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Finite time collapse of three point vortices in the plane
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Abstract—We investigate the finite-time collapse of three point vortices in the plane utilizing
the geometric formulation of three vortex motion from Krishnamurthy, Aref & Stremler (2018)
Phys. Rev. Fluids 3, 024702. In this approach, the vortex system is described in terms of the
interior angles of the triangle joining the vortices, the circle that circumscribes that triangle, and
the orientation of the triangle. Symmetries in the governing geometric equations of motion for
the general three-vortex problem allow us to consider a reduced parameter space in the relative
vortex strengths. The well-known conditions for three-vortex collapse are reproduced in this
formulation, and we show that these conditions are necessary and sufficient for the vortex
motion to consist of collapsing or expanding self-similar motion. The geometric formulation
enables a new perspective on the details of this motion. Relationships are determined between
the interior angles of the triangle, the vortex strength ratios, the (finite) system energy, the time
of collapse, and the distance traveled by the configuration prior to collapse. Several illustrative
examples of both collapsing and expanding motion are given.
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1. INTRODUCTION

The Euler equation describing the motion of an inviscid and incompressible fluid has several exact
solutions in the classical theory of fluid dynamics [7, 18]. One important exact solution is the finite
dimensional system of N point vortices in planar two-dimensional flow [21, 28] that was introduced
by Helmholtz 160 years ago [13]. The motion of three point vortices holds a special place within the
theory of vortex dynamics owing to the fact that it is an integrable system with a variety of non-
trivial relative motions [2]. The dynamics of three point vortices has been explored independently by
several authors, starting with Gröbli’s 19th century thesis [12], and with several others replicating
and adding to the analysis during the second half of the 20th century [1, 3, 22, 27, 31]; an accounting
of the early history of the three-vortex problem can be found in [6].

Self-similar motion of three vortices is an especially interesting case in which, for a particular set
of initial vortex positions and strengths, the triangle formed by the vortices moves without changing
shape and the vortices converge to a single point in a finite time. The phenomenon of finite time
collapse has been known since the earliest solutions to the three vortex problem [12, 31]. Various
aspects of finite time collapse have been studied using the classical formulations summarized in
§2.1, including the conditions required for collapse [5, 14] and stability properties of the collapse
solutions [5, 32]. The dynamics of three point vortices near collapse has also been investigated,
with ‘near collapse’ defined as a slight perturbation of the initial conditions and vortex strengths
necessary for collapse [19].
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2 Krishnamurthy & Stremler

In addition to its intrinsic interest as a point vortex problem, the importance of finite-time
collapse solutions in two-dimensions arises from the appearance of related motion for three smooth
vortices. Given a sufficiently smooth initial velocity field, there exists for all time a smooth velocity
field as the solution of the incompressible Euler equation [30], and collapse is not possible. Obviously,
the finite-time collapse solution for point vortices does not contradict this result since the point
vortex velocity field is not smooth, but singular, at any instant of time. However, it is interesting to
note that a smooth initial velocity distribution corresponding to three vortices of finite size (which
do not overlap each other) may be constructed such that these vortices follow the trajectories of
three point vortices undergoing collapse for a significant duration of the motion [33]. Assume the
vortex centroids of the finite sized vortices are initially at the positions corresponding to three
collapsing point vortices. They follow the collapsing point vortex trajectories quite closely until the
distances between the vortex centroids is of the same order as the vortex size, at which point their
trajectories diverge from the collapsing trajectories [33].

In this paper, we utilize a geometrical reformulation of the three vortex problem [16] to
systematically study finite-time collapse. In §2.1 we provide the background theory of three vortex
dynamics found in the classical literature, and in §2.2 we recall the ODEs in the recently developed
geometrical formulation [16] of three vortex motion. In §2.3, we study some of the symmetries in
these geometrical ODEs that reduce the parameter space of the three vortex problem. In §3.1, we
show that finite time collapse of three vortices is necessarily self-similar and derive the necessary
and sufficient conditions for self-similar motion. In §3.2 we show that the symmetries in the system
allow us to focus on a reduced region of parameter space in our study of self-similar motion of
three point vortices. In §3.3 we discuss the dependence of the vortex strengths and configuration
Hamiltonian energy on the triangle geometry. In §3.4 we discuss the collapse/expansion time of the
configuration as a function of the geometry and show that this time can also be determined as a
function of the Hamiltonian energy of the system. In §3.5, we reconstruct the motions of the three
vortices as a function of time using the geometric formulation and determine the distance traveled
by the circumcenter during self-similar motion as a representation of the magnitude of the vortex
motion. We discuss a few selected examples of vortex collapse and expansion in §3.6 and conclude
in §4.

2. THE DYNAMICS OF THREE POINT VORTICES

2.1. Classical equations of motion

The motion of the three point vortices in an otherwise quiescent potential flow on the plane is
governed by a system of six nonlinear ordinary differential equations (ODEs). These six equations
determine the evolution of the positions of the three vortices given in Cartesian co-ordinates by
(xα, yα), α = 1, 2, 3. Let the flow plane be regarded as the complex z-plane and the positions of the
vortices be denoted by zα = xα + iyα for α = 1, 2, 3. If we denote the strengths of the three vortices
by Γα 6= 0, α = 1, 2, 3, then the symmetric functions of the vortex strengths

γ1 = Γ1 + Γ2 + Γ3, (2.1a)

γ2 = Γ1Γ2 + Γ2Γ3 + Γ3Γ1, (2.1b)

γ3 = Γ1Γ2Γ3, (2.1c)

play an important role in classifying three vortex motion and formulating the governing equations.
The three ODEs for the motion of the three point vortices are [7, 18, 21, 28]

dz1
dt

=
1

2πi

(

Γ2

z1 − z2
+

Γ3

z1 − z3

)

, (2.2a)

dz2
dt

=
1

2πi

(

Γ1

z2 − z1
+

Γ3

z2 − z3

)

, (2.2b)

dz3
dt

=
1

2πi

(

Γ1

z3 − z1
+

Γ2

z3 − z2

)

, (2.2c)
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Finite time collapse of three point vortices in the plane 3

where the bar denotes complex conjugation. It is clear from (2.2) that the case of self-similar
collapse leads to singular vortex velocities in a finite time.

Within the six-dimensional system of ODEs (2.2), a three dimensional system of equations for
the three inter-vortex distances sα, defined by

s1 = |z2 − z3|, s2 = |z3 − z1|, s3 = |z1 − z2|, (2.3)

can be isolated [12, 31]. These three ODEs are

ds21
dt

=
2∆

π
Γ1

s23 − s22
s22s

2
3

,
ds22
dt

=
2∆

π
Γ2

s21 − s23
s23s

2
1

,
ds23
dt

=
2∆

π
Γ3

s22 − s21
s21s

2
2

, (2.4a)

where the area of the vortex triangle, ∆, is given by Heron’s formula [9]

16∆2 = 2s22s
2
3 + 2s23s

2
1 + 2s21s

2
2 − s41 − s42 − s43. (2.4b)

The sign of ∆ on the right-hand-side of the ODEs in (2.4a) is defined to be positive or negative
according to whether the three vortices 123 are oriented anti-clockwise or clockwise, respectively. At
instants of time when the vortex configuration becomes colinear, the description (2.4) is incomplete,
and a separate ODE for ∆ has to be consulted to ‘continue’ the evolution past such instants. This
ODE for ∆ is [8]

d∆

dt
=

1

8π

[

(Γ1 + Γ2)
s21 − s22

s23
+ (Γ2 + Γ3)

s22 − s23
s21

+ (Γ3 + Γ1)
s23 − s21

s22

]

. (2.5)

A qualitative picture of three vortex motion for different initial conditions and vortex strengths
may be obtained by considering (2.4) and (2.5) together with the sign of γ2 (2.1). We refer the
interested reader to the cited literature for the derivation and discussion of these results [8, 12, 31].

The system of equations (2.2) is a Hamiltonian system [7, 18, 21, 28], with the Hamiltonian
given by

H = − 1

4π
(Γ1Γ2 log |z1 − z2|2 + Γ2Γ3 log |z2 − z3|2 + Γ3Γ1 log |z3 − z1|2); (2.6)

it may be verified that the equations of motion (2.2) can be written as

Γα
dzα
dt

= 2i
∂H

∂zα
, α = 1, 2, 3. (2.7)

The Hamiltonian is interpreted as the finite part of the kinetic energy of the fluid [7, 18]. As with the
vortex velocities in (2.2), the Hamiltonian (2.6) becomes singular at the time of collapse. However,
we see that if all the vortex positions overlap at some instant of time, then the three logarithmic
singularities that are formed in (2.6) may be ‘removed’ from H—if they are all equal—by imposing
the condition γ2 = 0, with γ2 defined as in (2.1). This condition is discussed in detail in §3.1.

The Hamiltonian system has several independent constants of motion apart from the Hamilto-
nian (2.6) itself. These other constants of motion are the two components of linear impulse, Q and
P , written conveniently in complex form as

Q+ iP = Γ1z1 + Γ2z2 + Γ3z3, (2.8)

and the angular impulse I

I = Γ1|z1|2 + Γ2|z2|2 + Γ3|z3|2. (2.9)

It may be verified directly from (2.2) that Q+ iP and I are constants of motion. A different but
not independent integral of motion, L, may be obtained by combining I, Q and P as

L = γ1I −Q2 − P 2 = Γ1Γ2|z1 − z2|2 + Γ2Γ3|z2 − z3|2 + Γ3Γ1|z3 − z1|2. (2.10)

The center of vorticity for the three vortices is defined in terms of the linear impulse, for γ1 6= 0, as

zcv =
Q+ iP

γ1
. (2.11)

One can, if desired, shift the vortex positions so that zcv = 0.
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Fig. 1. A geometrical picture of three vortex motion, where the geometrical variables in the dynamically
evolving vortex triangle are tracked. This is equivalent to the dynamical evolution of the vortex positions,
except for those instants when the vortex configuration becomes colinear. The details of this formulation are
based on the assumption that the vortices are arranged in an anti-clockwise orientation, as shown here. This
figure has been reproduced with permission from [16].

2.2. Geometrical equations of motion

A geometrical picture of three vortex motion emerges from the simple observation that for any
three points in the plane forming a triangle, a circumcircle can always be defined which passes
through these three points [4]. The ‘geometrical variables’ are then the radius of the circumcircle,
the position of the center of the circumcircle (i.e., the circumcenter), the interior angles of the
vortex triangle, and the orientation of the vortex triangle in the plane. In this formulation, these
geometric variables are tracked in time instead of tracking the vortex positions zα via (2.2). This
geometrical description of three vortex dynamics was developed in detail in [16], and in this section
we summarize the equations of motion for this approach.

Consider the change of variables

z1 = Z +Reiϕ1 , z2 = Z +Reiϕ2 , z3 = Z +Reiϕ3 , (2.12)

where R is the circumradius and Z is the position of the circumcenter, as shown in Fig. 1. The
angles ϕ1, ϕ2 and ϕ3 are the angles made by the vortices at z1, z2 and z3, respectively, relative
to a horizontal axis passing through Z. Without any loss of generality we assume that the three
vortices are arranged in an anti-clockwise fashion as shown in Fig. 1, so that the interior angles of
the vortex triangle A, B, C are related to ϕα by

ϕ2 − ϕ1 = 2C, ϕ3 − ϕ2 = 2A, ϕ1 − ϕ3 = 2B − 2π. (2.13a)

The interior angles A, B and C have to satisfy the geometrical constraint

A+B + C = π. (2.13b)

If A, B and C are known, then (2.13) can be inverted to give ϕ1, ϕ2 and ϕ3 if one of the three
angles ϕα is also known; throughout this paper we choose to use ϕ1 to represent the orientation of
the vortex triangle. Knowing Z, R, A, B, C and ϕ1, we can then reconstruct the vortex positions
zα from (2.12) and (2.13).

We can derive ODEs for R, Z, A, B, C and ϕ1 by using (2.2) together with (2.12) and (2.13).
The details of this derivation are found in [16], and here we present only the final equations:

dR2

dt
=

1

4π

[

Γ1 cotB cotC(cotB − cotC)

+ Γ2 cotC cotA(cotC − cotA) + Γ3 cotA cotB(cotA− cotB)
]

, (2.14a)
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cotA
dA

dt
=

1

8πR2

[

Γ1(1− cotB cotC)(cotB − cotC)

− Γ2 cotC cotA(cotC − cotA)− Γ3 cotA cotB(cotA− cotB)
]

, (2.14b)

cotB
dB

dt
=

1

8πR2

[

Γ2(1− cotC cotA)(cotC − cotA)

− Γ3 cotA cotB(cotA− cotB)− Γ1 cotB cotC(cotB − cotC)
]

, (2.14c)

cotC
dC

dt
=

1

8πR2

[

Γ3(1− cotA cotB)(cotA− cotB)

− Γ1 cotB cotC(cotB − cotC)− Γ2 cotC cotA(cotC − cotA)
]

, (2.14d)

dZ

dt
=

Reiϕ1

4π∆

[

Γ1

(

e−iB cotC sinB − eiC cotB sinC
)

+ Γ2

(

eiC cotA sinC − eiA cotC sinA+ 2i e−iB sinA cosC
)

+ Γ3

(

e−iA cotB sinA− e−iB cotA sinB + 2i eiC sinA cosB
)

]

, (2.14e)

dϕ1

dt
=

1

4π∆

[

Γ1

(

cotB sin2C + cotC sin2B
)

+ Γ2

(

cotC sin2A− cotA sin2 C + sin 2A
)

+ Γ3

(

cotB sin2 A− cotA sin2 B + sin 2A
)

]

. (2.14f)

The area of the vortex triangle appearing in (2.14e) and (2.14f) is given by [16]

|∆| = 2R2 sinA sinB sinC. (2.15)

At instants of time when the vortices are colinear, we have ∆ = 0, A,B,C = 0 or π, and R → ∞.
Thus, as with the formulation in (2.4), the system (2.14) cannot be used to continue the evolution
of a vortex triangle through a colinear state. In contrast to the formulation in (2.4), however, it
is not possible to have a continuation of the solution via addition of an equation for d∆/dt owing
to the singularities that occur at these instants; one must instead return to (2.2) to continue the
triangle evolution through the colinearity.

The constants of motion H and L defined in (2.6) and (2.10) can be written in terms of R, A,
B and C by using the relations

s1 = 2R sinA, s2 = 2R sinB, s3 = 2R sinC (2.16)

to get

L = 4γ3R
2

(

sin2 A

Γ1
+

sin2B

Γ2
+

sin2C

Γ3

)

, (2.17a)

H = − 1

2π

[

γ2 log
R

R0
+ γ3

(

log sinA

Γ1
+

log sinB

Γ2
+

log sinC

Γ3

)

]

, (2.17b)

where R0 is a constant length scale, and we have used the freedom of choosing a constant in the
Hamiltonian without altering the equations of motion.

The full system of equations (2.14) along with the constraint (2.13b) provides a six-dimensional
system of ODEs, as expected for the three vortex system. Within this system of equations we have
a four-dimensional subsystem consisting of (2.14a), (2.14b), (2.14c) and (2.14d), along with the
three constraints (2.13b), (2.17a) and (2.17b). This reduced system of ODEs for R, A, B and C is
therefore an integrable system of equations within the full three vortex system.
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(a)

(b)
(c)

Fig. 2. Transformation of (a) the original vortex triangle under (b) clockwise rotation of the vortex labels
given by (2.18) and (c) reflection of the configuration about the x axis given by (2.20).

2.3. Symmetries in the governing equations

As a result of symmetries in the governing equations (2.14), not every choice of the vortex
strengths and triangle geometry leads to unique system behavior. Symmetries may take the form of
a simple permutation of the vortex indices, which does not change the physical system. They can
also take the form of a change in the triangle orientation or a change in the sign of all circulations,
both of which correspond to physical changes. These symmetries, described in detail below, can be
applied in any combination.

Consider first a permutation of the vortex labels that leaves the physical characteristics of the
system unchanged. Since the formulation in §2.2 does not allow for a clockwise orientation of the
labels, all permutations must be a rotation of the labels. Assume the labels are rotated clockwise,
giving the ‘new’ configuration shown in Figure 2(b) with

Γ′

1 = Γ3, z′1 = z3, A′ = C, ϕ′

1 = ϕ3,

Γ′

2 = Γ1, z′2 = z1, B′ = A, ϕ′

2 = ϕ1,

Γ′

3 = Γ2, z′3 = z2, C ′ = B, ϕ′

3 = ϕ2,

(2.18a)

where the primes indicate the parameters and variables in the relabeled system. The location and
size of the circumcircle have not changed, so that Z ′ = Z and R′ = R. Applying this transformation
(2.18a) to the equations of motion (2.14), together with (2.13), gives

d(R′)2

dt
=

dR2

dt
,

dA′

dt
=

dC

dt
,

dB′

dt
=

dA

dt
,

dC ′

dt
=

dB

dt
, (2.18b)

dϕ′

1

dt
=

dϕ3

dt
=

dϕ1

dt
− 2

dB

dt
,

dZ ′

dt
=

dZ

dt
,

demonstrating that the motions of these two configurations are equivalent. This transformation does
not change the symmetric functions of the vortex strengths (2.1) and the key system constants L
and H (2.17), giving

γ′1 = γ1, γ′2 = γ2, γ′3 = γ3, L′ = L, H ′ = H. (2.18c)

An anti-clockwise rotation of the labels is equivalent to two clockwise rotations. Thus, the dynamics
of any vortex triangle is invariant to a rotation of the vortex labels, as one should expect. Note that
the final equality in (2.18b) is difficult to show from (2.14e) and is seen more easily by applying the
transformation to a form of (2.14e) that mixes the geometric and complex variables (see equation
(27b) in [16]), namely

dZ

dt
=

1

8πi∆
[(Q+ iP ) (cotA+ cotB + cotC)− γ1 (z1 cotA+ z2 cotB + z3 cotC)] . (2.19)
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Consider now the case in which the vortex configuration is reflected about the x axis, as
illustrated in Figure 2(c). In order to maintain an anti-clockwise orientation for the transformed
vortex locations so that we can apply the formulation in §2.2, two of the reflected vortices must be
relabeled. In anticipation of applying this transformation to self-similar motion in §3.2, we represent
this reflection as

Γ′

1 = −Γ3, z′1 = z3, A′ = C, ϕ′

1 = 2π − ϕ3,

Γ′

2 = −Γ2, z′2 = z2, B′ = B, ϕ′

2 = 2π − ϕ2,

Γ′

3 = −Γ1, z′3 = z1, C ′ = A, ϕ′

3 = 2π − ϕ1.

(2.20a)

One can think of this transformation as viewing the configuration ‘from behind’. The size of the
circumcircle remains unchanged, so R′ = R, but the circumcenter becomes Z ′ = Z. Applying this
transformation (2.20a) to the equations of motion (2.14) and (2.19), together with (2.13a), gives

d(R′)2

dt
=

dR2

dt
,

dA′

dt
=

dC

dt
,

dB′

dt
=

dB

dt
,

dC ′

dt
=

dA

dt
, (2.20b)

dϕ′

1

dt
= −dϕ3

dt
= −

(

dϕ1

dt
− 2

dB

dt

)

,
dZ ′

dt
=

dZ

dt
,

and the motions are reflectionally symmetric, as expected. In this case, the symmetric functions of
vortex strengths and the key constants become

γ′1 = −γ1, γ′2 = γ2, γ′3 = −γ3, L′ = L, H ′ = H. (2.20c)

Thus we see that a full representation of the three-vortex dynamics can be determined by exploring
only a subset of the full (γ1, γ2, γ3) parameter space; for example, one can, without any loss of
generality, restrict attention to those configurations for which γ3 > 0, with all other configurations
given by a reflection of these cases.

Finally, consider changing the signs on all of the vortices without changing their locations, giving

Γ′

1 = −Γ1, z′1 = z1, A′ = A, ϕ′

1 = ϕ1,

Γ′

2 = −Γ2, z′2 = z2, B′ = B, ϕ′

2 = ϕ2,

Γ′

3 = −Γ3, z′3 = z3, C ′ = C, ϕ′

3 = ϕ3.

(2.21a)

Applying this transformation (2.21a) to the equations of motion (2.14) and (2.19), and using (2.13a),
gives

d(R′)2

dt
= −dR2

dt
,

dA′

dt
= −dA

dt
,

dB′

dt
= −dB

dt
,

dC ′

dt
= −dC

dt
, (2.21b)

dϕ′

1

dt
= −dϕ1

dt
,

dZ ′

dt
= −dZ

dt
,

and the symmetric functions of vortex strengths and the system constants again become

γ′1 = −γ1, γ′2 = γ2, γ′3 = −γ3, L′ = L, H ′ = H. (2.21c)

Therefore, changing the signs on all three of the vortices is equivalent to reversing time in the
equations of motion.

3. SELF-SIMILAR MOTION OF THREE POINT VORTICES

3.1. Necessary and sufficient conditions for self-similar motion and finite time collapse

It has been known since the very first investigation of three vortex motion [6, 12] that taking
L = 0 and γ2 = 0 leads to self-similar motion. Here we show that L = 0, γ2 = 0 are both necessary
and sufficient for the self-similar motion of three point vortices in an approach that complements
the analysis of Aref [5].

Consider the case in which the three point vortices collapse into a single point at some finite
time t = τ > 0, so that z1(τ) = z2(τ) = z3(τ). In terms of the geometric variables, the condition

REGULAR AND CHAOTIC DYNAMICS Vol. 00 No. 0 0000



8 Krishnamurthy & Stremler

at collapse may be expressed as R(τ) = 0. Then, since L given by (2.17a) is a constant of motion,
we must have L = 0 as a necessary condition for collapse. Since R(t) 6= 0 for t 6= τ , this condition
becomes

sin2A(t)

Γ1
+

sin2B(t)

Γ2
+

sin2C(t)

Γ3
= 0, (3.1)

where it has been emphasized that the angles A(t), B(t) and C(t) may vary with time. This
equation shows that in order to have real-valued solutions for A(t), B(t) and C(t), the vortex
strengths cannot all be of the same sign. From the expression (2.17b) for the Hamiltonian of the
three vortex system we find, by taking exponentials on both sides, that

exp(−2πH/γ3) = (R(t)/R0)
γ2/γ3 (sinA(t))1/Γ1 (sinB(t))1/Γ2 (sinC(t))1/Γ3 . (3.2)

We note that we must always have exp(−2πH/γ3) > 0. For the condition R(τ) = 0 to be consistent
with (3.2), we must have either that γ2 = 0, or

(sinA(t))1/Γ1 (sinB(t))1/Γ2 (sinC(t))1/Γ3 ∼ (1/R(t))γ2/γ3 as t → τ. (3.3)

Since not all vortex strengths are of the same sign, (3.3) could be true if one of the angles goes
to zero or π. In a three vortex collision, this corresponds to the remaining two angles also going
to zero or π and the vortices becoming colinear. A colinear vortex configuration corresponds to
R → ∞, contradicting R(τ) = 0. Therefore (3.3) can never be true, and we conclude that γ2 = 0 is
a necessary condition for three-vortex collapse.

Let us consider the possibility that only two of the vortices—say vortex 1 and vortex 2—collide
at some instant of time τ > 0, with vortex 3 remaining separate. This situation corresponds to C(t)
tending to zero as t → τ , while A(t), B(t), and R(t) remain finite (as t → τ). This contradicts (3.2),
and we conclude that a two vortex collision in a three vortex system is not a possible solution.

We have so far established that L = 0 and γ2 = 0 are necessary conditions for three-vortex
collapse in a finite time τ > 0; we now show that these conditions are also sufficient. Assuming
L = 0 leads to equation (3.1). We get from (2.17b) and assuming γ2 = 0 that

H = − γ3
2π

(

log sinA(t)

Γ1
+

log sinB(t)

Γ2
+

log sinC(t)

Γ3

)

. (3.4)

In a three-dimensional (sinA, sinB, sinC) space, (2.13b), (3.1) and (3.4) define three surfaces that
intersect at most at isolated points. Therefore when assuming L = 0 and γ2 = 0 we can only have
solutions where the angles A, B and C are constant in time. If A, B and C are constants, then
from (2.14a), we have

dR2

dt
= k1, (3.5)

where k1 is a constant. Note that if we take A = B = C, then by (2.14a) we have k1 = 0 and thus
R = constant, which is the special case of relative equilibria of three point vortices discussed in [16].
Under the assumption that R(τ) = 0, the solution to (3.5) is

R(t) = R0

√

1− t

τ
, (3.6)

where we have chosen the length scale R0 = R(0) and the constant k1 = −R2
0/τ < 0. We have thus

shown that the necessary and sufficient conditions for finite time collapse are L = 0 and γ2 = 0,
with τ > 0.

If the angles in the vortex triangle are constants and the circumradius is time dependent, then
the motion has to be self-similar. We thus conclude that the only possible form of finite time collapse
is self-similar collapse. Given a set of vortex strengths Γ1, Γ2 and Γ3 compatible with γ2 = 0, a
vortex configuration (defined by A, B and C) that collapses can always be found as the points of
intersection of (2.13b), (3.1) and (3.4).

We have so far considered only τ > 0, which means that the vortex configuration collapses to
a point at t = τ . We can also consider τ < 0, corresponding to k1 > 0. We see from (3.5) that if
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Finite time collapse of three point vortices in the plane 9

k1 > 0 then R always increases with time, with R(τ) = 0. Since A, B and C are constants, τ < 0
corresponds to self-similar expansion and τ is interpreted as the time-scale of expansion. Thus,
in general we have that L = 0 and γ2 = 0 are necessary and sufficient conditions for self-similar
motion of the vortex triangle, with the sign of τ determining whether that motion is collapsing or
expanding.

3.2. Symmetries in self-similar motion

Self-similar motion of a vortex triangle can be parameterized by a single scalar. Since γ2 = 0,
there must be at least one vortex with positive circulation (and at least one with negative
circulation). Without any loss of generality, we can assign the vortex labels such that Γ1 > 0 and
work in terms of the vortex strength ratio

g = Γ1/Γ2; (3.7a)

by (2.1) (with γ2 = 0) we also have

Γ1/Γ3 = −(g + 1), Γ2/Γ3 = −(g + 1)/g. (3.7b)

We assume that the strengths of all three vortices are non-zero and finite, giving three values of g
that correspond to singularities: taking g → ±∞ corresponds to having Γ1 → ∞ and/or Γ2,Γ3 → 0;
if g = 0, then Γ1 = Γ3 = 0 and/or Γ2 → ±∞; and if g = −1, then Γ1 = Γ2 = 0 and/or Γ3 → ±∞.
All other values of g are allowed.

The observations in §2.3 enable us to limit the range of g that must be considered for determining
unique self-similar motion. Consider first the case of two positive vortices and one negative vortex.
By choice we assign the labels so that Γ1 > 0 and vortices 2 and 3 are arranged in an anti-clockwise
orientation. If Γ3 > 0, then by (3.7) we have g < −1, and we rotate the system labels clockwise using
the transformation (2.18), so that in the relabeled system we have Γ′

1 = Γ3 > 0 and Γ′

3 = Γ2 < 0
with the strength ratio

g′ = Γ′

1/Γ
′

2 = Γ3/Γ1 = −1/(g + 1) > 0. (3.8)

Since the vortex motion is invariant to this rotation of labels, every self-similar motion with g < −1
corresponds under rotation of labels to a self-similar motion with g > 0, and we can, without any
loss of generality, restrict our attention to g > −1.

Consider now the case of two positive vortices with g > 0, corresponding to Γ1,Γ2 > 0 and
Γ3 < 0. If we reflect the configuration about the x axis, the reflected configuration has two negative
vortices; we again choose for the (only) positive vortex to be labeled as vortex 1, and label the
remaining vortices in an anti-clockwise direction. This transformation, given by (2.20), gives the
new strength ratio

g′ = Γ′

1/Γ
′

2 = Γ3/Γ2 = −g/(g + 1); (3.9)

since g > 0 we have −1 < g′ < 0. Thus, without any loss of generality, we can restrict our attention
to configurations consisting of Γ1 > 0 and Γ2,Γ3 < 0, for which −1 < g < 0; all other configurations
are related to one of these cases under a physical reflection and/or a rotation of labels. Note that
−1 < g < 0 with Γ1 > 0 gives γ3 > 0.

Finally, consider changing the signs on all of the vortices without changing their locations, as
given by the transformation (2.21). Assume we start with a configuration that has Γ1 > 0 and
−1 < g < 0. After a sign change, the new configuration has Γ′

1 < 0, Γ′

2 > 0, Γ′

3 > 0 and g′ = g, with
motion equivalent to that of the initial system under the reversal of time. Applying two clockwise
rotations (2.18) gives a transformed configuration with Γ′′

1 = Γ′

2 > 0, Γ′′

2 = Γ′

3 > 0, and Γ′′

3 = Γ′

1 < 0,
for which

g′′ = −(g + 1)/g > 0. (3.10)

We know this double-prime configuration has motion symmetric to that in a reflected system
with −1 < g′′′ < 0 under the (additional) reflective transformation in (2.20). This combination of
transformations gives

Γ′′′

1 = Γ1, Γ′′′

2 = Γ3, Γ′′′

3 = Γ2,

A′′′ = A, B′′′ = C, C ′′′ = B
(3.11a)
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A

B

(a)

0

-1

(b)

B

A

Fig. 3. Level curves of (a) g and (b) H̃ in the (A,B) plane, with C = π − A−B, that lead to self-similar
motion. Solid lines show collapsing solutions and dotted lines show expanding solutions; dashed lines are the
singular cases described in the text and are labeled according to the value of g in panel (a). Open circles mark
the parameters for the equilateral triangle equilibrium configuration; solid circles are the colinear cases. The
unshaded regions correspond to −1 < g < 0.

and the vortex strength ratio

g′′′ = −g′′/(g′′ + 1) = −(g + 1). (3.11b)

Thus, for every configuration with −1 < g < 0, changing the sign of every vortex and then rotating
and reflecting the configuration leads to symmetric vortex motion with time reversed. That is, every
collapsing (expanding) configuration with Γ1 > 0 and strength ratio −1 < g < 0 is equivalent under
reflection, rotation, and reversal of time to an expanding (collapsing) configuration with Γ1 > 0 and
−1 < g′′′ < 0, and these two configurations have the same value of the Hamiltonian, H ′′′ = H.

3.3. Angle dependence on strength ratio and energy

Equations (3.1) and (3.4) for L and H, respectively, allow us to determine (numerically) the
angle values that correspond to a collapsing or expanding configuration. Equation (3.1) can be
interpreted as defining level curves of g (when L = 0). Applying (2.1) and using the condition
A+B + C = π to eliminate C in (3.1) gives

g = −sin(B) sin(2A+B)

sin(A) sin(A+ 2B)
= −1− cot2 A− 2 cotA cotB

1− cot2 B − 2 cotA cotB
. (3.12)

Equation (3.12) defines a one parameter family of curves in A-B space, parameterized by g and
shown in Fig. 3(a), for which self-similar solutions exist. The lines A = B (6= C) and A+B = π
(equivalently, C = 0) give g = −1, the lines 2A+B = π (equivalently, A = C 6= B) and B = 0 give
g = 0, and the lines A+ 2B = π (equivalently, B = C 6= A) and A = 0 correspond to g → ±∞.
Since these conditions correspond to singularities in the vortex strengths (see §3.2), it follows,
in particular, that self-similar motions do not exist for isosceles triangle configurations (see also
§3.4). These singular lines meet at the point A = B = C = π/3, which corresponds to the rotating
equilibria discussed in [16]. As discussed in §3.2, we can assume without any loss of generality
that −1 < g < 0 with Γ1 > 0. This restriction limits the accessible space in the (A,B) plane to the
unshaded regions in Fig. 3. Note that the line A+ 2B = π delineates the collapsing and expanding
solutions in (A,B)-space, as indicated in Fig. 3(a,b) and discussed in §3.4.
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Next, applying (2.1) and using the condition A+B +C = π to eliminate C in (3.4) gives

log

[

sinA

sin(A+B)

]

+ g log

[

sinB

sin(A+B)

]

= −g (g + 1) H̃ (3.13a)

or

log

[

1 + cot2B

(cotA+ cotB)2

]

+ g log

[

1 + cot2 A

(cotA+ cotB)2

]

= −2g(g + 1)H̃, (3.13b)

where H̃ = −2πH/Γ2
1 is a dimensionless form of the Hamiltonian. We can combine (3.13a) with

(3.12) to find H̃ as a function of only A and B, giving

H̃ =
sin(A) sin(A+ 2B)

sin2 B − sin2A

{

log

[

sinB

sin(A+B)

]

− sin(A) sin(A+ 2B)

sin(B) sin(2A +B)
log

[

sinA

sin(A+B)

]}

. (3.13c)

Level curves in the (A,B) plane corresponding to H̃ = constant in (3.13c) are shown in Fig. 3(b).
The intersections of these level curves with the lines A = B and 2A+B = π are isolated singular-
ities.

Note that although the Hamiltonian H (2.17b) is invariant to the transformations considered in

§2.3 and §3.2, the dimensionless Hamiltonian H̃ (3.13) is not invariant because Γ1 is used in the non-

dimensionalization. The values of H̃ reported in this manuscript assume −1 < g < 0 with Γ1 > 0;
applying these results to a system that does not satisfy these assumptions requires a corresponding

transformation of H̃.

3.4. Collapsing/expanding time for self-similar motion

Expressions for τ in terms of A, B, C and the vortex strengths can be obtained from (2.14b),
(2.14c) and (2.14d). These expressions are [16]

−4πR2
0

τ
= Γ1(cotB − cotC) = Γ2(cotC − cotA) = Γ3(cotA− cotB). (3.14)

These relationships can not hold for any isosceles triangle configuration with finite vortex strengths,
in which case they do not give a unique value for τ . Thus, the restriction on isosceles triangles noted
in §3.3 can also be seen from the expressions (3.14), which are algebraically symmetric between A,
B and C.

We can introduce the dimensionless time parameter

τ̃ =
τΓ1

4πR2
0

; (3.15a)

with Γ1 > 0, τ̃ > 0 (< 0) corresponds to self-similar collapse (expansion). In combination with
(3.14) and (3.7) this definition gives

τ̃ =
Γ1/Γ3

cotB − cotA
=

g + 1

cotA− cotB
. (3.15b)

Combining (3.15) with (3.12) enables us to determine τ̃ as a function of A,B independent of the
vortex strengths, giving

τ̃ = −sinB sin(A+B)

sin(A+ 2B)
. (3.15c)

Figure 4(a) shows level curves corresponding to constant values of τ̃ in (3.15c); the self-similar
motion of triangles with angles (A,B,C), with C = π −A−B, lying on a given curve all have
the same time of collapse or expansion. The self-similar time scale τ (3.14), and hence τ̃ (3.15), is
singular when A = B, A+ 2B = π (i.e. B = C), or 2A+B = π (i.e. A = C). It is seen from (3.15c)
that τ̃ , and hence τ , is positive or negative according to whether A+ 2B > π or A+ 2B < π. The
line A+ 2B = π therefore delineates the collapsing and expanding solutions in (A,B)-space, as
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B

A

Fig. 4. Level curves of τ̃ as a function of the angles A and B (with C = π − A−B) that lead to self-similar
motion; solid lines show collapsing solutions and dotted lines show expanding solutions. Dashed lines are the
singular cases described in the text. The open circle is the equilateral triangle equilibrium configuration; solid
circles are the colinear cases. The unshaded portions of the graph correspond to −1 < g < 0.

indicated in Figs. 3 and 4. The intersections of the level curves in Fig. 4(a) with the lines A = B
and 2A+B = π are isolated singularities.

With this geometric approach it is also possible to determine the time τ̃ as a function of H̃ and
g. First, use (3.15) to eliminate cotB from (3.12) and obtain a quadratic equation for cotA, which
has the solution

3τ̃ cotA = (2g + 1) + (−1)n
√

g (g + 1) + 1 + 3τ̃2, (3.16a)

where n is an integer. With −1 < g < 0 we have 0 < A < π/2, for which cotA > 0, and the
inequalities

2g + 1−
√

g2 + g + 1 < 0 < 2g + 1 +
√

g2 + g + 1.

Thus, even values of n give τ̃ > 0 and odd values of n give τ̃ < 0. Similarly, eliminating cotA from
(3.12) gives

3τ̃ cotB = −(g + 2) + (−1)n
√

g (g + 1) + 1 + 3τ̃2, (3.16b)

with n again an integer. If we assume −1 < g < 0 and τ̃ > 0, then π/3 < B < π and the left hand
side of (3.16b) changes sign as B is varied, with a zero at B = π/2. The right hand side of (3.16b)
changes sign as g is varied only when n is even; it is strictly negative when n is odd, as is τ̃ cotB
when τ̃ < 0. Thus, we again see that even values of n give τ̃ > 0 and odd values of n give τ̃ < 0. We
can therefore make the substitution (−1)n = sgn(τ̃ ) in (3.16), where sgn(x) is the signum function.
Equations (3.16) can be rewritten as

9τ̃2(1 + cot2 A) = [fg(τ̃ ) + g − 1] [fg(τ̃) + g + 2] , (3.17a)

9τ̃2(1 + cot2B) = [fg(τ̃ ) + g − 1] [fg(τ̃)− 2g − 1] , (3.17b)

9τ̃2(cotA+ cotB)2 = [fg(τ̃ ) + g − 1]2 , (3.17c)

where

fg(τ̃) = 2 sgn(τ̃)
√

3τ̃2 + g2 + g + 1. (3.18)
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By substituting (3.17) into (3.13b) we arrive at an implicit equation for τ̃(H̃ ; g) given by

F (τ̃ ; g) = G(H̃; g), (3.19a)

where

F (τ̃ ; g) =
[fg(τ̃)− 2g − 1] [fg(τ̃ ) + g + 2]g

[fg(τ̃ ) + g − 1](g+1)
(3.19b)

and

G(H̃; g) = exp
[

−2g(g + 1)H̃
]

. (3.19c)

In general, there are two solutions of (3.19) (with (3.18)) corresponding to whether τ̃ is positive
or negative. According to the transformation (3.11), there is a symmetry between collapsing

and expanding configurations: they are related by g′ = −(g + 1) and H̃ ′ = H̃. Applying this
transformation to (3.18) and (3.19) and taking τ̃ ′ = −τ̃ , we find that

fg′(τ̃
′) = −fg(τ̃), F (τ̃ ′; g′) = F (τ̃ ; g), G(H̃ ′; g′) = G(H̃; g), (3.20)

so that the solutions of equation (3.19) are unchanged. Therefore, the two solutions of (3.19) for
±τ̃ correspond to the collapsing and expanding configurations that are related by the symmetry in
(3.11).

A few special cases of (3.19) are worth considering. If g = −1/2, (i.e. Γ2 = Γ3 = −2Γ1), then
(3.18) and (3.19) become

f2
−1/2(τ̃ )

f2
−1/2(τ̃)− 9/4

= eH̃ , f2
−1/2(τ̃ ) = 3(4τ̃2 + 1), (3.21a)

which can be solved explicitly for τ̃ to give

τ̃(H̃;−1/2) = ±1

4

[

3

eH̃ − 1
− 1

]1/2

. (3.21b)

Both collapsing and expanding solutions are given by (3.21) since the transformation (3.11) leaves
g invariant if g = −1/2. When g → 0 we have

lim
g→0

H̃ = lim
g→0

{

log [F (τ̃ ; g)]

−2g(g + 1)

}

→ 0

0
;

applying l’Hôpital’s rule gives

lim
g→0

H̃ =
1

2

{

3

f0(τ̃)− 1
+ log

[

f0(τ̃)− 1

f0(τ̃) + 2

]}

, (3.22a)

with

f0(τ̃) = 2 sgn(τ̃ )
√

3τ̃2 + 1. (3.22b)

Equation (3.22) gives an implicit expression for τ̃(H̃ ; g) in the limit g → 0. It may be verified that
taking the limit g → −1 produces the same result as (3.22) after a change in the sign of τ̃ , as
expected from the transformation (3.11).

A plot of τ̃ > 0 as a function of H̃ is shown in Fig. 5a,b for various values of g. Solution curves

for τ̃(H̃ ; g) < 0 can be obtained by reflecting the results in Fig. 5a,b about the τ̃ = 0 axis and

taking H̃ 7→ H̃, g 7→ −(g+ 1). In Fig. 5a it might appear that the limiting cases g → 0 and g → −1
form an ‘outer envelope’ for the curves with parameter values −1 < g < 0. However, this is not the
case, as seen clearly in Fig. 5b.

Figure 5(a) shows τ̃ → 0 as H̃ → H̃max(g), where H̃max(g) is the maximum value of H̃ for a
given value of g. This limit corresponds to the configuration becoming colinear, in which case the
unscaled collapse time, τ from (3.14), becomes infinite. The behavior of τ̃ is tied to the choice of
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Fig. 5. (a,b) Dependence of τ̃ on H̃ ; curves are shown for g = −j/8, j = 0, ..., 8. Dashed lines are the special
cases g = −1, 0 and are labeled in (a) according to the value of g; the heavy solid line is the special case
g = −1/2. Panel (b) shows the boxed region in (a). The square in (b) marks the point at which the curves for

g = −3/4 and g = −7/8 intersect, giving H̃ ≈ 1.009 and τ̃ ≈ 0.250. (c) Dependence of the rescaled τ̂ on H̃ ;
example curves are labeled according to the corresponding value of g.

R0 as the characteristic length in the scaling (3.15a); for a fixed value of R0, it is seen from (2.16)
that the separations between the vortices become zero as the configuration becomes colinear. In
this situation one may wish to scale τ instead by one of the vortex separations; combining (2.16)
and (3.15a) gives, for example,

τ̂ =
τΓ1

πs23,0
=

τ̃

sin2C
, (3.23)

where s3,0 is the distance between vortices 1 and 2 at time t = 0. Since τ̂ mixes the two geometric
representations, it does not appear possible to obtain an implicit mathematical relationship

between τ̂ and H̃, but τ̂(H̃) can be determined numerically, as shown in Fig. 5(c). When the
vortex separations are kept finite, the collapse time τ̂ becomes infinite as the vortex configuration
approaches both the equilateral and colinear configurations. The g = −1/2 curve in Fig. 5(c) can
be compared qualitatively with Kudela [17] who found, using a series of numerical experiments, a
representation for τ(H) when (Γ1,Γ2,Γ3) = (−2,−2, 1).

For given values of τ̃ (or τ̂) and H̃, equation (3.19) can be a multivalued function of g, as
seen by the intersecting curves in Fig. 5b,c. That is, given any two strength ratios g and ĝ, there
exist two corresponding vortex configurations undergoing self-similar motion that have the same

characteristic time of motion τ̃ and value of the Hamiltonian H̃. For a given value of g, the related

value ĝ can be determined through numerical solution of H̃(τ̃ ; g) = H̃(τ̃ ; ĝ), i.e.

lnF (τ̃ ; g)

−2g(g + 1)
=

lnF (τ̃ ; ĝ)

−2ĝ(ĝ + 1)
, (3.24)

for a specified value of τ̃ . In Fig. 6a we show the relationship between g and ĝ for representative
values of τ̃ . The corresponding self-similar triangle motion for a particular example are shown in
Fig. 11c,d. In Fig. 6b we show an alternate view of the multivaluedness of (3.19) as a function of

g by plotting τ̃ as a function of g for fixed values of H̃.

REGULAR AND CHAOTIC DYNAMICS Vol. 00 No. 0 0000



Finite time collapse of three point vortices in the plane 15

–1.0 –0.8 –0.6 –0.4 –0.2 0.0
–1.0

–0.8

–0.6

–0.4

–0.2

0.0

1/4

1/8

1/2

1

10

0.0

0.2

0.4

0.6

0.8

1.0

–1.0 –0.8 –0.6 –0.4 –0.2 0.0

(a) (b)

1/5

1/4

1/3

1/2

3/4

5/4

2

Fig. 6. (a) Values of g and ĝ giving two different configurations with the same values of τ̃ and H̃ , determined

numerically. Curves are labeled according to the corresponding value of τ̃ ; note that the value of H̃ is not
constant along these lines. The dashed line is the trivial case g = ĝ. The square symbol marks a representative

case with g = −1/2, ĝ ≈ −0.874, τ̃ = 1/2, and H̃ = ln(8/5); trajectories for this case are shown in Fig. 11(c,d).

(b) Values of τ̃ as a function of g for various values of H̃ = constant; curves are labeled according to the

corresponding value of H̃.

3.5. Self-similar motion of the vortex triangles

The description of the motion of the vortex triangle can be completed by specifying the motion
of its circumcenter Z and its orientation as given by ϕ1, which can be determined through (2.14e)
and (2.14f) respectively. These equations take on a simplified form during self-similar motion since
the angles A, B, C are constant. Let us define the dimensionless quantities

t̃ =
t

τ
and Z̃ =

Z

R0
, (3.25)

so that collapsing solutions with τ > 0 have t̃ > 0 and expanding solutions with τ < 0 have t̃ < 0.
By this non-dimensionalization, the time of collapse corresponds to t̃ = 1. We can then re-write
(2.14f) and (2.14e), respectively as

dϕ1

dt̃
=

τ̃K1

1− t̃
, (3.26a)

dZ̃

dt̃
= τ̃K2

eiϕ1(t̃)

√

1− t̃
, (3.26b)

where K1 and K2 are constants given by

K1 = −sin2(A−B) + sin2(B − C) + sin2(C −A)

4 sin(A−B) sinB sinC sin(C −A)
, (3.27a)

K2 =
sin 2(A−B) + sin 2(B − C) + sin 2(C −A) + 8 cosB sin3 B − 8 cosC sin3 C

8 sin(A−B) sinB sinC sin(C −A)

+ i
−2 sin2 A+ sin2 2B + sin2 2C + sin2(A−B)− sin2(B − C) + sin2(C −A)

4 sin(A−B) sinB sinC sin(C −A)
. (3.27b)

Integrating (3.26a), we obtain ϕ1(t̃) and Z̃ as

ϕ1(t̃) = −τ̃K1 log
(

1− t̃
)

(3.28a)
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A

B

Fig. 7. Level curves of s̃(1) (solid lines) and s̃(−1) (dotted lines) in the (A,B) plane, with C = π −A−B.
Symbols, limiting lines and shading follow the conventions in Figs. 3 and 4a.

Z̃(t̃) = −τ̃K2

(

1− t̃
)1/2−iτ̃K1

1/2 − iτ̃K1
. (3.28b)

Here we have set ϕ1(0) = 0, so that the line joining z1 and Z is initially horizontal, and Z̃(1) = 0,
so that the vortices collapse into the origin of co-ordinates. This latter choice is equivalent to taking
the center of vorticity (2.11) to coincide with the origin of co-ordinates, i.e. with taking zcv = 0. As
noted in [16], the circumcircle always passes through the point zcv, and thus the point of collapse
must lie on the boundary of the original circumcircle.

The distance traveled by the circumcenter is the arc length of the path of Z̃(t̃),

s̃(T̃ ) =

∫ T̃

0

∣

∣

∣

∣

∣

dZ̃

dt̃

∣

∣

∣

∣

∣

dt̃, (3.29a)

which gives a representation of the distance traveled by the vortex triangle during the time

interval 0 ≤ t̃ ≤ |T̃ |. The sign in (3.29a) is chosen according to whether the configuration is
collapsing (positive) or expanding (negative). By substituting (3.26b) into (3.29a) and performing
the integration we see that

s̃(T̃ ) = 2τ̃ |K2|
(

1−
√

1− T̃
)

, (3.29b)

with τ̃ > 0, 0 < T̃ ≤ 1 for self-similar collapse and τ̃ , T̃ < 0 for self-similar expansion. In particular
we see that

s̃(1) = 2τ̃ |K2| (3.29c)

is the distance traveled by the circumcenter during the time it takes for a configuration to collapse,
and

s̃(−1) = 2τ̃ |K2|
(

1−
√
2
)

> 0 (3.29d)

is the distance traveled during expansion over the same unit of time. Representative level curves of
s̃(1) and s̃(−1) in the (A,B) plane are shown in Fig. 7. Since the point of collapse always occurs
on the boundary of the initial (dimensionless) circumcircle with radius one, it must be true that
s̃(1) ≥ 1; numerically we find that s̃(1) > 2.
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Fig. 8. Values of (a) g, (b) H̃ , (c) τ̃ and (d) s̃(T̃ ), with T̃ = ±1, as functions of B for the special case A = π/3.
The solid lines denote collapsing solutions and the dotted lines denote expanding solutions. The open circles
mark the equilibrium configurations for which B = π/3.

3.6. Examples of self-similar motion

One may plot examples of self-similar motion by fixing as constant either g, H̃ or τ̃ and following
along a curve in Fig. 3 or Fig. 4a. Here we choose instead to explore the solution space ‘centered’ on
the equilibrium configuration (A,B) = (π/3, π/3) by fixing A = π/3. Equations (3.12), (3.13c) and

(3.15) then become expressions for g, H̃ and τ̃ , respectively, as functions of B alone. These quantities
vary continuously as functions of B for 0 < B < 2π/3, except for an isolated singularity at B = π/3,
as shown in Fig. 8. The singularity in g(B) at B = π/3 occurs since there exists an equilibrium

configuration for every value of g. The Hamiltonian H̃ = 0 for the equilibrium configurations, and

H̃ → ∞ for the singular configurations corresponding to B = 0 or B = 2π/3 (for A = π/3). It is

clear from Fig. 8b that H̃ attains its minimum of zero when the vortices are in equilibrium (at
B = π/3), and is positive for self-similar motion. This result is consistent with [23]. It is to be
expected that τ̃ → ∞ for the equilibrium configurations; we also see that τ̃ → 0 for the singular
configurations with B = 0, 2π/3, which we discuss more below.

Figure 9 shows a selection of collapsing configurations for A = π/3 and −1 < g < −1/2. For g
near −1/2, the vortex configuration is near that of an equilateral triangle, and the configuration
rotates about the center of vorticity many times before collapsing. As g → −1, we have C → 0 and
B → 2π/3, the distance between vortices 1 and 2 approaches zero, the strengths of vortices 1 and
2 approach being equal and opposite, and the strength of vortex 3 becomes large relative to the
other two vortices. The configuration in this limit can be approximated as a small vortex dipole
(vortices 1 and 2) moving in the field of a strong, fixed vortex (vortex 3). Although the strengths of
the dipole vortices are small relative to vortex 3, their separation is approaching zero, giving rise to
a large self-induced propagation speed of the dipole toward vortex 3; for A = π/3, this self-induced
motion is at an angle of π/3 relative to the motion induced by vortex 3. Since we take Γ1 > 0, in
the limit as g → −1 the dipole self-propagation speed becomes infinite, leading to τ̃ → 0.

Representative expanding configurations for A = π/3 and −1/2 < g < 0 are shown in Fig. 10.
These expanding configurations are related to the collapsing configurations in Fig. 9 by the

transformation (3.11). As illustrated in Fig. 8, the dimensionless quantities H̃ and |τ̃ | remain
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Fig. 9. Examples of self-similar collapse of three vortices with A = π/3 and g = (a) −9/16, (b) −5/8, (c) −3/4,
(d) −7/8, and (e) −15/16. Triangles and circumcircles are shown with light solid lines. Open circles mark the
initial vortex positions, labeled by vortex number; closed circles mark the initial position of the circumcenter;
and the + symbols mark the point of collapse. Vortex trajectories are shown with dashed lines, and circumcen-
ter trajectories are shown with heavy solid lines. For each triangle, the circumcircle has initial radius R0 = 1,
Γ1 = 1, and A = π/3; the remaining parameters for each example are (a) (Γ2,Γ3) = (−16/9,−16/7), (B,C) ≈

(72.2◦, 47.8◦), H̃ ≈ 0.061, τ̃ ≈ 1.705; (b) (Γ2,Γ3) = (−8/5,−8/3), (B,C) ≈ (83.4◦, 36.6◦), H̃ ≈ 0.232, τ̃ ≈

0.819; (c) (Γ2,Γ3) = (−4/3,−4), (B,C) ≈ (100.9◦, 19.1◦), H̃ ≈ 0.795, τ̃ ≈ 0.325; (d) (Γ2,Γ3) = (−8/7,−8),

(B,C) ≈ (112.4◦, 7.6◦), H̃ ≈ 1.627, τ̃ ≈ 0.126; and (e) (Γ2,Γ3) = (−15/16,−16), (B,C) ≈ (116.6◦, 3.4◦), H̃ ≈
2.340, τ̃ ≈ 0.058.

1
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3

1

2
3

1

2

3

(a) (b) (c)

Fig. 10. Examples of self-similar expansion for 0 ≥ t̃ ≥ −2 with A = π/3 and g = (a) −9/16, (b) −1/4, (c)
−1/16. Corresponding collapsing configurations are shown in Fig. 9, with detailed parameters given in the
caption: panel (a) corresponds to Fig. 9a, panel (b) to Fig. 9c, and panel (c) to Fig. 9e. Initial triangles and

circumcircles are shown with light solid lines, and final triangles and circumcircles at t̃ = −2 are shown with
dotted lines. Vortex trajectories are shown with dashed lines, and circumcenter trajectories are shown with
heavy solid lines. Closed circles mark the initial positions of the circumcenters and the vortices, which are
labeled by vortex number; open circles mark the final positions of the circumcenters and the vortices. The +
symbols mark the center of vorticity; in panel (c) the zcv nearly corresponds with vortex 2, and the + symbol
is obscured by the circle marking the vortex position.

unchanged in this transformation, but the expanding configurations travel less distance per unit
time than the corresponding collapsing configurations. Of course, the collapsing configurations
travel only a finite distance before collapse, while the expanding configurations do so with s̃ → ∞.

As discussed in §3.4, for given values of τ̃ and H̃ there exist two values of g that satisfy (3.19),
and thus there are two different configurations with the same time of collapse and same energy. Two
particular cases of this situation are shown in Fig. 11. The trajectories in Fig. 11a,b correspond to
the case marked by an open square in Fig. 4c. The trajectories in Fig. 11c,d correspond to the case
marked in Fig. 6a.
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Fig. 11. Two representative cases of self-similar collapse in which two different configurations have the

same values of τ̃ and H̃ . In panels (a,b), τ̃ ≈ 0.250 and H̃ ≈ 1.009 with (a) g = −3/4 and (b) g = −7/8;

in panels (c,d), τ̃ = 1/2 and H̃ = ln(8/5) ≈ 0.470 with (c) g = −1/2 and (d) g ≈ −0.874.

4. SUMMARY, DISCUSSION AND OUTLOOK

A detailed study of self-similar motion of three point vortices in the plane has been made
using the recently developed geometrical formulation [16] that represents the vortex configuration
in terms of the interior angles of the triangle formed by the vortices, {A,B,C}; the center and
radius of the circle that circumscribes that triangle, {Z,R}; and the orientation of the triangle, as
given by ϕ1. With the constraint on the interior angles, namely A+B +C = π, this representation
yields a six-dimensional system of ODEs that can be solved, in general, to completely determine
the vortex motion. The only exception is when the vortices become colinear, in which case this
geometrical representation becomes singular and the original vortex equations of motion must be
used to continue the solution. When only the vortex triangle size and shape are of interest, one can
consider instead the embedded four-dimensional subsystem consisting of {R,A,B,C}.

The new geometrical approach and the ensuing results complement the many previous studies
[1, 12, 22, 31] that focused on representing the configuration in terms of the lengths of the triangle
sides, {s1, s2, s3}, and the area of the triangle, ∆. In this classic approach [1, 12, 22, 31], if the
vortices become colinear the addition of an equation for d∆/dt closes the system of equations,
enabling continuation of the solutions through the colinear singularity. As noted above, a similar
closure is not possible in the present geometrical approach. In contrast, determining the location and
orientation of the vortex triangle in the classic approach requires use of the original vortex equations
of motion, while in the present approach these variables are included in the closed formulation.

Studying the self-similar motion of three point vortices using this new geometrical approach
[16] has produced several results that were not found previously using the classic formulation.
The symmetries inherent in the system have been exploited to reduce the parameter space of
vortex strengths significantly; all possible self-similar motions can be explored by considering only
−1 < g < 0. An implicit expression relating the time of collapse and the Hamiltonian energy of
the system has been derived and studied, and the results appear consistent with the one available
numerical example from [17]. It is found that the time of collapse is a single-valued function of
the Hamiltonian energy, and the parameter g is a double-valued function of the time of collapse
and the Hamiltonian energy. The latter statement means that for every choice of the time of
collapse (or characteristic time) and the energy, there exists two different collapsing (or expanding)
configurations with two different values of g. The time of collapse τ̃ is largest (approaching
infinity) for initial configurations that are close to the equilateral triangle or colinear relative
equilibrium configurations, and smallest (approaching zero) for initial configurations that are close
to configurations consisting of a vortex dipole in the field of a strong vortex. Explicit expressions are
derived for the total distance travelled by the circumcenter in self-similar motion. Several examples
analyzing these various aspects of the self-similar motion have been presented.

The self-similar solutions for three point vortices have found application in related areas of fluid
mechanics such as turbulence theory in two-dimensions. A recent series of papers [10, 11, 29] discuss
a possible explanation for the anomalous enstrophy dissipation in two-dimensional turbulent flow
through self-similar collapse of α- and ε-point vortices. These extensions of the point vortex model
regularize the velocity field, with α and ε as the regularization parameters, and they become the
point vortex model in the limit as α → 0 or ε → 0; ε-point vortices are a generalization of the
α-point vortices. In this limit, the authors find that a system of three ε-point vortices undergoes
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self-similar collapse and dissipates the enstrophy [10, 11, 29]. The condition for this collapse is
shown explicitly to be only γ2 = 0 [11]. However, in their general formulation they assume that
L = O(ε), so that they also have L → 0 in the ε → 0 limit. We may interpret their model(s) as
the smearing out of initial conditions that lead to collapse, due to the regularized velocity field
of the ε-point vortices. They are able to continue past the finite-time singularity of collapse into
expanding configurations using the limit of the regularized solution [10], which is not possible in
the point vortex formulation.

The finite-time collapse and burst (i.e. self-similar expansion) motions of three vortices is a
particular case of finite-time N -vortex collapse. For N = 3, the necessary and sufficient conditions
for such motion show that they are always self-similar. This fact has been recognised in the
literature [1, 23], and the present work provides a complementary proof for it. Self-similar motion
of N = 4 and N = 5 vortices has been explored; however, it is unclear whether self-similar motion
is the only possible form of collapse and burst motions for these larger systems [23, 25]. For larger
values of N , the collapse and burst motions of special configurations in the plane such as vortex
triple rings [15, 26] and vortex lattices [24] have been explored. Some numerical observations have
been made relating vortex lattice collapse to three-vortex collapse [24], and there have also been
some numerical studies on the self-similar collapse of N > 3 vortices [17]. However, many questions
remain unanswered: is self-similar collapse the only possible type of collapse for N > 3 vortices
in the plane? How robust are the initial conditions leading to collapse [20]? Further studies are
required to answer these questions; in particular, it is not clear what similar geometrical methods
can be used to treat N vortex collapse for N > 3.
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