale analysis of the type presented here, and a β-plane ‘local’ approach, is currently
being pursued and will be reported elsewhere.

Appendix A. Vector calculus and spherical coordinates. In this appendix,
we record some useful vector calculus identities and apply them to calculus in spher-
ical coordinates. We denote scalar-valued functions by f, g; and vector-valued func-
tions by A,B. The following identities below are taken to be well-known and are
stated without proof [7].

∇×∇f = 0 (A.1a)

∇ · (∇×A) = 0 (A.1b)

∇ · (fA) = f∇ ·A + A · ∇f (A.1c)

∇× (fA) = f∇×A +∇f ×A (A.1d)

∇(A ·B) = (A · ∇)B + (B · ∇)A + A× (∇×B) + B × (∇×A) (A.1e)

∇× (A×B) = (B · ∇)A− (A · ∇)B + A(∇ ·B)−B(∇ ·A). (A.1f)

We now develop some useful identities in the spherical co-ordinate system. Let
(er, eθ, eφ) be the orthonormal unit vectors in spherical coordinates. It is seen from
Fig. 2 that the relationship between the orthonormal unit vectors in the Cartesian
and spherical coordinates can be written in matrix form asereθ

eφ

 =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

exey
ez

 . (A.2)
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êr
êθ

êφ− s
in
φ

cosφ

θ

φ

Figure 2. Decomposition of the orthonormal unit vectors in the
spherical coordinate system into the Cartesian unit vectors.

Differentiating (A.2) row-wise and using the fact that the Cartesian unit vectors
are independent of (r, θ, φ), we find the matrix of derivatives

∂(er, eθ, eφ)

∂(r, θ, φ)
=

0 eθ sin θ eφ
0 −er cos θ eφ
0 0 − sin θ er − cos θ eθ

 , (A.3)

where the first matrix row corresponds to (∂er/∂r, ∂er/∂θ, ∂er/∂φ), and so on. We
note that the unit vectors are independent of r and are functions of θ and φ only.

The del operator ∇ in spherical coordinates is given by [1, see Appendix 2]

∇ = er
∂

∂r
+

eθ
r

∂

∂θ
+

eφ
r sin θ

∂

∂φ
(A.4)

Using the del operator together with (A.3), we can evaluate the divergence of each
of the unit vectors (er, eθ, eφ), and get

∇ · er =
2

r
, ∇ · eθ =

cot θ

r
, ∇ · eφ = 0. (A.5)

For the curl of each of the unit vectors we find

∇× er = 0, ∇× eθ =
eφ
r
, ∇× eφ =

cot θ

r
er −

eθ
r
. (A.6)

We now state a few identities used in the text. As earlier, f is any arbitrary
scalar valued function. The vector calculus identities (A.1c) and (A.5) are used in
their derivation, which is straightforward.

∇ · (fer) =
2f

r
+
∂f

∂r
, (A.7a)

∇ · (feθ) =
f cot θ

r
+

1

r

∂f

∂θ
, (A.7b)

∇ · (feφ) =
1

r sin θ

∂f

∂φ
. (A.7c)
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We can similarly use (A.1d) and (A.6) to derive the identities below.

∇× (fer) =
eθ

r sin θ

∂f

∂φ
− eφ

r

∂f

∂θ
, (A.8a)

∇× (feθ) = − er
r sin θ

∂f

∂φ
+ eφ

(
f

r
+
∂f

∂r

)
, (A.8b)

∇× (feφ) = er

(
f cot θ

r
+

1

r

∂f

∂θ

)
− eθ

(
f

r
+
∂f

∂r

)
. (A.8c)

Finally using (A.3), we find for any vector A = Arer +Aθeθ +Aφeφ,

(A · ∇)er =
Aθ
r
eθ +

Aφ
r
eφ (A.9a)

(A · ∇)eθ = −Aθ
r
er +

Aφ cot θ

r
eφ (A.9b)

(A · ∇)eφ = −Aφ
r
er −

Aφ cot θ

r
eθ, (A.9c)

where Ar does not appear since all the unit vectors are independent of r as seen
from (A.3). Since the unit vectors are always “steady,” we have

Der
Dt

= (V · ∇)er,
Deθ
Dt

= (V · ∇)eθ,
Deφ
Dt

= (V · ∇)eφ, (A.10)

where V is the 3D velocity field.
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