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Evolving geometry of a vortex triangle
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The motion of three interacting point vortices in the plane can be thought of as the
motion of three geometrical points endowed with a dynamics. This motion can therefore
be reformulated in terms of dynamically evolving geometric quantities, viz., the circle that
circumscribes the vortex triangle and the angles of the vortex triangle. In this study, we
develop the equations of motion for the center, Z, and radius, R, of this circumcircle; and
for the angles of the vortex triangle, A, B, and C; and for the triangle orientation given by
ϕ1. The equations of motion for R, A, B, and C form an autonomous dynamical system.
A number of known results in the three-vortex problem follow readily from the equations,
giving an alternate geometrical perspective on the problem.
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I. INTRODUCTION

Interacting regions of concentrated vorticity play a central role in the dynamics of a vast many
fluid systems. A classic example of such interactions is the vortex tripole [1], in which three vortices
move around each other for an extended period of time. A collection of three vortices is arguably the
most fundamental of the vortex configurations, as it contains the smallest number of vortices capable
of exhibiting relative motion. For modeling purposes, three point vortices in the plane, with positions
(xα,yα) and circulations �α ( �=0, for α = 1,2,3), provide the simplest reduced-order representation
of a three-vortex system. A number of fundamental observations regarding vortex motion can be
ascertained by considering the dynamics of three point vortices in the plane [2–5].

The motion of three interacting point vortices in the plane was solved by Gröbli in his thesis of
1877 [2]. More than 70 years later his solutions were classified in terms of the vortex circulations (or
strengths) by Synge [3] using a geometrical approach. This work showed that the various possible
regimes of motion are largely determined by the signs of the three symmetric functions of the
circulations, �1,�2,�3, of the three interacting vortices, namely,

γ1 = �1 + �2 + �3, γ2 = �1�2 + �2�3 + �3�1, γ3 = �1�2�3; (1a)

the relation
γ2

γ3
= 1

�1
+ 1

�2
+ 1

�3
(1b)
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is useful to note. While Gröbli’s approach leads to detailed solutions of the initial value problem,
typically in terms of elliptic or hyperelliptic functions, Synge’s approach is more in line with the
qualitative, geometrical methods of modern dynamical systems theory. The two approaches intersect
for the case of identical vortices, where Gröbli discusses a geometrical solution that is closely
related to Synge’s method for the general case. Both the work of Gröbli and of Synge lay dormant
until Novikov revived interest in the three-vortex problem in 1975 [4]. Novikov rediscovered,
independently and yet almost word for word, the geometrical solution to the problem of three
identical vortices that Gröbli had given almost a century before. Generalizing Novikov’s work,
Aref rediscovered Synge’s geometrical approach for general vortex strengths, albeit in a slightly
different form [5]. The contorted history of rediscovery of solutions, and some background on the
little known career of Gröbli, has been recounted elsewhere [6].

In each of these previous geometrical solutions, the focus has been on describing the evolution
of the vortex triangle in terms of the lengths of the sides, s1, s2, s3, and the area, �. Alternatively,
the geometry of the vortex triangle can be given in terms of the interior angles and the properties of
the circumcircle that passes through the vortex locations [7]. In Ref. [7], this alternative geometrical
description was used merely to arrive at a concise derivation of the existing equations for the lengths
of the triangle sides. In Secs. III A and III B we develop and explore the autonomous dynamical
system given by the evolution of the circumcircle and the interior angles. In Sec. III C, we determine
an evolution equation for the orientation of the triangle in terms of the present geometric variables.
In Sec. III D we discuss how the integrals of motion, including the Hamiltonian for the three-vortex
system, can be written purely in terms of the geometric variables. In Sec. III E we consider the
relationship between the present formulation and previous work. In Sec. III F we derive and discuss
simple equations relating the center and radius of the circumcircle through the constants of motion,
which are valid throughout the dynamical evolution of the system. In Sec. IV we retrieve some of
the well-known results in three-vortex motion through simple application of the equations of motion
for the geometrical variables.

II. BASIC EQUATIONS

The motion of three vortices in the plane is given by six coupled, nonlinear, first-order ordinary
differential equations (ODEs), two for the Cartesian coordinates of each of the vortices, (xα,yα),
α = 1,2,3. If we concatenate the coordinates into complex positions zα = xα + iyα , we have the
equations of motion of these complex positions as

dz1

dt
= 1

2πi

(
�2

z1 − z2
+ �3

z1 − z3

)
, (2a)

dz2

dt
= 1

2πi

(
�1

z2 − z1
+ �3

z2 − z3

)
, (2b)

dz3

dt
= 1

2πi

(
�1

z3 − z1
+ �2

z3 − z2

)
, (2c)

where the overbar denotes complex conjugation. We shall assume the basic equations (2) to be known.
For background on the information presented in this section we refer the reader to the textbook and
monograph literature [8–11].

Equations (2) have a number of well-known integrals. Two of these are the components of linear
impulse,

Q = �1x1 + �2x2 + �3x3, P = �1y1 + �2y2 + �3y3, (3)

which pertain to the absolute positions of the vortices. The linear impulse determines the center of
vorticity,

zcv = Q + iP

γ1
. (4)
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For γ1 �= 0, the origin may be shifted to zcv under the coordinate transformation zα = zcv + z′
α . The

linear impulse with respect to the center of vorticity is clearly zero, i.e.,

�1z
′
1 + �2z

′
2 + �3z

′
3 = 0.

Another integral of (2) is the angular impulse,

I0 = �1
(
x2

1 + y2
1

) + �2
(
x2

2 + y2
2

) + �3
(
x2

3 + y2
3

)
, (5a)

which also by definition requires the absolute positions of the vortices. The subscript 0 signifies that
I0 is computed relative to the chosen origin of coordinates; the angular impulse with respect to an
arbitrary point z can be written as

Iz =
3∑

α=1

�α|zα − z|2. (5b)

One can also employ the above coordinate transformation to arrive at a parallel axis theorem for the
angular impulse,

Iz = Icv + γ1|z − zcv|2, (6)

where Icv is the angular impulse calculated relative to the center of vorticity (4).
The angular impulse is related to the quantity

L = �1�2s
2
3 + �2�3s

2
1 + �3�1s

2
2 = γ1I0 − Q2 − P 2. (7)

If we define the angular impulse with respect to zcv, we have L = γ1Icv.
Gröbli discovered that one can isolate within this system of six real first-order ODEs a subsystem

of three ODEs for the sides of the vortex triangle, sα , defined by

s2
1 = |z2 − z3|2 = (x2 − x3)2 + (y2 − y3)2,

s2
2 = |z3 − z1|2 = (x3 − x1)2 + (y3 − y1)2, (8)

s2
3 = |z1 − z2|2 = (x1 − x2)2 + (y1 − y2)2.

These equations are [2]

ds2
1

dt
= 2�

π
�1

s2
3 − s2

2

s2
2s2

3

,
ds2

2

dt
= 2�

π
�2

s2
1 − s2

3

s2
3s2

1

,
ds2

3

dt
= 2�

π
�3

s2
2 − s2

1

s2
1s2

2

, (9a)

where the area of the vortex triangle, �, is given by Heron’s formula [12],

16�2 = 2s2
2s2

3 + 2s2
3s2

1 + 2s2
1s2

2 − s4
1 − s4

2 − s4
3 . (9b)

The sign of � needed in (9a) is indeterminate from (9b) since a triangle and its mirror image have
the same absolute area. One needs to “step outside” the reduced system (9a) whenever the vortices
become collinear and consider the triangle area with orientation,

� = 1
2 (x1y2 + x2y3 + x3y1 − x1y3 − x3y2 − x2y1). (9b′)

This definition makes � > 0 when vortices 123 appear counterclockwise and � < 0 when they
appear clockwise. The evolution of � may now be traced via (2). The subsystem (9a),(9b), then, is
“closed” except for instants when the vortices become collinear. In order to know how to continue
the motion through such instants, one needs to either appeal to the full equations of motion (2) or
develop a fourth equation of motion for � itself in terms of s1,s2,s3. This equation is [13]

d�

dt
= 1

8π

[
(�1 + �2)

s2
1 − s2

2

s2
3

+ (�2 + �3)
s2

2 − s2
3

s2
1

+ (�3 + �1)
s2

3 − s2
1

s2
2

]
. (9c)
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We do not include derivations of either (9a) or (9c) in this paper, but the solution procedure
is as follows. Given equations for the velocities of the three corners of a triangle, it is clear, in
principle, that one can write equations for the time rate of change of the triangle sides and the
triangle area. The geometrical considerations required for such a “direct” derivation are, however,
somewhat involved. A straightforward algebraic development can be achieved by appealing to the
Hamiltonian formulation [14] of (2) introduced already by Kirchhoff in 1876 and well covered in
the texts cited [8–11]. If we set

H = − 1

4π

(
�1�2 log s2

3 + �2�3 log s2
1 + �3�1 log s2

2

)
, (10)

it is not difficult to verify that (2) may be written

�α

dxα

dt
= ∂H

∂yα

, �α

dyα

dt
= − ∂H

∂xα

(α = 1,2,3). (11)

Thus, xα and �αyα are canonically conjugate variables, and one can introduce a Poisson bracket
[15,16]

[f,g] =
3∑

α=1

1

�α

(
∂f

∂xα

∂g

∂yα

− ∂f

∂yα

∂g

∂xα

)
. (12)

In the context of point vortex dynamics this development dates back at least to a 1905 paper by Laura
[17]. From the fundamental Poisson brackets,

[x1,�1y1] = [x2,�2y2] = [x3,�3y3] = 1, (13)

with all other brackets of two coordinates equal to zero, one builds up the algebra to produce results
such as [13] [

s2
1 ,s2

2

] = −8
�

�3
,

[
s2

2 ,s2
3

] = −8
�

�1
,

[
s2

3 ,s2
1

] = −8
�

�2
. (14)

Then, since the evolution of any function of the coordinates is given by

df

dt
= ∂f

∂t
+ [f,H ], (15)

and H is given by (10), one finds (9a) and (9c) after straightforward calculation of Poisson brackets.

III. EVOLUTION OF VORTEX TRIANGLE GEOMETRY

One can show [7] that the vortex velocities may be written quite simply in terms of the interior
angles of the vortex triangle and the radius of the circumscribed circle, R. These results allow us
to derive equations of motion for R and for the velocity of the center of the circumcircle, Z. If the
angles of the triangle are denoted A,B,C as shown in Fig. 1, then we have the geometrical relations

s1 = 2R sin A, s2 = 2R sin B, s3 = 2R sin C. (16)

For later reference, we also note the relation

R = s1s2s3

4|�| (17a)

which gives, upon substitution of (16),

|�| = 2R2 sin A sin B sin C. (17b)

The interior angles have the fundamental relation

A + B + C = π. (18)
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AB

C

Z

R

FIG. 1. Definition of the geometrical variables. Open circles mark the vortex locations z1,z2,z3. Filled circle
marks the center of the circumcircle, Z. The dashed line is parallel to the x axis.

These relations allow us to derive equations for the evolution of the triangle shape, location, and
orientation.

When the vortices become collinear, both the radius and the center of the circumcircle go to infinity,
and the positions of the vortices in terms of the circumcircle become ill defined. Since this geometrical
approach breaks down as the vortices pass through a collinear state, we can choose, without any loss
of generality, to always label the vortices such that they are oriented counterclockwise, which gives
� > 0 in all of the subsequent analyses.

A. Evolution of the circumcircle radius and center

As shown in Fig. 1, the vortex coordinates can be written as

z1 = Z + Reiϕ1 , z2 = Z + Reiϕ2 , z3 = Z + Reiϕ3 , (19)

where ϕα measures the angle made by the position vector of vortex α with respect to the x (horizontal)
axis. If the three vortices appear counterclockwise, as we have assumed, it follows from elementary
geometry that the interior angles of the vortex triangle are given by

ϕ2 − ϕ1 = 2C, ϕ3 − ϕ2 = 2A, ϕ1 − ϕ3 = 2B − 2π. (20)

With this notation, we can write the equation of motion for, e.g., vortex 1 as

ż1 = 1

2πiR

(
�2

eiϕ1 − eiϕ2
+ �3

eiϕ1 − eiϕ3

)
= e−iϕ1

2πiR

(
�2

1 − ei2C
+ �3

1 − e−i2B

)
,

where the overdot denotes the time derivative. This expression may be written as

ż1 = eiϕ1

4πR
[�2 cot C − �3 cot B + i(�2 + �3)]. (21)

The real multiple of eiϕ1 in (21) gives the radial velocity of vortex 1 relative to the circumcircle,
namely,

(ż1)rad = �2 cot C − �3 cot B

4πR
. (22a)
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The real multiple of ieiϕ1 in (21) gives the tangential velocity in the positive (counterclockwise)
direction, namely,

(ż1)tan = �2 + �3

4πR
. (22b)

Let the center of the circumcircle be Z = X + iY . We may then equate (ż1)rad in (22a) to the sum
of the rate of change of R plus the projection of Ż onto the radial direction from Z to z1, giving

Ṙ + Ẋ cos ϕ1 + Ẏ sin ϕ1 = �2 cot C − �3 cot B

4πR
. (23a)

Similarly, we may equate (ż1)tan in (22b) to the sum of R ϕ̇1 and the tangential component of Ż at
the position of vortex 1, giving

R ϕ̇1 − Ẋ sin ϕ1 + Ẏ cos ϕ1 = �2 + �3

4πR
. (23b)

Alternatively, we may simply differentiate (19) to find that

e−iϕ1 ż1 = e−iϕ1Ż + Ṙ + iRϕ̇1. (24)

The real and imaginary parts of this equation give (23a) and (23b), respectively. Similar relations
hold for the velocity components of vortices 2 and 3.

From (23a) and the corresponding equations for vortices 2 and 3, we have a system of equations
that may be written in matrix form using the Cartesian coordinates of the vortices as⎡

⎣Ẋ

Ẏ

Ṙ

⎤
⎦ = 1

8π�

⎡
⎣ y2 − y3 y3 − y1 y1 − y2

x3 − x2 x1 − x3 x2 − x1

R sin(2A) R sin(2B) R sin(2C)

⎤
⎦

⎡
⎣�2 cot C − �3 cot B

�3 cot A − �1 cot C
�1 cot B − �2 cot A

⎤
⎦, (25)

where we have used the assumption that � > 0. To write the equation for Ṙ in its most transparent
form, we collect terms proportional to each of the circulations �1, �2, and �3, giving

Ṙ = 1

16πR sin A sin B sin C
{�1[cot B sin(2C) − cot C sin(2B)]

+�2[cot C sin(2A) − cot A sin(2C)] + �3[cot A sin(2B) − cot B sin(2A)]}, (26a)

or, again using (18),

dR2

dt
= 1

4π
[�1 cot B cot C(cot B − cot C)

+ �2 cot C cot A(cot C − cot A) + �3 cot A cot B(cot A − cot B)]. (26b)

For the motion of the center of the circumcircle we find from (25) that

Ż = Ẋ + iẎ = 1

8πi�
[(z1 − z2)(�1 cot B − �2 cot A)

+ (z2 − z3)(�2 cot C − �3 cot B) + (z3 − z1)(�3 cot A − �1 cot C)]. (27a)

By regrouping terms we find

Ż = 1

8πi�
[(Q + iP )(cot A + cot B + cot C) − γ1(z1 cot A + z2 cot B + z3 cot C)], (27b)

where γ1 is given in (1a). The advantage of using this form of the equation is that, if γ1 = 0, the
second term in square brackets vanishes; if instead γ1 �= 0, we can arrange for the center of vorticity
(4) to be at the origin, in which case Q + iP = 0. Note that since A + B + C = π (18),

cot A + cot B + cot C = 1
2 (sin2 A + sin2 B + sin2 C) � 0,
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with the equality occurring only when the vortices are collinear. By using (19) and collecting the
coefficients of �1, �2, and �3, we can rewrite (27b) as

Ż = Reiϕ1

4π�
[�1(e−iB cot C sin B − eiC cot B sin C)

+�2(eiC cot A sin C − eiA cot C sin A + 2i e−iB sin A cos C)

+�3(e−iA cot B sin A − e−iB cot A sin B + 2i eiC sin A cos B)]. (27c)

B. Evolution of the triangle shape

Next, we seek equations of motion for the interior angles A,B,C. From (16), we have

cot A
dA

dt
= 1

2R sin A

ds1

dt
− 1

R

dR

dt
. (28)

Here, from (9a),

ds1

dt
= �1�

πs1

[
s2

3 − s2
2

s2
3s2

2

]
= �1

8πR

[
cos(2B) − cos(2C)

sin B sin C

]
= �1

4πR
sin A(cot B − cot C). (29)

Combining (26b), (28), and (29) gives

cot A
dA

dt
= 1

8πR2
[�1(1 − cot B cot C)(cot B − cot C)

−�2 cot C cot A(cot C − cot A) − �3 cot A cot B(cot A − cot B)]. (30a)

For completeness we write out the corresponding equations for dB/dt and dC/dt :

cot B
dB

dt
= 1

8πR2
[�2(1 − cot C cot A)(cot C − cot A)

−�3 cot A cot B(cot A − cot B) − �1 cot B cot C(cot B − cot C)], (30b)

cot C
dC

dt
= 1

8πR2
[�3(1 − cot A cot B)(cot A − cot B)

−�1 cot B cot C(cot B − cot C) − �2 cot C cot A(cot C − cot A)]. (30c)

Equations (26b) and (30) form an autonomous four-dimensional dynamical system embedded in the
six-dimensional system (2).

There is, in addition, the obvious constraint on the three angles (18), so the system consisting of
(26b) and (30) may be thought of as three dimensional. We saw earlier that the system comprised of
(9a) and (9c) was also three dimensional because of (9b), except for those instants when the three
vortices become collinear. The role of collinear configurations shows up in a different way in the
system consisting of (26b) with (30): Collinear configurations are singularities of these equations
wherein R → ∞. It is thus clear that one has to stop and consider how to continue the solution
beyond such a singularity in this formulation.

C. Evolution of the triangle orientation

We have used the transformations (19) and (20) to change variables from the vortex positions z1,
z2, z3 to the geometric variables Z, R, A, B, and C. This change of variables involves two steps: first
a change from z1, z2, z3 to Z, R, and ϕ1, ϕ2, ϕ3 given by (19); and then a further change of variables
from ϕ1, ϕ2, ϕ3 to A, B, C given by (20). We see from (20) that given Z, R, A, B, and C, we cannot
recover z1, z2, and z3 unless one of the angles ϕ1,ϕ2,ϕ3 is also known.

We previously used the real part of (24), i.e., (23a), to determine the evolution of R and Z in
Sec. III A; we now use the imaginary part of (24) to determine the evolution of ϕ1. Substituting (21)
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and (27c) into (24) and taking the imaginary part gives, after some algebraic manipulation,

ϕ̇1 = 1

4π�
{�1[cot B sin2 C + cot C sin2 B] + �2[cot C sin2 A − cot A sin2 C + sin 2A]

+�3[cot B sin2 A − cot A sin2 B + sin 2A]}. (31)

Equations (26), (27c), (30), and (31) are seven equations for the seven variables Z, R, A, B, C,
and ϕ1; one of the angles A, B, or C may be eliminated by using the constraint (18). These equations
determine the evolution of the vortex triangle and provide an alternate description of three-vortex
motion—equivalent to the classic representation in (2)—except at instants of time when the vortices
become collinear.

D. Integrals of motion

We return to a consideration of the integrals of motion. In the reduced description provided by
(9a), conservation of L (7) follows immediately by dividing the left-hand sides in (9a) by �1, �2,
and �3, respectively, and adding. The Hamiltonian (10) is also an integral of the motion. This again
follows easily from (9a) by dividing the left-hand sides by �1s

2
1 , �2s

2
2 , and �3s

2
3 , respectively, and

adding.
In terms of the variables R,A,B,C we have from (16) that

L = 4γ3R
2

(
sin2 A

�1
+ sin2 B

�2
+ sin2 C

�3

)
(32a)

and

H = − 1

2π

[
γ2 log

R

R0
+ γ3

(
log sin A

�1
+ log sin B

�2
+ log sin C

�3

)]
, (32b)

where R0 is a constant length scale. Here we have used the fact that the equations of motion are
unchanged up to additive constants in the Hamiltonian, as (10) and (32b) differ by the additive
constant − 1

2π
γ2 log(2R0). Equations (32) must be integrals of (26b) and (30), as may be verified

directly. The verification, however, takes a few steps of not entirely transparent algebra, and one may
wonder if these integrals would have been discovered working within the dynamical system (26b)
and (30) without the general background we have given. We leave the details to the reader.

In addition we have a purely geometrical integral, viz., A + B + C = π (18). That the sum
A + B + C has vanishing time derivative also follows by adding the equations of motion for A, B,
and C, (30), and noting that the net coefficient of each of �1, �2, and �3 vanishes. Here one needs
to use relations such as

1

cot A
= cot B + cot C

1 − cot B cot C
,

which holds when A + B + C = π .

E. EOM for the center of the circumcircle revisited

We have already derived the equation of motion (EOM) for the center of the circumcircle Z. In
this section we show how that result can be obtained using the canonical formalism. In the next
section we then show how the equation of motion for R follows from the equation of motion for Z.

We return to the coordinates of the vortices and note that (9b) is equivalent to

4i� = z1(z2 − z3) + z2(z3 − z1) + z3(z1 − z2). (33)

From the fundamental Poisson brackets (13), which in terms of the complex vortex coordinates read

[zα,zβ] = 0, [zα,zβ] = − 2i

�α

δαβ, (34)
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it follows that

[z1,�] = −z2 − z3

2�1
, (35a)

[z2,�] = −z3 − z1

2�2
, (35b)

[z3,�] = −z1 − z2

2�3
. (35c)

Next, we pause to derive a well-known expression for the center of the circumcircle in terms of
the positions of the vertices of the triangle. By definition of the circumcircle and its radius we have
|z1 − Z| = |z2 − Z| = |z3 − Z| = R. Thus,

z1z1 + |Z|2 − z1Z − z1Z = R2,

z2z2 + |Z|2 − z2Z − z2Z = R2, (36)

z3z3 + |Z|2 − z3Z − z3Z = R2.

By eliminating |Z|2 − R2 from these relations we obtain

(z1 − z2)Z + (z1 − z2)Z = z1z1 − z2z2, (37a)

(z2 − z3)Z + (z2 − z3)Z = z2z2 − z3z3, (37b)

and solving these two linear equations for Z and Z we find

Z = |z1|2(z2 − z3) + |z2|2(z3 − z1) + |z3|2(z1 − z2)

z1(z2 − z3) + z2(z3 − z1) + z3(z1 − z2)
. (38)

From (33) the denominator is seen to be 4i�.
Since we have equations of motion for the vortex positions and for � (9c), we can, in principle,

derive an equation of motion for Z from (38). In order to do so we calculate the Poisson bracket
[Z,H ]. Using (35a) we get

[z1,4i�Z] = 4i([z1,�]Z + [z1,Z]�) = 4i

(
z3 − z2

2�1
Z + [z1,Z]�

)
.

However, from the fundamental Poisson brackets, and in view of (38), the left-hand side is clearly

[z1,4i�Z] = [z1,|z1|2(z2 − z3)] = z1(z3 − z2)
2i

�1
.

Thus,

[z1,Z] = − (z2 − z3)(z1 − Z)

2��1
, (39a)

and by permutation of indices,

[z2,Z] = − (z3 − z1)(z2 − Z)

2��2
, (39b)

[z3,Z] = − (z1 − z2)(z3 − Z)

2��3
. (39c)

As a corollary,

[�1z1 + �2z2 + �3z3,Z] = 0. (40)

Taking the Poisson bracket of (37a) with z3, we get

(z1 − z2)[z3,Z] + (z1 − z2)[z3,Z] = 0.
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Here [z3,Z] = [z3,Z], since the Poisson bracket operations are all in terms of real-valued quantities.
Thus,

(z1 − z2)[z3,Z] − (z1 − z2)
(z1 − z2)(z3 − Z)

2��3
= 0,

or

[z3,Z] = (z1 − z2)(z3 − Z)

2��3
. (41a)

By permutation of indices,

[z2,Z] = (z3 − z1)(z2 − Z)

2��2
, (41b)

[z1,Z] = (z2 − z3)(z1 − Z)

2��1
. (41c)

We are now in a position to calculate

�1�2
[
Z, log s2

3

] = �1�2

s2
3

[Z,(z1 − z2)(z1 − z2)]

= �1�2

s2
3

{[Z,z1 − z2](z1 − z2) + [Z,z1 − z2](z1 − z2)}.

Here, by (39a) and (41c),

[Z,z1](z1 − z2) + [Z,z1](z1 − z2) = (z2 − z3)

2��1
[(z1 − Z)(z1 − z2) − (z1 − Z)(z1 − z2)]

= − (z2 − z3)(z1 − z2)

��1

[
Z − 1

2
(z1 + z2)

]
,

where in the last step (37a) has been used in the form

(z1 − z2)Z = −(z1 − z2)Z + |z1|2 − |z2|2.

Thus,

[Z,z1](z1 − z2) + [Z,z1](z1 − z2) = (z2 − z3)

2��1
[2Z(z1 − z2) − z1z2 + z1z2 + |z1|2 − |z2|2]

= − (z2 − z3)(z1 − z2)

��1

[
Z − 1

2
(z1 + z2)

]
.

Similarly,

[Z,z2](z1 − z2) + [Z,z2](z1 − z2) = (z3 − z1)

2��2
[(z2 − Z)(z1 − z2) − (z2 − Z)(z1 − z2)]

= − (z3 − z1)(z1 − z2)

��2

[
Z − 1

2
(z1 + z2)

]
.
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Subtracting we have

�1�2
[
Z, log s2

3

] = �1�2(z1 − z2)

�s2
3

[
− (z2 − z3)

�1
+ (z3 − z1)

�2

][
Z − 1

2
(z1 + z2)

]

= z1 − z2

�s2
3

[γ1z3 − (Q + iP )]

[
Z − 1

2
(z1 + z2)

]

= γ1z3 − (Q + iP )

�

Z − 1
2 (z1 + z2)

z1 − z2
,

with similar terms from the other two terms in the Hamiltonian.
Now, in terms of the angles in the vortex triangle

Z − 1
2 (z1 + z2)

z1 − z2
= −1

2

eiϕ1 + eiϕ2

eiϕ1 − eiϕ2
= −1

2

1 + e2iC

1 − e2iC
= 1

2i

cos C

sin C
= −1

2
i cot C.

Thus,

−�1�2

4π

[
Z, log s2

3

] = (Q + iP ) − γ1z3

8πi�
cot C.

The contributions to [Z,H ] from the other two terms in the Hamiltonian follows by permutation of
indices, and we obtain again (27b), namely,

Ż = [Z,H ] = 1

8πi�
[(Q + iP )(cot A + cot B + cot C)

− γ1(z1 cot A + z2 cot B + z3 cot C) ].

However, it is clear that the geometrical derivation is much simpler than the direct algebraic approach.

F. EOM for the radius of the circumcircle revisited

In Sec. III A we derived the equation of motion for R. A different derivation is obtained by starting
from the geometrical result (17a) and using the equations of motion for the sides, (9a), and for the
area, (9c). These may then be combined to produce (26b).

Here we pursue a somewhat different avenue. We note the following relation between Z and R:
Multiply the first of (36) by �1, the second by �2, and the third by �3, and add the results. This gives

I0 + γ1ZZ − (Q + iP )Z − (Q − iP )Z = γ1R
2, (42a)

where Q and P are as in (3) and I0 as in (5a).
If the sum of the vortex circulations, γ1, vanishes, the projection of the vector from the origin to

the circumcenter, Z, onto the (constant) linear impulse is constant. Thus, the circumcenter travels
along a line perpendicular to Q + iP . Analysis [18,19] shows that the vortices periodically become
collinear for all initial conditions. As the vortices become collinear, Z recedes to infinity along a
line perpendicular to Q + iP . In other words, the collinear vortices are situated along Q + iP . If
Q = P = 0, the vortices must remain collinear and will, as the analysis shows [18,19], rotate like a
rigid body.

The same conclusions are reached from (27b). For γ1 = 0 in that equation, the second term in
square brackets is absent and Ż is an imaginary number times Q + iP .

In the general case, γ1 �= 0, we may view (42a) as an example of the parallel axis theorem (6).
Using (5b) to write IZ = Icv + γ1|Z − zcv|2, and combining this equation with (5a) allows us to
write (42a) as (for γ1 �= 0)

|Z − zcv|2 = R2 − Icv

γ1
. (42b)
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Since zcv (4) and Icv are dynamical invariants, this equation shows that if we have determined the
evolution of Z, we also have the evolution of R. If we place zcv at the origin, which requires γ1 �= 0,
we have that |Z|2 − R2 is a constant of the motion.

Equation (42b) has an interesting geometrical interpretation. By (7), L = γ1Icv, and the sign of
Icv/γ1 is the same as the sign of L. If L = 0, (42b) reduces to

|Z − zcv|2 = R2. (43)

Thus, while the circumcircle is, in general, time dependent, it evolves in such a way that one point
on the circumcircle is always at the center of vorticity.

If L > 0, then (42b) can be written as

|Z − zcv|2 +
∣∣∣∣Icv

γ1

∣∣∣∣ = R2, (44)

and we see that the center of vorticity must lie inside the circumcircle for all times. Furthermore, the
circumradius R has a lower bound, namely, Rmin = √

Icv/γ1, which corresponds to the circumcenter
coinciding with the center of vorticity. On the other hand, if L < 0, (42b) may be written as

|Z − zcv|2 = R2 +
∣∣∣∣Icv

γ1

∣∣∣∣, (45)

and we see that the center of vorticity must lie outside the circumcircle for all times. In this case,
there is a disk of radius

√
Icv/γ1 centered at zcv that is a forbidden region for the circumcenter.

IV. SPECIAL SOLUTIONS

The equations of motion for R (26), A,B,C (30), Z (27), and ϕ1 (31) provide a different perspective
on three-vortex motion than that given by (2) or (9). We utilize this feature to extract some results
on three-vortex motion that are more difficult to derive from other forms.

A. Motions with constant R

Motions for which R is constant are known to exist, e.g., the relative equilibria (and for the
collinear relative equilibria R is infinite). One might ask if there are others. When R is a constant,
from (28) and (29) we have simplified expressions for Ȧ, Ḃ, and Ċ, viz.,

dA

dt
= �1

8πR2

cot B − cot C

cot A
,

dB

dt
= �2

8πR2

cot C − cot A

cot B
,

dC

dt
= �3

8πR2

cot A − cot B

cot C
. (46)

The two dynamical integrals of these equations, (32), can be rearranged to give

sin2 A

�1
+ sin2 B

�2
+ sin2 C

�3
= L

4γ3R2
= λ1 (47a)

and

log sin A

�1
+ log sin B

�2
+ log sin C

�3
= −2πH + γ2 log(R/R0)

γ3
= λ2, (47b)

where the λi are constants. These integrals define surfaces in a (sin A, sin B, sin C) space, and these
two surfaces intersect (at most) in a curve. Adding to these equations the condition A + B + C = π

(18), we can at most expect isolated triples (A,B,C) to give solutions, so that Ȧ = Ḃ = Ċ = 0. It then
follows from (46) that we must either have cot A = cot B = cot C or tan A = tan B = tan C; in the
latter case we also have R → ∞. The first restriction yields the equilateral triangle, A = B = C = π

3 .
The second restriction gives the collinear relative equilibria as a singular limit. Thus, there are no
three-vortex motions with constant, finite R other than the equilateral triangle configurations.

024702-12



EVOLVING GEOMETRY OF A VORTEX TRIANGLE

Expressions for the constants of motion simplify for the equilateral triangle equilibria. Substitution
of A = B = C = π/3 into (17b) gives the area of the triangle as

� = 3
√

3

4
R2. (48)

Substitution into (47) reduces the equations for the impulse and the Hamiltonian to

L = 3γ2R
2, (49a)

H = − γ2

2π
log

[√
3

2

(
R

R0

)]
. (49b)

Since R is a constant, we may choose to define R0 = R without any loss of generality; by (49b) this
choice establishes H = 0 as the value of the Hamiltonian for all equilibrium motions with constant
R. If γ2 = 0, we also have L = 0 regardless of the value of R; the equilateral triangle configurations
with γ2 = 0 and R = constant (corresponding to L = 0 and H = 0, respectively) are the limiting
cases of the self-similar motion discussed in Sec. IV B. For γ2 �= 0, by (49a) we see that equilateral
triangle equilibria with a finite and nonzero R can exist only if γ2 L > 0.

Now consider the motion of the center Z of the circumcircle, given generally by (27). Substituting
A = B = C = π/3, we obtain

Ż = eiϕ1

12πR
[−2i�1 + (

√
3 + i)�2 − (

√
3 − i)�3], (50)

which shows that the time dependence of Ż comes only through ϕ1(t). To find an expression for
ϕ1(t), we substitute A = B = C = π/3 into (31) and obtain ϕ̇1 = � = constant, where

� = γ1

6πR2
. (51)

Integrating ϕ̇1 gives ϕ1(t) = � t , where we have chosen the orientation of the coordinate axis to be
such that ϕ1(0) = 0.

To solve for the motion of Z, consider first the case when the sum of vortex strengths vanishes,
i.e., γ1 = 0. We will then have ϕ̇1 = 0 and Ż = constant, corresponding to translating equilibria.
The motion of the circumcenter can be written in terms of the constants of the motion by integrating
(27b) to give

Z(t) = Q + iP

6πiR2
t = (Q + iP )γ2

2πiL
t, (52)

where we have chosen Z(0) = 0. This expression for Z(t) matches the previously known result [20,
Eq. (2.15)].

Next, consider the motion of Z when γ1 �= 0, in which case we can choose the origin of coordinates
such that the center of vorticity is at the origin, i.e., zcv = (Q + iP )/γ1 = 0. With this choice, (27b)
reduces to

Ż = −γ1

8
√

3 π�i
(z1 + z2 + z3).

By (19) we have

z1 + z2 + z3 = 3Z + Reiϕ2 (e−i2C + 1 + ei2A) = 3Z,

since A = B = C = π/3, so that Ż = i �Z, where � is as defined in (51). Integration of this
equation for Ż gives

Z = ρei�t , (53a)
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where we have again chosen Z(0) = 0. By combining (7), (42b), and (49a) we have

ρ =
(

R2 − L

γ 2
1

)1/2

=
√

L

(
1

3γ2
− 1

γ 2
1

)1/2

. (53b)

With the circumcenter and the vortex triangle moving in circular motion with the same angular
velocity � (51), the vortex system is moving in rigid body rotation. This motion and the rotation rate
are consistent with the known result for the rotating equilibrium configuration [20, Eq. (2.16)].

The radius of the circumcenter’s path, ρ, in (53b) is real valued for all allowed values of γ1, γ2, and
L. If γ2 < 0, then from the condition that γ2L > 0 we have L < 0, and ρ will be real according to
the first equality in (53b). If γ2 = 0, then L = 0, giving ρ = R. If γ2 > 0, then L > 0, and according
to the second equality in (53b) we must have

γ 2
1 > 3γ2 ⇒ �2

1 + �2
2 + �2

3 > γ2 (54)

for ρ to be real; it can be shown that this inequality holds for any choice of vortex strengths. Finally, if
we consider ρ = 0, we are led to the equality γ 2

1 = 3γ2. The only possible solution for this equality is
�1 = �2 = �3; this can be seen by solving γ 2

1 = 3γ2 as a quadratic for �3. In this case we have both
“geometrical symmetry,” i.e., the equilateral triangle configuration, and “physical symmetry,” i.e.,
symmetry in the vortex strengths. As expected, this symmetry leads to Z = 0, and the circumcenter
coincides with the center of vorticity.

The translating equilibria given by (52) do not contain stationary equilibria as a special case since
γ1 = 0 ⇒ Q + iP �= 0 and γ2 �= 0. On the other hand, the rotating equilibria given by (53) also
do not contain stationary equilibria as a special case; by (51), taking � = 0 and γ1 �= 0 requires
R → ∞, corresponding to collinear equilibria. We conclude that there are no stationary equilateral
triangle equilibria, which is consistent with the known theory [20].

B. Motions with invariant triangle shape

By (26b), motions for which A,B,C are constant imply either that R2 is constant or that it grows
linearly with time. The former case yields the equilateral triangle relative equilibria discussed in
Sec. IV A. In the latter case we have

R(t) = R0

√
1 − t

τ
, (55)

where R0 is the initial value of R and the time scale τ is given by

4πR2
0

τ
= −[�1 cot B cot C(cot B − cot C) + �2 cot C cot A(cot C − cot A)

+�3 cot A cot B(cot A − cot B)].

But when A,B,C are constants we have from (30) that this expression can be written in any of the
forms

−4πR2
0

τ
= �1(cot B − cot C) = �2(cot C − cot A) = �3(cot A − cot B). (56)

These may be the simplest expressions known for τ which, when positive, gives the time of collapse
[21,22]. When τ < 0 we instead have self-similar expansion.

The constants of motion (32) enable us to establish the necessary and sufficient conditions for
self-similar motion. The condition that the angles A,B,C be constant (but R is not constant) means
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(a) (b) (c)

1

2

3

1

23

1

2

3

FIG. 2. Vortex triangle trajectories in self-similar collapse. Triangles and circumcircles are shown with
light solid lines. Open circles mark the initial vortex positions, labeled by vortex number; closed disks
mark the initial position of the circumcenter; and the + symbols mark the point of collapse. Vortex
trajectories are shown with dashed lines, and circumcenter trajectories are shown with heavy solid lines.
For each triangle, the circumcircle has initial radius R0 = 1; the remaining parameters for each example are
(a) (�1,�2,�3) = (1,1,−1/2), (A,B,C) = (45◦,77.4◦,57.6◦), H = −0.003 99, τ = 32.9; (b) (�1,�2,�3) =
(1,−2,−2), (A,B,C) = (45◦,112.5◦,22.5◦), H = −0.110, τ = 4.44; and (c) (�1,�2,�3) = (1,−1/3,1/2),
(A,B,C) = (90◦,50.4◦,39.6◦), H = −0.003 98, τ = 30.8.

that L = 0 and γ2 = 0 in order for (32) to be constants of motion. On the other hand, if L = 0 and
γ2 = 0, we get the following set of equations:

sin2 A

�1
+ sin2 B

�2
+ sin2 C

�3
= 0, (57a)

log sin A

�1
+ log sin B

�2
+ log sin C

�3
= −2πH

γ3
. (57b)

These two equations intersect in a curve, as we saw in the previous section. Together with the
condition A + B + C = π (18), this means that there can at most be isolated triples as solutions.
Thus, the angles A,B,C must be constant. We conclude that L = 0 and γ2 = 0 are necessary and
sufficient conditions for self-similar motion.

The geometric formulation facilitates a detailed description of self-similar motion. By (43), the
circumcircle passes through the center of vorticity, zcv, when L = 0. Also by (43), as R → 0, we
have Z → zcv, and the point of collapse coincides with the center of vorticity. Thus, for self-similar
collapse, the point of collapse always lies on the circumcircle. It appears that a number of other
results can be derived for self-similar motion using this geometric formulation; we intend to present
these results in a future paper.

Examples of self-similar vortex motion are shown in Fig. 2. Given a set of vortex strengths and
one of the angles in the triangle, (57a) and the condition A + B + C = π are used to determine the
other two angles in the triangle. The value of the Hamiltonian is then determined from (57b), and the
value of τ is determined by (56). The evolution of the triangle orientation is given by solving (31),
and then the motion of the circumcenter can be determined using (27c). Finally the vortex trajectories
themselves are obtained using (19) and (20).

V. SUMMARY AND OUTLOOK

The three-vortex problem has a long, rich history. Previous approaches to describing and solving
the three-vortex problem have focused primarily on the dynamics of the intervortex distances. In a
complementary approach, we have obtained the equations of motion using a different set of variables.
Starting from geometry and using the known equations of motion, we have shown that the motion
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of three vortices can be regarded as the motion of the center of the circle that circumscribes the
three vortices, plus a motion of the three vortices about this circumcenter. The motion about the
circumcenter consists of two parts: the first part is determined by the four autonomous equations for
R (26) and A,B,C (30), and the second part is determined by the equation for ϕ1 (31), which gives the
orientation of the triangle in the plane. With the constants of motion L and H (32) and the geometrical
constraint on the angles (18), the embedded dynamical system consisting of R,A,B,C is integrable.
The transformation from the variables zα to Z, R, and ϕα is not a canonical transformation. What
this implies, however, is not clear.

We have examined some of the special solutions to these equations and have shown that these
solutions exist under conditions that can be determined from the constants of motion. The geometric
approach used here reveals some aspects of these well-known special solutions that had not been
considered previously. These aspects will be described in detail in a future paper. One might expect
to find other solutions to these equations that throw light on the three-vortex problem from a different
perspective.

The geometrical method has been developed here in the context of the motion of three point vortices
on the unbounded plane. However, this approach is not necessarily limited to this problem, since the
main idea rests on the fact that the constants of motion only depend on the intervortex distances. There
are several similar problems where the method developed here may be applicable, such as the motion
of three point vortices on a sphere, which is of geophysical interest [11]. The viscous evolution of
three point vortices, i.e., the Navier-Stokes evolution of initial conditions given by inviscid point
vortex configurations, are also of considerable interest [23,24], and a similar geometric approach
may provide new insight. We also mention recent work on the Euler-α system [25,26] whose singular
solutions, the α-point vortices, also exhibit self-similar collapse. Such solutions have applications
to the discussion of two-dimensional turbulence, and the α-point vortex system has a Hamiltonian
structure that depends only on the inter-α-point vortex distances [26]. Finally, one may speculate if
the extension of the geometrical method to N > 3 point vortices might provide a new perspective
on N vortex motion.
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