WAP: Wireless Application Protocol

Bheemarjuna Reddy Tamma IIT Hyderabad

Outline

- Mobile applications
- How are mobile/wireless environments different?
- What is WAP?
- WAP Architecture
- WAE (WML/WMLScript)
- WTA Framework
- WAP Push Services
- WAP Protocol Stack
- Hype v/s Reality
- References and Resources

Mobile Applications - 1

Vehicles

- transmission of news, road condition etc
- ad-hoc network with near vehicles to prevent accidents

Emergencies

- early transmission of patient data to the hospital
- ad-hoc network in case of earthquakes, cyclones
- military ...

Traveling salesmen

- direct access to central customer files
- consistent databases for all agents
- mobile office

Mobile Applications - 2

Web access

- outdoor Internet access
- intelligent travel guide with up-to-date location dependent information

Information services

push: stock quotes; pull: nearest cash ATM

Disconnected operations

- file-system caching for off-line work
- mobile agents, e.g., shopping

Entertainment

- games, etc

Variability of the Mobile Environment

Mobility

- stationary
- nomadic (pedestrian speed)
- mobile (vehicular speed)
- roaming (mobile across networks)

Mobile Device Capability

- form factor
- GUI
- multimedia
- real-time multimedia

Connectivity

- connected
- semi-connected (asymmetric)
- weakly connected
- disconnected

World Wide Web and Mobility

HTTP/HTML have not been designed for mobile applications/devices

HTTP 1.0 characteristics

- designed for large bandwidth, low delay
- stateless, client/server, request/response communication
- connection oriented, one connection per request
- TCP 3-way handshake, DNS lookup overheads
- big protocol headers, uncompressed content transfer
- primitive caching (often disabled, dynamic objects)
- security problems (using SSL/TLS with proxies)

HTML characteristics

- designed for computers with "high" performance, color highresolution display, mouse, hard disk
- typically, web pages optimized for design, not for communication;
 ignore end-system characteristics

System Support for Mobile Internet

Enhanced browsers

client-aware support for mobility

Proxies

- Client proxy: pre-fetching, caching, off-line use
- Network proxy: adaptive content transformation for connections
- Client and network proxy

Enhanced servers

- server-aware support for mobility
- serve the content in multiple ways, depending on client capabilities

New protocols/languages

- WAP/WML

Wireless Application Protocol (WAP)

- Empowers mobile users with wireless devices to easily access and interact with information and services.
- A "standard" created by wireless and Internet companies to enable
 Internet access from a cellular phone

wapforum.org:

- co-founded by Ericsson, Motorola, Nokia, Phone.com
- 450 members in 2000, comprise of Handset manufacturers, Wireless service providers, ISPs, Software companies in the wireless industry
- Goals
 - deliver Internet services to mobile devices
 - enable applications to scale across a variety of transport options and device types
 - independence from wireless network standards
 - GSM, CDMA IS-95, TDMA IS-136, 3G systems (UMTS, W-CDMA)

WAP: Main Features

- Browser
 - "Micro browser", similar to existing web browsers
- Markup language
 - Similar to HTML, adapted to mobile devices
- Script language
 - Similar to Javascript, adapted to mobile devices
- Gateway
 - Transition from wireless to wired world
- Server
 - "Wap/Origin server", similar to existing web servers
- Protocol layers
 - Transport layer, security layer, session layer etc.
- Telephony application interface
 - Access to telephony functions

Internet Model

WAP Architecture

Source: WAP Forum

WAP Application Server

Source: WAP Forum

WAP: Network Elements

Source: Schiller

WAP Specifies

Wireless Application Environment

- WML Microbrowser
- WMLScript Virtual Machine
- WMLScript Standard Library
- Wireless Telephony Application Interface (WTAI)
- WAP content types

Wireless Protocol Stack

- Wireless Session Protocol (WSP)
- Wireless Transport Layer Security (WTLS)
- Wireless Transaction Protocol (WTP)
- Wireless Datagram Protocol (WDP)
- Wireless network interface definitions

WAP Stack

Source: WAP Forum

WAP Stack

- WAE (Wireless Application Environment):
 - Architecture: application model, browser, gateway, server
 - WML: XML-Syntax, based on card stacks, variables, ...
 - WTA: telephone services, such as call control, phone book etc.
- WSP (Wireless Session Protocol):
 - Provides HTTP 1.1 functionality
 - Supports session management, security, etc.
- WTP (Wireless Transaction Protocol):
 - Provides reliable message transfer mechanisms
 - Based on ideas from TCP/RPC
- WTLS (Wireless Transport Layer Security):
 - Provides data integrity, privacy, authentication functions
 - Based on ideas from TLS/SSL
- WDP (Wireless Datagram Protocol):
 - Provides transport layer functions
 - Based on ideas from UDP

Content encoding, optimized for low-bandwidth channels, simple devices

WHY WAP?

- Wireless networks and phones
 - have specific needs and requirements (low-BW, small displays, low CPU, low RAM, connection instability, etc)
 - not addressed by existing Internet technologies (??)
- WAP
 - Enables any data transport
 - TCP/IP, UDP/IP, GUTS (IS-135/6), SMS, or USSD.
 - Optimizes the content and air-link protocols
 - Utilizes plain Web HTTP 1.1 servers
 - leverages existing development methodologies
 - utilizes standard Internet markup language technology (XML)
 - all WML content is accessed via HTTP 1.1 requests
 - WML UI components map well onto existing mobile phone user interfaces
 - no re-education of the end-users
 - leveraging market penetration of mobile devices
 - Several modular entities together form a fully compliant Internet entity

Why is HTTP/HTML not enough?

Big pipe - small pipe syndrome

Internet

Wireless network

Source: WAP Forum

Wireless Application Environment (WAE)

Goals

- device and network independent application environment
- for low-bandwidth, wireless devices
- considerations of slow links, limited memory, low computing power,
 small display, simple user interface (compared to desktops)
- integrated Internet/WWW programming model
- high interoperability

WAE Components

Architecture

- Application model, Microbrowser, Gateway, Server

User Agents

- WML/WTA/Others
- content formats: vCard, vCalendar, Wireless Bitmap, WML, ...

WML

- XML-Syntax, based on card stacks, variables, ...

WMLScript

procedural, loops, conditions, ... (similar to JavaScript)

WTA

- telephone services, such as call control, text messages, phone book, ... (accessible from WML/WMLScript)
- Proxy (Method/Push)

WAP Microbrowser

- Optimized for wireless devices
- Minimal RAM, ROM, Display, CPU and keys
- Provides consistent service UI across devices
- Provides Internet compatibility
- Enables wide array of available content and applications

WML: Wireless Markup Language

- Tag-based browsing language:
 - Screen management (text, images)
 - Data input (text, selection lists, etc.)
 - Hyperlinks & navigation support
- Takes into account limited display, navigation capabilities of devices
- XML-based language
 - describes only intent of interaction in an abstract manner
 - presentation depends upon device capabilities
- Cards and Decks
 - document consists of many cards
 - User interactions are split into cards
 - Explicit navigation between cards
 - cards are grouped to decks
 - deck is similar to HTML page, unit of content transmission
- Events, variables and state mgmt

WML

- The basic unit is a **card**. Cards are grouped together into **Decks** Document ~ Deck (unit of transfer)
- All decks must contain
 - Document prologue
 - XML & document type declaration
 - <WML> element
 - Must contain one or more cards

Deck WML File Structure <?xml version="1.0"?> <!DOCTYPE WML PUBLIC "-//WAPFORUM//DTD WML 1.0//EN"</pre> "http://www.wapforum.org/DTD/wml.xml"> <TMW> $</WMT_{i}>$

WML Example

```
<WML>
               <CARD>
                 <DO TYPE="ACCEPT">
Navigatio
                   <GO URL="#eCard"/>
                                                       Card
                 </po
                 Welcome!
               </CARD>
               <CARD NAME="eCard">
                 <DO TYPE="ACCEPT">
                    <GO URL="/submit?N=$(N) &S=$(S)"/>
 Variables
                                                          Deck
                 </DO>
                 Enter name: <INPUT KEY="N"/>
                 Choose speed:
                 <SELECT KEY="S">
   Input
                   <OPTION VALUE="0">Fast
 Elements
                   <OPTION VALUE="1">Slow</OPTION>
                 <SELECT>
                 CARD>
```

A Deck of Cards

```
<WML>
   <CARD>
       <DO TYPE="ACCEPT" LABEL="Next">
                                                Acme Inc.
           <GO URL="#card2"/>
                                                Directory
       </DO>
       Acme Inc. <BR/>Directory
                                                Next
   </CARD>
   <CARD NAME="card2">
       <DO TYPE="ACCEPT">
           <GO URL="?send=$type"/>
                                                 Services
       </DO>
                                                 1>Email
       Services
                                                 2 Phone
       <SELECT KEY="type">
           <OPTION VALUE="em">Email
           <OPTION VALUE="ph">Phone
                                                 OK
           <OPTION VALUE="fx">Fax
       </SELECT>
   </CARD>
</WML>
```

Source: WAP Forum

WMLScript

- Complement to WML
 - Derived from JavaScriptTM
- Provides general scripting capabilities
 - Procedural logic, loops, conditionals, etc.
 - Optimized for small-memory, small-cpu devices
- Features
 - local user interaction, validity check of user input
 - access to device facilities (phone call, address book etc.)
 - extensions to the device software
 - configure device, download new functionality after deployment
- Bytecode-based virtual machine
 - Stack-oriented design, ROM-able
 - Designed for simple, low-impact implementation
- WMLScript compiler resides in the network

WAE Summary

WML

- analogous to HTML (optimized for wireless)
- event based, microbrowser user agent

WMLScript

- analogous to JavaScript
- features of compiler in the network

WTA

- WTAI: different access rights for different applications/agents
- WTA User Agent (analogy with operating systems)
 - Context Activation Record
 - Channel Interrupt Handler
 - Resource Shared routines invoked by interrupt handlers
 - Repository Library of interrupt handlers
- feature of dynamically pushing the interrupt handler before the event

Push

no analogy in Internet

WAP Gateway Summary

Encoders

translate between binary (WML) and text (HTML/WML)

Filters

transcoding between WML (wireless) and HTML (wired)

Method Proxy

- similar to standard proxy services
- WAP stack on wireless interface and TCP/IP stack on Internet interface

Push Proxy

- Push Access Protocol with Internet Push Initiator (Web Server)
- Over the Air Protocol with mobile device (and WAP Push Initiator)
- Performs necessary filtering, translation etc.

WAP Servers Summary

Origin Server

- Web server with HTML/WML contents
- Runs TCP/IP stack, needs PAP protocol for push, no end-to-end security

WAP Server

- Serves WML content
- Runs WAP stack, uses OTA protocol for push, end-to-end security possible

WTA Server

- Specialized for telephony applications (runs WAP stack, uses push extensively)
- Client initiated (make call "hyperlink" from a Yellow pages service)
- Server intiated (incoming call from a Voice mail service)

WAP: Protocol Stack

WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc.

Source: Schiller

WDP: Wireless Datagram Protocol

Goals

- create a worldwide interoperable transport system by adapting WDP to the different underlying technologies
- transmission services, such as SMS in GSM might change, new services can replace the old ones

WDP

- Transport layer protocol within the WAP architecture
- uses the Service Primitive
 - T-UnitData.req .ind
- uses transport mechanisms of different bearer technologies
- offers a common interface for higher layer protocols
- allows for transparent communication despite different technologies
- addressing uses port numbers
- WDP over IP is UDP/IP

Service, Protocol, and Bearer Example

WAP Over GSM Circuit-Switched

RAS - Remote Access Server IWF - InterWorking Function

Source: WAP Forum

Service, Protocol, and Bearer Example

WAP Over GSM Short Message Service

Source: WAP Forum

WTP: Wireless Transaction Protocol

Goals

- different transaction services that enable applications to select reliability, efficiency levels
- low memory requirements, suited to simple devices (< 10kbyte)
- efficiency for wireless transmission

WTP

- supports peer-to-peer, client/server and multicast applications
- efficient for wireless transmission
- support for different communication scenarios
- class 0: unreliable message transfer
 - unconfirmed Invoke message with no Result message
 - a datagram that can be sent within the context of an existing Session
- class 1: reliable message transfer without result message
 - confirmed Invoke message with no Result message
 - used for data push, where no response from the destination is expected
- class 2: reliable message transfer with exactly one reliable result message
 - confirmed Invoke message with one confirmed Result message
 - a single request produces a single reply

WTP Services and Protocols

- WTP (Transaction)
 - provides reliable data transfer based on request/reply paradigm
 - no explicit connection setup or tear down
 - optimized setup (data carried in first packet of protocol exchange)
 - seeks to reduce 3-way handshake on initial request
 - supports
 - header compression
 - segmentation /re-assembly
 - retransmission of lost packets
 - selective-retransmission
 - port number addressing (UDP ports numbers)
 - flow control
 - message oriented (not stream)
 - supports an Abort function for outstanding requests
 - supports concatenation of PDUs
 - supports User acknowledgement or Stack acknowledgement option
 - acks may be forced from the WTP user (upper layer)
 - default is stack ack

WSP - Wireless Session Protocol

Goals

- HTTP 1.1 functionality
 - Request/reply, content type negotiation, ...
- support of client/server transactions, push technology
- key management, authentication, Internet security services

WSP Services

- provides shared state between client and server, optimizes content transfer
- session management (establish, release, suspend, resume)
- efficient capability negotiation
- content encoding
- push

WSP/B (Browsing)

- HTTP/1.1 functionality but binary encoded
- exchange of session headers
- push and pull data transfer
- asynchronous requests

WSP Overview

Header Encoding

- compact binary encoding of headers, content type identifiers and other well-known textual or structured values
- reduces the data actually sent over the network
- Capabilities (are defined for):
 - message size, client and server
 - protocol options: Confirmed Push Facility, Push Facility, Session Suspend Facility, Acknowledgement headers
 - maximum outstanding requests
 - extended methods
 - header code pages

Suspend and Resume

- server knows when client can accept a push
- multi-bearer devices
- dynamic addressing
- allows the release of underlying bearer resources

WAP Stack Summary

WDP

functionality similar to UDP in IP networks

WTLS

functionality similar to SSL/TLS (optimized for wireless)

WTP

- Class 0: analogous to UDP
- Class 1: analogous to TCP (without connection setup overheads)
- Class 2: analogous to RPC (optimized for wireless)
- features of "user acknowledgement", "hold on"

WSP

- WSP/B: analogous to http 1.1 (add features of suspend/resume)
- method: analogous to RPC/RMI
- features of asynchronous invocations, push (confirmed/unconfirmed)

WAP: Hype vs Reality

- Low-bandwidth wireless links
 - TCP/IP over wireless can also address these problems
 - encoding in http can also reduce data transfer on wireless links
- Limited device capabilities
 - Microbrowser is appropriate to address this problem
 - WTAI features are not present in TCP/IP domain
- Challenges in WAP
 - adapting to applications rich in content and interaction
 - service guarantees
 - interface design and usability
 - WAP website (wap.yahoo.com, m.google.com)
- Other approaches for WWW access through mobiles
 - i-Mode (from NTT DoCoMo)
 - WAP is a TRAP (http://www.freeprotocols.org/wapTrap)
- Modern smartphones have larger screens and full browsers, so WAP future is bleak.