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Stuart vortices are among the few known smooth explicit solutions of the planar Euler8

equations with a nonlinear vorticity, and they have a counterpart for inviscid flow on the9

surface of a fixed sphere. By means of a perturbative approach we adapt the method used10

to investigate Stuart vortices on a fixed sphere to provide insight into some large-scale11

shallow water flows on a rotating sphere that model the dynamics of ocean gyres.12

1. Introduction13

Gyres are some of the most coherent features of the large-scale ocean circulation. There14

are five major gyres, centred around high pressure zones in the North Atlantic, North15

Pacific, South Atlantic, South Pacific, and the Indian Ocean, and a number of minor ones16

(for example, the Atlantic and the Pacific Ocean have three such gyres each and relatively17

small-scale gyres are encountered in the Mediterranean Sea). The gyres span hundreds to18

thousands of kilometres and these vast circular systems, made up of wind-driven ocean19

currents that spiral in slow-motion (with typical speed scale 0.1 m s−1) about a central20

point, rotate clockwise in the northern Hemisphere and counter-clockwise in the Southern21

Hemisphere due to the Coriolis effect. Their motion is typically not perfectly circular,22

with paths that can be more irregular and oval.23

The Earth is nearly an oblate spheroid, with a small equatorial bulge as the polar radius24

is about 21 km shorter than the equatorial one (of length 6378 km), but in studies of large-25

scale ocean flows a spherical Earth model is adequate since no dynamical consequences of26

the small deviation from a perfect sphere have been observable in this regime (see Wunsch27

(2015)). Due to their large scales, the curvature of the Earth must be expected to play a28

significant rôle in the dynamics of gyre flows. Since the f -plane approximation does not29

capture curvature effects, most studies of ocean gyres are performed within the framework30

of the β-plane approximation (see Talley et al. (2011); Vallis (2006)), to the extent that31

the observed asymmetry of the gyres is known as the “β-effect”, i.e., the change of the32

Coriolis parameter with latitude, which is ignored in the f -plane approximation (see33

Cushman-Roisin and Beckers (2011)). However, in contrast to the f -plane equations,34

the β-plane equations are not a consistent approximation to the governing equations for35

ocean flow in non-equatorial regions (see the discussions in Dellar (2011); Paldor (2015);36

Stewart and Dellar (2010)). Moreover, the vanishing of the meridional component of the37

Coriolis force at the Equator prevents the presence of gyres near the Equator, where the38

ocean flow is basically zonal (see the discussions in Constantin (2012); Constantin and39

Johnson (2015, 2016); Henry (2013, 2016)). These considerations motivate the study of40

ocean gyres in spherical geometry.41

We investigate a class of solutions to the vorticity equation for shallow water flows on42
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Figure 1. The Earth’s rotating spherical coordinate system: θ is the polar
angle, φ is the angle of longitude and r′ = |~r′| is the distance from the origin at
the Earth’s centre. The North Pole is at θ = 0 and the Equator is on θ = π/2.

a rotating sphere (derived recently in Constantin and Johnson (2017)) that correspond43

to the celebrated Stuart vortices in planar flows (see Stuart (1967)). By means of an44

interplay between results from the theory of elliptic partial differential equations and45

the geometric features encoded in the stereographic projection, we show that, for the46

relevant vorticity function, the counterpart of the Stuart vortices on a non-rotating sphere47

obtained in Crowdy (2004) represent the leading order of gyre-flow type solutions in a48

subregion of a rotating sphere, provided that the diameter of the gyre region is of the49

order of hundreds of km. This permits us to visualise the streamline-pattern of the flow50

on a rotating sphere. The viewpoint advocated in this paper is that in-depth studies of51

shallow-water flows on a rotating sphere can be pursued in spherical coordinates. These52

have the advantage with respect to the use of the β-plane approximation that they are53

capture the effects of the Earth’s sphericity and are valid in any region of the sphere,54

whereas the β-plane equations are a consistent approximation only in equatorial regions.55

2. Preliminaries56

We introduce a set of (right-handed) spherical coordinates (r′, θ, φ): r′ is the distance57

from the centre of the sphere, θ (with 0 6 θ 6 π) is the polar angle (and then π/2 − θ58

is the angle of latitude); φ (with 0 6 φ < 2π) is the azimuthal angle i.e. the angle59

of longitude. We use primes, throughout the formulation of the problem, to denote60

physical (dimensional) variables; these will be removed when we non-dimensionalize. The61

unit vectors in this (r′, θ, φ)-system are (êr, êθ, êφ), respectively, and the corresponding62

velocity components are (w′, v′, u′); êφ points from West to East, and êθ from North to63

South (see Fig. 1). The governing equations for inviscid flow are the Euler equation64 ( ∂

∂t′
+

u′

r′ sin θ

∂

∂φ
+
v′

r′
∂

∂θ
+ w′

∂

∂r′

)
(w′, v′, u′)65

+
1

r′

(
− u′2 − v′2, −u′2 cot θ + v′w′, u′v′ cot θ + u′w′

)
66

+ 2Ω′ (−u′ sin θ, −u′ cos θ, v′ cos θ + w′ sin θ)− r′Ω′2 (sin2 θ, sin θ cos θ, 0)67

= − 1

ρ′

(∂p′
∂r′

,
1

r′
∂p′

∂θ
,

1

r′ sin θ

∂p′

∂φ

)
+ (−g′, 0, 0) , (2.1)68

69
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and the equation of mass conservation70

1

r′ sin θ

∂u′

∂φ
+

1

r′ sin θ

∂

∂θ
(v′ sin θ) +

1

r′2
∂

∂r′
(r′2 w′) = 0 , (2.2)71

respectively, where p′(r′, θ, φ, t′) is the pressure in the fluid, Ω′ ≈ 7.29× 10−5 rad s−1 is72

the constant rate of rotation of the Earth and ρ′ is the constant density, with the choice73

g′ = constant ≈ 9.81 m s−2 for the gravitational term reasonable for the depths of the74

oceans on the Earth (see Vallis (2006)).75

Redefining the pressure76

p′ = g′ρ′(R′ − r′) +
1

2
ρ′r′2Ω′2 sin2 θ + P ′(r′, θ, φ, t′) , (2.3)77

where R′ ≈ 6378 km is the Earth’s radius, and then writing78

r′ = R′ + z′ , (2.4)79

we non-dimensionalize the governing equations (2.1)-(2.2) for steady flow according to80

z′ = H ′z , (w′, v′, u′) = U ′ (kw, v, u) , P ′ = ρ′U ′2P , (2.5)81

where H ′ is the mean depth of the ocean and U ′ is a suitable horizontal speed scale82

(typically of the order of 4 km and 0.1 m s−1, respectively). The scaling factor, k,83

associated with the vertical component (w) of the velocity, is very small (of the order84

of 10−4) since the vertical motion is so weak that it is almost always inferred rather85

than measured directly (see Marshall and Plumb (2016); Viudez and Dritschel (2015)).86

Defining the shallowness parameter ε by87

ε =
H ′

R′
, (2.6)88

the steady-state Euler equations become89 ( u

(1 + εz) sin θ

∂

∂φ
+

v

1 + εz

∂

∂θ
+
k

ε
w
∂

∂z

)
(kw, v, u)90

+
1

1 + εz

(
− u2 − v2, −u2 cot θ + kvw, uv cot θ + kuw

)
91

+ 2ω (−u sin θ, −u cos θ, v cos θ + kw sin θ)92

= −
(1

ε

∂P

∂z
,

1

1 + εz

∂P

∂θ
,

1

(1 + εz) sin θ

∂P

∂φ

)
, (2.7)93

94

where95

ω =
Ω′R′

U ′
� 1 (2.8)96

(with ω ≈ 4650 for U ′ = 0.1 m s−1), while the equation of mass conservation becomes97

1

(1 + εz) sin θ

{∂u
∂φ

+
∂

∂θ
(v sin θ)

}
+

k

ε(1 + εz)2
∂

∂z

{
(1 + εz)2w

}
= 0 . (2.9)98

Typically k = O(ε2) (see the discussion in Constantin and Johnson (2017)) so that,99

multiplying the first component of (2.7) by ε and subsequently letting ε→ 0 (the shallow-100
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water approximation), we see that the horizontal flow (u, v) is governed by the equations101

0 =
∂P

∂z
, (2.10)102 ( u

sin θ

∂

∂φ
+ v

∂

∂θ

)
v − u2 cot θ − 2ω u cos θ = − ∂P

∂θ
, (2.11)103 ( u

sin θ

∂

∂φ
+ v

∂

∂θ

)
u+ uv cot θ + 2ω v cos θ = − 1

sin θ

∂P

∂φ
, (2.12)104

∂u

∂φ
+

∂

∂θ
(v sin θ) = 0 . (2.13)105

The existence of a stream function, ψ(θ, φ), satisfying106

u = −∂ψ
∂θ

, v =
1

sin θ

∂ψ

∂φ
, (2.14)107

is ensured by (2.13) and the elimination of the pressure between equations (2.11) and108

(2.12) gives the vorticity equation109 (
ψφ

∂

∂θ
− ψθ

∂

∂φ

)( 1

sin2 θ
ψφφ + ψθ cot θ + ψθθ − 2ω cos θ

)
= 0 , (2.15)110

in which111

∇2
Σψ =

1

sin2 θ
ψφφ + ψθ cot θ + ψθθ112

is the Laplace-Beltrami expression. Writing equation (2.15) in the form113

ψφ(∇2
Σψ − 2ω cos θ)θ − ψθ (∇2

Σψ − 2ω cos θ)φ = 0 ,114

throughout regions where ∇(φ,θ)ψ 6= (0, 0), the rank theorem (see Newns (1967)) yields115

∇2
Σψ − 2ω cos θ = F (ψ) (2.16)116

for some function F . The total vorticity of the flow comprises two components: the117

vorticity solely due to the rotation of the Earth (2ω cos θ: ‘spin vorticity’) and that due118

to the underlying motion of the ocean, F (ψ), and not driven by the rotation of the119

Earth (‘oceanic’ or ‘relative’ vorticity). One of these contributions (the spin vorticity) is120

completely prescribed, but that associated with the movement of the ocean is specific121

to the particular flow conditions. Note that if we ignore the planetary (spin) vorticity122

by setting ω = 0, equation (2.16) becomes the equation describing stationary vortex123

structures in an ideal fluid. The presence of planetary vorticity in equation (2.16) alters124

considerably the underlying mathematical structure of the problem due to the intricate125

coupling between the oceanic and the planetary vorticity components. For theoretical126

investigations of vortex dynamics in a bounded region of the surface of a non-rotating127

sphere we refer to Crowdy (2006); Kidambi and Newton (2000); Newton (2001).128

Equation (2.16) is the counterpart in spherical coordinates of Fofonoff’s β-plane model129

Fofonoff (1954), described in modern notation in Vallis (2006), and offers some exciting130

prospects for future investigations. For example, on the stereographically projected131

equatorial ξ-plane, equation (2.16) becomes132

(1 + ξξ)2ψξξ = 2ω
ξξ − 1

1 + ξξ
+ F (ψ) , (2.17)133

where |ξ| = cot( θ2 ) for the polar angle θ ∈ (0, π); see Fig. 2. Explicit solutions for linear134

functions F were obtained in Constantin and Johnson (2017), e.g. for F = γ (constant),135
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Figure 2. Schematic illustration of the stereographic projection mapping
the point (x, y, z) on the unit sphere with the North Pole N excised to the
intersection point (X,Y ) of the equatorial plane with the ray from N to (x, y, z).

the general solution of (2.17) is given by136

ψ(ξ, ξ) = γ ln(1 + ξξ) +
2ω

1 + ξξ
+ ζ(ξ, ξ) , (2.18)137

where ζ(ξ, ξ) is an arbitrary harmonic function. The considerations related to Stuart138

vortices (see Crowdy (2004); Stuart (1967)) offer prospects for the study of the nonlinear139

vorticity function F (ψ) = aebψ + c with suitable real constants a, b, c.140

3. Main result141

We seek solutions of (2.17) for F (ψ) = aebψ + c with suitable real constants a, b, c.142

Setting143

ψ(ξ, ξ) = ζ(ξ, ξ) +A ln(1 + ξξ) , (3.1)144

for some real constant A to be determined, we get145

ψξξ = ζξξ +
A

(1 + ξξ)2
, ebψ = (1 + ξξ)Ab ebζ ,146

and therefore (2.17) becomes147

ζξξ =
c−A+ 2ω

(1 + ξξ)2
− 4ω

(1 + ξξ)3
+ aebζ (1 + ξξ)Ab−2 .148

For149

A =
2

b
, c = A− 2ω ,150

we see that (2.17) is transformed to the equation151

ζξξ = a ebζ − 4ω

(1 + ξξ)3
. (3.2)152

Setting ω = 0 in (3.2) leads us to the Liouville equation153

ζξξ = a ebζ , (3.3)154

which is exactly solvable. This feature enabled Crowdy (2004) to associate to any solution155

ζ0 of (3.3) an explicit stream function156

ψ0(ξ, ξ) = ζ0(ξ, ξ) +
2

b
ln(1 + ξξ) (3.4)157
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that represents the flow pattern of Stuart-type vortices on a non-rotating sphere. We aim158

to show that for any gyre flow with nonlinear oceanic vorticity of the form159

F (ψ) = a ebψ +
2

b
− 2ω , (3.5)160

dependent on the inverse Rossby number ω � 1 and on the free real parameters a, b161

with ab > 0, and such that the diameter d′ of the gyre region satisfies162

d′
√

Ω′

U ′R′
= O(1) , (3.6)163

the explicit functions in (3.4) are accurate approximations of the stream function ψ of164

the gyre flow, in the sense that165

0 6 ψ − ψ0 6
1

4

sin6(θS/2
)

sin2(θN/2)

(d′)2Ω′

U ′R′
, (3.7)166

where θN ∈ (0, π) and θS ∈ (0, π) are the co-latitudes of the northern, respectively167

southern tips, of the gyre region; here the diameter of a (not necessarily circular) planar168

or spherical region is defined as the largest distance between two points in the region.169

Intuitively, this result means that although the rotation term in (3.2) is large, its effect170

on the (highly nonlinear) dynamics can nevertheless be small if the size of the gyre region171

is relatively small, as quantified in (3.6) and (3.7). Physically realistic scenarios for the172

occurrence of such flows are provided in Section 5.173

We rely on the theory of elliptic partial differential equations to prove the approxima-174

tion property (3.7). Indeed, in terms of the Cartesian coordinates (X,Y ) in the complex175

ξ-plane, we can write (3.2) as the semilinear elliptic equation176

∆ζ = 4a ebζ − 16ω

(1 +X2 + Y 2)3
, (3.8)177

where ∆ = ∂2X + ∂2Y is the Laplace operator, while (3.3) becomes178

∆ζ = 4a ebζ . (3.9)179

At the ocean surface, a gyre is delimited by a level set of the stream function, say180

ψ = 0, which encloses a region O′ on the surface of the sphere and this spherical region181

corresponds in the (X,Y )-coordinates to a planar region O, the scaled stereographic182

projection of O′. Consequently we have to solve for183

γ = ζ − ζ0184

the equation185

−∆γ + 4a ebζ0(ebγ − 1)− 16ω

(1 +X2 + Y 2)3
= 0 (3.10)186

in a bounded planar domain O, with homogeneous Dirichlet boundary data187

γ = 0 on ∂O , (3.11)188

where ∂O is the smooth boundary of O. In our analysis we apply the method of sub-189

and super-solutions, combined with maximum principles and elliptic a priori estimates.190

We recall that the classical Calderón-Zygmund theory for the linear Dirichlet problem191 {
∆U0 = F0 in O ,
U0 = 0 on ∂O , (3.12)192
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in the setting of Sobolev spaces, asserts that if F0 ∈ L2(O), then there exists a unique193

solution U0 ∈ H2(O) ∩H1
0 (O) of (3.12) and the following estimate holds:194

‖U0‖H2(O) 6 C0‖F0‖L2(O) (3.13)195

for some constant C0 > 0 depending only on O; see Brézis (2011) and Ponce (2016).196

Moreover, if F0 is the restriction of a continuous function F0 : R2 → R to O, then U0 is197

twice continuously differentiable in O and admits a continuous extension to the closure198

O = O ∪ ∂O of O; see Gilbarg and Trudinger (2001). Note that in terms of the Green’s199

function of the first kind for O, GO(X,Y,X ′, Y ′), we have200

U0(X,Y ) =

∫∫
O
GO(X,Y,X ′, Y ′)F0(X ′, Y ′) dX ′dY ′ , (X,Y ) ∈ O . (3.14)201

In particular, for circular domains the Green’s function GO(X,Y,X ′, Y ′) is explicitly202

determined (see Gilbarg and Trudinger (2001)). Also, for annular domains an explicit203

Green’s function is available (see Crowdy and Marshall (2007)). While the estimate (3.13)204

and the representation formula (3.14) are important for the existence of solutions, we205

will take advantage of the following growth estimate for the solution of (3.12):206

0 6 U0(X,Y ) 6
1

16
MD2 , (X,Y ) ∈ O , (3.15)207

where D is the diameter of the set O and208

0 6M = max
(X,Y )∈O

{−F0(X,Y )} for F0 : O → (−∞, 0] continuous .209

To prove (3.15), note that since F0 6 0, the weak maximum principle (see Gilbarg and210

Trudinger (2001)) ensures that the minimum of the solution U0 in O is attained on the211

boundary ∂O, and thus U0 > 0 throughout O. Furthermore, if (X0, Y0) ∈ O is a point212

such that O is contained within the closed ball of radius D/2 centred at this point, then213

the function Ũ defined by214

Ũ(X,Y ) = U0(X,Y ) +
M [4(X −X0)2 + 4(Y − Y0)2 −D2]

16
, (X,Y ) ∈ O ,215

is such that ∆Ũ > 0 in O and Ũ 6 0 on ∂O. The weak maximum principle therefore216

ensures that the maximum of the solution Ũ in O is attained on the boundary ∂O, so217

that Ũ 6 0 throughout O and this proves the upper estimate in (3.15).218

On the other hand, twice continuously differentiable functions γ∗ , γ
∗ : O → R with219

continuous extensions to O which vanish on the boundary ∂O, are called a sub-solution220

(super-solution) of (3.10) with the homogeneous Dirichlet boundary condition (3.11) if221

−∆γ∗ + 4aebζ0 (ebγ∗ − 1)− 16ω

(1 +X2 + Y 2)3
6 0 , (X,Y ) ∈ O , (3.16)222

respectively if223

−∆γ∗ + 4aebζ0 (ebγ∗ − 1)− 16ω

(1 +X2 + Y 2)3
> 0 , (X,Y ) ∈ O . (3.17)224

Since the nonlinearity in (3.10) is smooth, the method of sub- and super-solutions applies:225

the existence of a sub-solution γ∗ and of a super-solution γ∗ with γ∗ 6 γ∗ in O ensures226

the existence of a solution γ that is twice continuously differentiable in O, admits a227

continuous extension to O and satisfies γ∗ 6 γ 6 γ∗ throughout O; see Ponce (2016).228

Let now ζ0 be a solution of the Liouville equation (3.9), in a domain O delimited by229
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a zero level set of ψ0 defined by (3.4), and let U0 be the unique solution of (3.12) with230

the homogeneous Dirichlet boundary condition U0 = 0 on ∂O, for231

F0(X,Y ) = − 16ω

(1 +X2 + Y 2)3
. (3.18)232

We now claim that γ∗ = 0 is a sub-solution and γ∗ = U0 is a super-solution of (3.10),233

with γ∗ 6 γ∗ in O. Indeed, since F0 < 0, the strong maximum principle (see Gilbarg and234

Trudinger (2001)) yields235

U0(X,Y ) > 0 , (X,Y ) ∈ O , (3.19)236

so that ζ∗ < ζ∗ in O and237

aeb(ζ0+U0) > aebζ0 in O since ab > 0 ,238

with the inequalities (3.16)-(3.17) now easily checked. The method of sub- and super-239

solutions therefore ensures the existence of a solution γ to (3.10) with homogeneous240

Dirichlet boundary data (3.11), such that241

0 6 γ 6 U0 in O . (3.20)242

Using (3.1), (3.4) and (3.15), we get243

0 6 ψ − ψ0 = γ 6 U0 6
1

16
MD2 throughout O′ . (3.21)244

Since245

1 +X2 + Y 2 = 1 + |ξ|2 =
1

sin2( θ2 )
,246

we see that (3.18) in combination with (3.21) yield247

0 6 ψ − ψ0 6 ωD2 sin6
(θS

2

)
throughout O′ , (3.22)248

where θS is the co-latitude of the southern tip of the gyre region O′ and D is the diameter249

of the (scaled) planar stereographic projection O of the spherical region O′. Note that250

the stereographic projection distorts areas, with the infinitesimal distortion rate from251

the sphere to the plane equal to 4 sin2( θ2 ); in particular, planar projections of spherical252

areas near the South Pole are diminished while the projections of spherical areas near253

the North Pole are inflated. Therefore the diameter d′ of the gyre region O′ satisfies254

d′

R′
> 2D sin

(θN
2

)
,255

where θN is the co-latitude of the northern tip of O′. Using the above inequality in (3.22)256

validates the estimate (3.7), due to (2.8).257

Since γ = ψ − ψ0 = ζ − ζ0 vanishes on ∂O, with ζ0 and ψ0 both known explicitly258

within O, to appreciate the relevance of the estimate (3.7) for revealing the streamline259

pattern of the flow, let us show that the range of (real) values of ζ0 throughout O can260

be very wide for suitable choices of the free parameters a and b. To prove this, let us261

assume without loss of generality that a > 0, and so b > 0. Firstly, since ψ0 = 0 on ∂O,262

from (3.4) we infer that263

ζ0 = −2

b
ln(1 + ξξ) 6 0 on ∂O . (3.23)264
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Figure 3. Depiction of the streamline pattern on the rotating
sphere for the choice f(z) = z2+1 and a = 1, bω2 = 2 in (4.1).

We now prove that if m > 0 is such that265

4mebm

a
6 d20 . (3.24)266

where d0 is the diameter of the largest ball contained within the planar region O, then267

inf
(X,Y )∈O

{ζ0(X,Y )} < −m. (3.25)268

To verify the estimate (3.25), let us first note that since ζ0 6 0 on ∂O and ∆ζ0 > 0 in269

O is ensured by the fact that ζ0 solves (3.9), the weak maximum principle yields ζ0 < 0270

throughout O. If B0 is the largest ball contained within the planar region O that is271

bounded by the smooth streamline ψ0 = 0, then the circle ∂B0 that surrounds B0 will be272

tangent to ∂O. Define the function273

α0(X,Y ) = ζ0(X,Y )− ae−bm [4(X −X0)2 + 4(Y − Y 0)2 − d20]

4
, (X,Y ) ∈ B0 ,274

where (X0, Y 0) is the centre of the disk B0. Assuming that (3.25) is invalid, we would275

get ζ0 > −m throughout O, and (3.9) would yield ∆ζ0 > 4ae−bm in B0 ⊂ O. But then,276

since α0 6 0 on ∂B0 and ∆α0 = ∆ζ0 − 4ae−bm > 0 in B0, the weak maximum principle277

would ensure that α0 < 0 throughout B0. In particular, α0(X0, Y 0) < 0, that is,278

ζ0(X0, Y 0) < −ae
−bm

4
d20 .279

But (3.24) then leads us to ζ0(X0, Y 0) < −m, which is in contradiction with the280

assumption of the invalidity of (3.25). Consequently (3.25) must hold.281

The estimates (3.7), (3.23) and (3.25) show that if the diameter of the gyre region282

satisfies (3.6), then the streamline pattern for ψ is a small perturbation of the level sets283

of the explicit function ψ0.284

4. Flow visualization285

The form of the general solution to the Liouville equation (3.3) is (see Henrici (1986))286

ζ(z, z̄) =
1

bω2
log
( 4|f ′(z)|2

(2− abω2|f(z)|2)2

)
, (4.1)287

where f is a meromorphic function with f ′ 6= 0, |f | 6=
√
2

ω
√
ab

, and having at most288

isolated simple pole singularities in the domain in which the equation is to be solved.289

By means of (3.1) and (4.1), we can visualize the streamlines for various choices of290



10 A. Constantin and V. S. Krishnamurthy

f (see Fig. 3 for an example that captures the flow pattern of a large gyre). For a291

given f , any closed streamline can be used to define the boundary of the relevant292

flow region. Note that typical gyre regions on the surface of the sphere are mapped293

by the stereographic projection into simply connected regions of the complex plane, for294

which the representation of the Green’s function (corresponding to the Laplace operator)295

by the Riemann mapping function is classical (see Henrici (1986)). Moreover, we can296

approximate the boundary of a region of specific geophysical interest by a polygonal line297

with a high degree of accuracy, in which case the Schwarz-Christoffel formulas provide298

an explicit representation for the Riemann mapping function (see Henrici (1986)). In299

this context, we point out that if O is a simply connected bounded region of the complex300

plane, and g(z, z′) = −log|z−z′|−h(z, z′) is its Green’s function for the Laplace operator,301

then ζ(ξ) = h(ξ, ξ) solves Liouville’s equation ∆ζ = 4e2ζ (see Gustafsson (1990)).302

5. Discussion303

Let us now comment on the physical relevance of the above theoretical considerations.304

For the reference value U ′ = 0.1 m s−1, due to (3.6), gyre regions with a diameter of the305

order of 100 km enter our framework. One such example is the small-scale but energetic306

Ierapetra gyre, showing up in the Eastern Mediterranean, South-East of Crete, at the307

end of summer almost every year (see Amitai et al. (2010)); in this case θN ≈ 55.5◦ and308

θS ≈ 56.5◦, so that the upper bound in (3.7) is about 0.01. Gyre regions of a similar309

size occur in the Bering Sea (see the discussion in Kostianov et al. (2004)); in this case310

θN ≈ 29.5◦ and θS ≈ 30.5◦, so that the upper bound in (3.7) is about 0.001. Also,311

one of the most prominent features of the Arctic Ocean is the large Beaufort Gyre –312

a clockwise ocean current that, due to the interplay between the forces of gravity and313

Coriolis, circulates with its overlying sea ice cover with surface speeds of the order 0.1314

m s−1 in the region comprised between 76◦N-84◦N and 140◦W-180◦E; see the data in315

Plueddemann et al. (2017). The corresponding polar angle θ for the Beaufort Gyre is316

between 6◦ and 14◦, and in this case the upper bound in (3.7) is less than 0.05, despite317

the relatively large gyre diameter – a feature that is offset by the co-latitude factor.318

Concerning gyre flows in the Southern Hemisphere, consider the clockwise oceanic319

gyres in the Weddell and Ross Sea: with surface current speeds of the order of 0.1 m s−1,320

diameters of about 2000 km, and corresponding values θN ≈ 150◦ and θS ≈ 160◦ (see321

Riffenburgh (2007)), these gyres dominate the ocean circulation in each basin, being322

confined between the continent of Antarctica and the azimuthal flow of the Antarctic323

Circumpolar Current – the most significant current in our oceans and the only current324

that completely encircles the polar axis, being composed of a number of high-speed,325

vertically coherent, seafloor-reaching jets with speeds commonly exceeding 1 m s−1 and326

typically 40-50 km wide, separated by zones of low-speed flow (see the discussion in327

Constantin and Johnson (2016)). In this case the upper bound in (3.7) is about 100,328

and thus of no practical relevance. However, rather than performing the stereographic329

projection from the North Pole, in this case we can rely on that from the South Pole,330

with the outcome that (3.7) holds with θ replaced by π− θ, resulting in an upper bound331

less than 2. While this may be still relevant, the obtained value shows that the diameter332

of these gyres is too large to be amenable to the approach pursued in this paper. This333

will also be the case for the largest oceanic gyres (e.g. in the North Pacific and Southern334

Atlantic). Nevertheless, our considerations are physically relevant for the dynamics of335

small- and mid-size gyres (with diameters of the order of several hundreds km).336
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