
Using Bayesian Networks for Cognitive Control
of Multi-hop Wireless Networks

Giorgio Quer§⋆, Hemanth Meenakshisundaram⋆, Bheemarjuna R. Tamma⋆,

B. S. Manoj⋆, Ramesh Rao⋆, Michele Zorzi§⋆

§DEI, University of Padova – via Gradenigo 6/B, 35131 Padova, Italy
⋆University of California at San Diego – La Jolla, CA 92093, USA

Abstract—Tactical communication networking faces diverse op-
erational scenarios where network optimization is a very challeng-
ing task. Learning from the network environment, in order to op-
timally adapt the network settings, is an essential requirement for
providing efficient communication services in such environments.
Cognitive networking deals with the application of cognition to
the entire protocol stack for achieving network-wide performance
goals. One of the key requirements of a cognitive network is
to learn the relationships between network protocol parameters
spanning the entire stack in relation with the operating network
environment. In this paper, we use a probabilistic graphical
modeling approach, Bayesian Networks (BNs), in order to create a
representation of the dependence relationships between significant
parameters spanning transport and medium access control (MAC)
layers in multi-hop wireless network environments. We exploit this
model to face one of the problems of the TCP protocol, that does
not have any mechanism to infer when congestion is about to
occur in the network and therefore waits till some packets are
lost for reacting to congestion in the network. Such a reactive
nature of TCP leads to wastage of precious network resources
like bandwidth and power. In this paper we show how to infer
in advance the congestion state of the network. We constructed
BNs for different network environments by sampling network
parameters on-the-fly in the ns-3 simulation platform. We found
that it is possible to predict the congestion state of the network
with quite good accuracy given sufficient training samples and the
current value of the TCP congestion window.

I. INTRODUCTION

Cognitive networking [1], [2] is an emerging paradigm that
deals with how wireless systems learn relationships among
network parameters, network events, and observed network
performance, plan and make decisions in order to achieve local,
end-to-end, and network-wide performance as well as resource
management goals. In cognitive networks, all nodes track the
spatial, temporal, and spectral dynamics of their own behavior,
as well as the environment. The information so gathered is used
to learn, plan and act in a way that meets network or application
Quality of Service (QoS) requirements.

One of the key requirements of a cognitive network is
to learn the relationships among network protocol parame-
ters spanning the entire stack in relation with the operating
network environment. In this paper, we use a probabilistic
graphical modeling approach, Bayesian Networks (BNs), in
order to create a representation of the dependence relationships
between significant network parameters in multi-hop wireless
network environments. As an example, tactical communication
environments are dynamic and very challenging, and there is
no predefined protocol configuration that optimally operates
in these conditions. In these scenarios, learning the optimal
parameter set for the network protocol stack, by using the BN

structure constructed from historical network behavior, can help
efficiently meet QoS requirements.
Cognitive networking is different from cognitive radios or

cognitive radio networking in that the latter two typically apply
cognition only at the PHY layer to dynamically detect and
use spectrum holes, and focus strictly on dynamic spectrum
access. We notice that there are still some open problems to
solve before cognition can be applied to the entire protocol
stack. First, the probabilistic relationships among the various
parameters that span across the entire protocol stack are not
clearly understood. Second, the tools that can be used to
determine such complex relationships are not well known.
In this work, we propose a cognitive network node archi-

tecture that can be integrated with the existing layered protocol
stack. Our work partially addresses the requirement of modeling
the layered protocol stack using new and hitherto unused tools
from artificial intelligence. Specifically, we consider the use
of BNs, a graphical representation of statistical relationships
among random variables, widely used in machine learning [3].

The use of BN for modeling the protocol stack provides us
with a unique tool, not only to learn the influence of certain
parameters on others, but also to apply the inferred knowledge
and achieve a certain desired level of performance at the higher
layers. For example, our modeling enables a node to determine
which combinations of lower layer parameters are useful for
achieving a certain higher layer throughput performance. In a
related paper [4], we applied the BN approach to a single hop
Wireless LAN (WLAN) scenario. In this paper, while using
the same BN tool and cognitive architecture, we significantly
improve on that work, analyzing a realistic multi-hop wireless
network scenario and predicting TCP’s congestion status from
the current state of the network for proactively making decisions
to adjust the value of the congestion window.

II. COGNITIVE NETWORK FRAMEWORK

In this section, we present the cognitive network architec-
ture [4], designed with the goal of optimizing the network
performance by carefully tuning the values of the controllable
parameters within the network stack, through the observation
of the observable parameters and the exploitation of knowledge
acquired from historical network behavior. Examples of observ-
able parameters are the number of packets transmitted at the
MAC layer (M.TX1), or the number of retransmissions at the

1We define a parameter format, X.ABC, where X represents the layer of
operation and ABC represents the protocol parameter in layer X. For example,
the transport layer parameter Round Trip Time (RTT) is represented as T.RTT
and the MAC layer contention window is represented as M.CTW.

The 2010 Military Communications Conference - Unclassified Program - Networking Protocols and Performance Track

978-1-4244-8180-4/10/$26.00 ©2010 IEEE 201



Fig. 1. Cognitive Network Node Architecture.

MAC layer (M.RTX). Controllable parameters are for example
the TCP Congestion Window (T.CW), or the MAC Contention
Window (M.CTW). These parameters can be observed and
appropriately tuned by a specific protocol able to predict their
optimal values, based on the status of the network and on the
past history.

The cognitive network node architecture is shown in Fig. 1,
with the functional modules that realize the four phases of the
“cognition cycle” [5]: 1) Observe, 2) Learn, 3) Plan and Decide
and 4) Act. In the Observe phase we adopt a fully distributed
solution where software modules, the Cognitive Agents (CA),
are plugged into each layer to have access to the protocol
parameters of importance, that are periodically sampled and
saved into a local cognitive database repository.

The Cognitive Execution Function (CEF) is the brain of the
cognitive network node where the optimization decisions for
protocols within the stack are made. CEF realizes the Learn
and the Plan and Decide phases of the cognition cycle. The
Learn phase is a key phase in the cognition process, where
the cognitive node exploits the information collected in the
Observe phase to infer a probabilistic structure that connects
the parameters of interest, using the BN model described in
Section III. In the Plan and Decide phase, the cognitive node
makes use of the BN model derived from historical data for
predicting future values of the parameters of interest based on
the current network status. The inference engine, see Fig. 1,
receives as input the observed parameters at a given discrete
time k and gives as output the future value of one or more pa-
rameters of interest. This prediction can be exploited in the Plan
and Decide phase to optimize a controllable parameter, or to
predict an unwanted behavior of the network, e.g., congestion,
and take the appropriate actions in the protocol stack before
this happens. Finally, in the Act phase, the decisions made
in the Plan and Decide phase are effected, e.g., controllable
parameters like T.CW or M.CTW are modified to optimize the
network performance.

One of the key benefits of this cognitive network node
architecture, that significantly helps tactical communication,
is its ability to represent the cognitive information gathered
by a node’s protocol stack in a compact fashion that can
be easily exchanged with other nodes in the network. That
is, our BN model captures the essence of the past network
experiences of a user, tagged with spatial information, in a
BN which can be stored in a central repository or shared

with other tactical network nodes [2]. As an example of a
simple application scenario, a soldier’s radio device may gather
valuable protocol stack behavioral information which, if shared
with other soldiers’ radio devices in the same area, may help
them achieve a better network experience, due to the fact
that the new devices can begin their operation with a near
optimal protocol stack configuration, thus avoiding an expensive
learning curve. Our cognitive network architecture is distributed
and lightweight and, therefore, can be implemented even in
resource constrained nodes. However, note that each BN applies
only to a particular location.

In the next section, we describe the BN framework for
designing the probabilistic structure between the network pa-
rameters, that will be the tool we use to perform the Learn phase
of the cognition cycle. Then in Section III-B we describe how to
exploit such probabilistic structure to design a proper estimator
for the inference engine, performing the Plan and Decide phase
of the cognition cycle.

III. BAYESIAN NETWORKS PRELIMINARIES

A Bayesian Network (BN) is a graphical model for repre-
senting conditional independence relations between variables
through a Directed Acyclic Graph (DAG). The BN model,
well studied in machine learning [3], will be exploited in the
Learn phase of our cognitive network to study the dependence
structure that exists between the parameters of interest. This
model was described in [4] and is summarized here for the
reader’s convenience. In general, given M discrete variables,
x1, . . . , xM , with unknown dependence relations, we assume
that N independent instances of the M variables are observed
and collected into the dataset DN,M of size N × M . From
such dataset, through a procedure called structure learning, we
can represent qualitatively the dependence relations among the
variables in a DAG, where each random variable is represented
as a node. The presence of an arrow between two nodes
represents a direct probabilistic relation between them, while
if there is no arrow the probabilistic relation between the two
nodes can only be expressed through the other nodes in the
path that connects them, according to the d-separation rules,
e.g., see [3], [6]. In particular, we define a node i as a parent
of another node h if there exists a direct edge from i to h
and we write i ∈ pah, where pah is the set of parents of node
h. Given the DAG we can also learn the quantitative relation
between the parameters from the dataset DN,M in linear time
through parameter learning. Both structure learning and param-
eter learning are tools from machine learning [3] that have been
applied to a vast range of problems e.g., medical diagnosis, risk
factor analysis, terrorism risk management, reliability analysis
of systems or enhancing human cognition [7].

A. Learning the BN: Structure Learning

Structure learning is the procedure to construct the DAG
that represents the probabilistic relation between the random
variables. In the literature there are two methods to design such
DAG [6]: a) the constraint based method, in which a set of
conditional independence statements is established, based on
some a priori knowledge, to design the DAG following the
rules of d-separation; and b) the score based method, commonly
used in the absence of a set of given conditional independence

202



statements. We adopt the latter method, that is able to infer
a suboptimal DAG from a sufficiently large dataset DN,M ,
and consists of two parts: 1) a search procedure to select a
subset of the set containing all the DAGs; and 2) a function
to score each DAG in the subset based on how accurately it
represents the probabilistic relations between the variables in the
dataset. The former is necessary since it is not computationally
tractable to score all the possible DAGs given a set of M
random variables, unless M is very small (M ≤ 5), as an
exhaustive enumeration of all structures ends to a number of
possible DAGs that increases super exponentially with M . For
this reason, it is necessary to define a search procedure that
selects a small representative subset of the space of all DAGs,
like the search strategies detailed in Section IV-C. The latter step
consists in giving a score to each selected DAG and choosing
the one with the highest score. The score function should be
computationally tractable and should balance the accuracy and
the complexity of the structure, i.e., the number of arrows in
the graph.

In this paper we have chosen the Bayesian Information
Criterion (BIC) as a score function. BIC is easy to compute
and is based on the maximum likelihood criterion, i.e., how
well the data suits a given structure, and penalizes DAGs with
a larger number of edges. In the case in which all the variables
are multinomial, with a finite set of outcomes ri for each
variable xi, the general formula of BIC [8] can be reduced to
a counting problem, as explained in the following. We define
qi as the number of configurations over the parents of xi in the
DAG S, i.e., the number of different combinations of outcomes
for the parents of xi. We define also Nijl as the number of
outcomes of type l in the dataset D for the variable xi, with
parent configuration of type j, and Nij as the total number of
realizations of variable xi in D with parent configuration j.
Given these definitions, it is possible to rewrite the BIC for
multinomial variables as [9]:

BIC(S|D) =

M
∑

i=1

qi
∑

j=1

ri
∑

l=1

log2

(

Nijl

Nij

)

−
log2 N

2

M
∑

i=1

qi(ri−1) ,

(1)
which is computationally tractable. A detailed comparison of
scoring functions for structure learning is reported in [10].

B. Inference with the BN: Parameter Learning

In the third phase of the cognition cycle, the Plan and Decide
phase, the cognitive network node should be able to infer new
values for the controllable parameters of the network based on
the observed parameters and the target values of the parameters
that represent the performance, e.g., TCP throughput. To this
aim we proposed the inference engine obtained exploiting the
BN structure learned from the collected dataset DN,M . To
build the inference engine it is necessary to calculate also the
quantitative relations between the random variables of the BN,
through a process called parameter learning, that consists in
estimating the best set of parameters describing the conditional
dependencies between the variables, given the independence
relations defined by the DAG. According to the definition of
BN, each variable is directly determined only by its parents, so
the estimation of the parameters for each variable xi should be

Fig. 2. Network scenario: dumbbell topology.

performed only conditioned on the set of its parents pai in the
chosen DAG.
In this paper we choose the Maximum Likelihood Estimation

(MLE) method for parameter learning, coherently with the
choice of BIC as a scoring function for the structure learning
algorithm [6]. In the case of multinomial variables, we can write
the MLE as:

θ̂xi=l|pa
i
=j =

Nijl

Nij

≃ P [xi = l|pai = j] , (2)

where pai(j) for every j denotes a specific configuration, i.e.,
a set of values taken by the parents of node i. After inferring
the quantitative relations through parameter learning, we can
exploit the inference engine to predict the value of a chosen
random variable xi given the observation of a subset Xe of the
other variables in the BN, called evidence. The inference engine
uses Eq. (2) to calculate the probability mass function (pmf) of
xi given the evidence and based on this pmf it estimates the
expected value of xi at the discrete time k:

x̂
(k)
i = E

[

x
(k)
i |Xe

]

. (3)

IV. INFERRING NETWORK CONGESTION THROUGH A

BAYESIAN NETWORK MODEL OF THE PROTOCOL STACK

In this section, we derive Bayesian Network (BN) structures
that probabilistically connect some of the significant protocol
stack parameters in different multi-hop wireless network sce-
narios. Then with the BN structure we design an engine that
can be implemented in the cognitive network node to predict
in advance the congestion status of the network. Knowing
when congestion will arise is very useful for the efficiency
of transport layer protocols; however, TCP and its popular
variants do not have any mechanism to predict congestion in
advance. Such a reactive nature of TCP leads to packet losses
and wastage of precious network resources like bandwidth
and energy, which are essential for efficient communication in
mobile network environments such as tactical networks. In this
paper, with the help of the BN structure derived observing the
network environment and the current network state, we infer
the congestion status of the network that will help TCP to
proactively make decisions on how to adapt the value of the
congestion window.

A. Network scenarios

We considered two multi-hop network topologies, a dumbbell
topology depicted in Fig. 2 and a random topology, and we
conducted experiments using the ns-3 discrete event network
simulator [11]. The protocol stack in the simulator is augmented
with hooks that collect the values of selected TCP and MAC
parameters at regular sampling intervals for each flow. These
hooks simulate the behavior of the Cognitive Agents (CA),
that are responsible for reading and collecting the parameters’
values. In the dumbbell topology, we have two nodes on either

203



side connected by a string of 7 intermediate nodes. Adjacent
nodes are separated by 250 m, have a transmission range of
300 m, and have fixed PHY data rate of 2 Mbps. The Optimized
Link State Routing (OLSR) is employed as the routing protocol.
We have one TCP flow (ftp file transfer session from TCP
sender to TCP receiver in Fig. 2) and one Constant Bit Rate
(CBR) flow (UDP sender to UDP receiver in Fig. 2), hence
each flow has eight hops. The CBR sending rate is equal to
either 20 Kbps or 40 Kbps, to provide two levels of congestion
to the TCP flow, Low Congestion (LC) and High Congestion
(HC), respectively. The cognitive TCP source node samples
the parameters of interest at 100 ms and 200 ms interval,
respectively, in two sets of experiments. This scenario is very
simple but sufficient to understand the basic relations between
parameters.

In the second scenario, we have a mesh network with 40
nodes, initially arranged in an 8×5 pattern with 250 m between
horizontally and vertically adjacent nodes and moving randomly
at a speed of 1 m/s within a square area of 2500 × 2500 m2.
Each node has a transmission range of 300 m and is set up to
be either the sender or the receiver in an ftp session over TCP.
We have 20 such TCP flows that go on throughout the duration
of the experiment. We have 20 of the nodes that were also
involved as either transmitter or receiver of CBR traffic with
rate 20 Kbps. The routing protocol is again OLSR and all the
nodes were set to use the Minstrel physical layer rate control
algorithm [12]. One of the ftp sender nodes was cognitive and
capable of observing its network stack parameters at 100 ms
intervals.

B. Network parameters

In this paper, we deal with MAC and TCP parameters, but
the approach can be generalized to the collected parameters of
the whole protocol stack. IEEE 802.11 and TCP are chosen
as MAC and transport protocols, respectively. In each sampling
interval k, the MAC parameters are the total number of original
MAC packets transmitted in the sampling interval (M.TX(k),
observable), the value of the 802.11 contention window at
time k, i.e., the maximum number of slots the node will wait
before transmitting a packet at the MAC level (M.CTW(k),
controllable), and the total number of MAC retransmissions
in the sampling interval (M.RTX(k), observable). The TCP
parameters are the value of the Congestion Window at time
k [bytes] (T.CW(k), controllable), the Round Trip Time, i.e.,
the last value registered in the sampling interval k of the time
between when a packet is sent and when the corresponding
acknowledgement is received (T.RTT(k), observable), the in-
stantaneous TCP throughput, i.e., the total amount of unique
data [bytes] acknowledged in a sampling interval k, divided by
the length of the sampling interval [s] (T.TH(k), observable)
and the network congestion status (T.CS(k), observable), which
is a binary parameter equal to 1 when congestion is present and
to 0 otherwise, defined as:

T.CS(k) =

{

1 , if T.CW(k)/T.CW(k − 1) ≤ 0.6 ,
0 , if T.CW(k)/T.CW(k − 1) > 0.6 .

(4)

The threshold is set to 0.6 because we are mainly interested in
detecting significant drops of the congestion window. We aim
to infer at time k the value of T.CS(k+ n), with n = 1, . . . , 5,

Fig. 3. BN structure learned from the historical network dataset and chosen
as representative for all the multi-hop scenarios considered.

using current values of all the observable parameters, so we
want to predict the occurrence of congestion to be able to act
before it strongly affects the network.
All the parameters collected, except T.RTT, are multinomial,

with a finite but possibly large number of outcomes. In order
to make the calculation simpler and more efficient we quantize
all the parameters to a maximum of nq = 30 levels, so it
is possible to apply the learning algorithms for multinomial
variables explained in Sections III and III-B, without the need
for a very long training set to learn the probabilistic structure.
Indeed, a finer quantization would lead to a more accurate
estimation, but at the price of requiring a longer training set
for proper learning of the probabilistic structure. Moreover, it
was not realistic to introduce a complex non-uniform quantizer,
given the limited computation capacity of the CA, so we chose
to quantize the parameters’ values according to their estimated
nq−quantiles, that translates in our case into better estimation
performance than uniform quantization.

C. BN Structure Learning

The BN structure learning phase is the most computationally
demanding, as for M = 7 parameters the search space contains
1.1× 109 DAGs. We have used three search heuristics, namely
1) Hill Climbing (HC) [13], 2) a Markov Chain Monte Carlo
method (MCMC) [13], and 3) the simple ad hoc heuristic
proposed in [4]. The first two heuristics are available in the
MATLAB BNT toolbox [14]. We also implemented our heuris-
tic in MATLAB which basically divides the structure learning
problem into two sub problems, one for the MAC parameters
(M = 3) and one for the TCP parameters (M = 4). It first finds
the best BN structure for each one of them separately scoring
all the possible DAGs, then gives these two separate BNs as
the initial structure to the HC algorithm. Each of these three
heuristics gives a DAG as a result and we choose among these
three DAGs the one with the highest BIC score in Eq. (1). For
each network scenario we obtain a slightly different DAG, and
we choose the DAG in Fig. 3 as a structure for the inference
in the rest of the paper, since it has a good score in all the
scenarios considered, even if not optimal.

D. Congestion Inference

The prediction of T.CS, the congestion status, presents some
fundamental issues that are addressed in this section. First of
all, the BN gives us the qualitative (the DAG) and quantitative
(Eq. (2)) probabilistic relations between the network parameters
at a given time instant. In order to predict at time k the value
of T.CS(k + n), with n ≥ 1, we need to introduce the time
dimension in our model. In order to do so, we put the variable
T.CS(k + n) in our BN structure in place of T.CS(k) and we
use the ML estimation in Eq. (2) to calculate the quantitative
relations among the parameters of the new BN structure.

204



10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 
Xe = 0

Xe = {T.CW}

Xe = {T.THP}

Xe = {M.TX}

Xe = {T.CW,T.THP}

(a)

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 
DNet, ∆T=100ms, LC

DNet, ∆T=100ms, HC

DNet, ∆T=200ms, LC

DNet, ∆T=200ms, HC

RNet, ∆T=100ms, HC

(b)

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 
T.CWS(k+1)

T.CWS(k+2)

T.CWS(k+3)

T.CWS(k+4)

T.CWS(k+5)

(c)

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 

Xe = 0

Xe = {T.CW}

Xe = {T.THP}

Xe = {M.TX}

Xe = {T.CW,T.THP}

(d)

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 
DNet, ∆T=100ms, LC

DNet, ∆T=100ms, HC

DNet, ∆T=200ms, LC

DNet, ∆T=200ms, HC

RNet, ∆T=100ms, HC

(e)

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 

T.CWS(k+1)

T.CWS(k+2)

T.CWS(k+3)

T.CWS(k+4)

T.CWS(k+5)

(f)

Fig. 4. Average prediction error for T.CS as a function of the training set length, when the value we aim to predict is T.CS= 0 in (a), (b), (c) and when T.CS= 1
in (d), (e), (f). In cases (a) and (d) we infer T.CS(k+ 2) for different evidence sets. In cases (b) and (e) we infer T.CS(k+ 2) for different network topologies
(dumbbell network (DNet) and a random mobile network (RNet)), for different values of the sampling time ∆T and congestion levels (LC: low congestion and
HC: high congestion). In cases (c) and (f) we infer T.CS(k + n) for different values of n.

A second issue that arises is due to the fact that the prior for
the variable T.CS(k+n) is not uniform, but instead P [T.CW(k+
n) = 0] ≫ P [T.CW(k+n) = 1], since congestion rarely occurs.
If we simply aim at minimizing the misclassification rate, the

predictor would always infer a value of T̂.CS(k + n) = 0,
because this is by far the most likely outcome. This predictor
brings no information, so it is not useful. In order to solve
this problem we introduce a loss function [3], i.e., we penalize
with different weights the misclassification when congestion
occurs, L1,0, and when congestion does not occur, L0,1. In
other words, with the introduction of the loss function we aim
at maximizing the probability of a certain occurrence multiplied
by the corresponding loss function weight, i.e.:

P [T.CS(k + n) = b|evidence] · Lb,1−b , (5)

for b ∈ {0, 1}. As we are interested in the relative values of
these weights, we fix L0,1 = 1 and we vary L1,0. L1,0 = 1
corresponds to the case in which we just aim at minimizing the
overall misclassification rate. The inference engine we propose
uses the probabilities in Eq. (2) to maximize Eq. (5) and as a
result the inferred parameter given the evidence Xe is:

T̂.CS(k + n) = max
b∈{0,1}

P [T.CS(k + n) = b|Xe] · Lb,1−b . (6)

V. PERFORMANCE ANALYSIS

In this section, we analyze the accuracy of the inference
engine in predicting at time k the value of T.CS(k+n), i.e., the

presence or absence of congestion at time k + n, with n ≥ 1.
The performance of the engine is analyzed as a function of
the length (in number of samples) of the training set used to
learn the relations between the parameters and to define the
inference engine with Eqs. (2) and (6). During the training set
the parameters are recorded and then they become the input for
the inference engine. In the y-axis of the figures we represent
the average error for the inference, that is the expected value of

|T.CS(k+ n)− T̂.CS(k+ n)|, where T.CS(k+ n) is the actual

value of T.CS at time k + n and T̂.CS(k + n) is the inferred
value. Since T.CS is a binary variable, this value can be viewed
also as the frequency of an error in the estimation. We need to
analyze separately the two cases in which the value we aim to
infer is T.CS(k+n) = 0 and T.CS(k+n) = 1, since otherwise
the average error would be dominated by the error in the former
case (no congestion), that is a much more frequent event, and
the predictor that minimizes the total error would simply give

T̂.CS(k + n) = 0, as discussed earlier.

In Fig. 4, we vary the evidence set, the network scenario and
the value of n, fixing the value of the loss function to L1,0 = 7,
and we analyze the performance of the inference in case the
value we aim to infer is T.CS(k + n) = 0 (no congestion), in
(a), (b) and (c), and T.CS(k + n) = 1 (congestion), in (d), (e),
and (f). In Figs. 4-(a)-(d) we represent the average error for
the inference of T.CS(k+2) in the dumbbell topology scenario
of Fig. 2, in the case of low congestion (LC) and we vary the

205



10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training set for parameter learning size

E
rr

o
r

 

 
L

1,0
=1, T.CS=0

L
1,0

=4, T.CS=0

L
1,0

=7, T.CS=0

L
1,0

=10, T.CS=0

L
1,0

=1, T.CS=1

L
1,0

=4, T.CS=1

L
1,0

=7, T.CS=1

L
1,0

=10, T.CS=1

Fig. 5. Average prediction error for T.CS(k+2) as a function of the training
set length for different values of the loss function weight L1,0, in case the
value we want to infer is T.CS(k + 2) = 0 or in case T.CS(k + 2) = 1.

evidence set. In the case of no evidence, the prediction is equal
to the prior for T.CS, so we always predict T.CS(k + 2) = 0,
indeed in this case the error in Fig. 4-(a) is equal to zero, while
in Fig. 4-(d) the error is equal to one, the maximum. The only
predictors that give us useful information are the ones with
T.CW in the evidence set. For a sufficient length of the training
set, they give an error of almost 0.25 and 0.35, for congestion
and no congestion (false positive), respectively.

In Figs. 4-(b)-(e) we consider as evidence T.CW(k) and com-
pare the performance for different multi-hop network scenarios,
i.e., the dumbbell topology in Fig. 2 with low congestion (LC)
and high congestion (HC) and with the parameters sampled
every ∆T = 100 ms and ∆T = 200 ms, and the random
multi-hop network with mobility described in Section IV-A.
The results depicted in the figure show that the inference
engine performs similarly in these cases, with a frequency of
false positives between 0.3 and 0.45 and a misclassification
rate in case of congestion between 0.1 and 0.25 in all cases.
Accordingly, we expect the inference engine to work well also
in different kinds of topologies with different environmental
conditions.

In Figs. 4-(c)-(f) we compare the performance of the infer-
ence engine for T.CS(k+n), varying the value of n = 1, . . . , 5,
where k is the time sample at which we make the prediction and

k+n is the time sample of the predicted value T̂.CS(k+n). We
observe that the performance is almost constant when the actual
value to be inferred is T.CS(k+n) = 0, as shown in Fig. 4-(c),
while it varies significantly when T.CS(k+n) = 1. In this case,
as expected, the performance decreases with n, and for n = 5
we have a misclassification rate in case of congestion and in
the absence of congestion of about 0.5 and 0.4, respectively, a
performance close to the extreme case of the random predictor,
and this gives an approximate limit in time to the possibility of
predicting congestion with these models.

In Fig. 5 we vary the value of the loss function weight
to determine a suitable value, considering the evidence
Xe =T.CW(k). In case L1,0 = 1 the inference engine is just

predicting the most probable value, T̂.CS(k + n) = 0. A good
choice for L1,0 is the one that guarantees a false positive error
significantly smaller than 0.5 and minimizes the error in case
of congestion, i.e., L1,0 = 7. Furthermore, Fig. 5, in case
T.CS(k+n) = 0, may seem misleading since the average error

grows with longer training set lengths, but this can be explained
observing that, for a short training set, N < 2 · 102, we have
a large misclassification error (> 0.7) in case of congestion, so

the predicted value is almost always T̂.CS(k + n) = 0 in this
case.

VI. CONCLUSIONS

In this paper, we proposed a cognitive node architecture for
efficient communication in multi-hop wireless networks, that
can significantly help in dynamic and challenging scenarios like
tactical networks. We realized key functional modules of this
architecture with the help of Bayesian Network models. We
gathered values of significant parameters from the MAC and
Transport layers in order to derive critical causality relations
among these parameters in different network scenarios. As an
interesting application of BNs for cognitive wireless networks,
we studied the problem of predicting in advance the congestion
status of the network. From the BN structure derived from
network samples collected in the ns-3 simulation platform, we
found that the current value of TCP’s congestion window has a
strong influence on accurately predicting the congestion status
of the network at future time instants and we analyzed the
performance of such inference engine. Future work involves
devising algorithms that exploit the predicted congestion status
of the network to adapt the value of the congestion window
before a congestion occurs and studying the effect of misclas-
sification rates on TCP performance in terms of throughput and
packet losses.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Army Re-
search Office, Grant. No. W911NF-09-1-0456 and by UCSD-
CWC (Center for Wireless Communications).

REFERENCES

[1] R. W. Thomas, D. H. Friend, L. A. DaSilva, and A. B. MacKenzie,
“Cognitive networks: Adaptation and learning to achieve end-to-end per-
formance objectives,” IEEE Communications Magazine, vol. 44, no. 12,
pp. 51–57, December 2006.

[2] B. Manoj, R. Rao, and M. Zorzi, “Cognet: a cognitive complete knowl-
edge network system,” IEEE Wireless Communications, vol. 15, no. 6,
pp. 81–88, December 2008.

[3] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[4] G. Quer, H. Meenakshisundaram, B. R. Tamma, B. S. Manoj, R. Rao,

and M. Zorzi, “Cognitive Network Inference through Bayesian Network
Analysis,” in IEEE Globecom, Miami, FL, US, Dec. 2010.

[5] J. Mitola III, “Cognitive Radio: An Integrated Agent Architecture for Soft-
ware Defined Radio,” Ph.D. dissertation, Royal Institute of Technology
(KTH), Sweden, May 2000.

[6] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. The MIT Press, 2009.

[7] O. Pourret, P. Naim, and B. Marcot, Bayesian Networks: A practical guide
to Application. Wiley, 2008.

[8] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[9] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs.
Springer, 2007.

[10] S. Yang and K.-C. Chang, “Comparison of score metrics for Bayesian
network learning,” IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans , vol. 32, pp. 419–428, May 2002.

[11] http://www.nsnam.org/.
[12] “Minstrel physical layer rate adaptation algorithm,” Last time accessed:

April 2010. [Online]. Available: madwifi-project.org/browser/madwifi/
trunk/ath rate/minstrel/minstrel.txt

[13] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

[14] K. Murphy, “Bayes Net toolbox for Matlab,” Last time accessed: March
2010. [Online]. Available: code.google.com/p/bnt/

206


