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ABSTRACT
The issue of providing Quality of Service (QoS) guarantees in an
Ad hoc wireless network is a very challenging problem. In this
paper, we make the following contributions: (i) analytically de-
rive bounds for the end-to-end call acceptance rate using exist-
ing queueing theory methods, (ii) study the impact of the routing
scheme on the end-to-end call acceptance rate, and (iii) propose a
differentiated services scheme for deterministically providing QoS
guarantees.

Unlike existing studies which analyze the transport capacity, we
focus on the end-to-end call acceptance. The framework that we as-
sume is that of a TDMA-based Ad hoc wireless network. The rout-
ing scheme employed influences the end-to-end call acceptance of
the network. The metrics that we consider are the call acceptance
probability and the system saturation probability (i.e., the probabil-
ity that the network is in a state in which every new call is rejected).
We derive general bounds on the call acceptance and the system
saturation for the case of differentiated-classes of users in the net-
work. These bounds indicate the number of calls of the highest
priority class that can be admitted into the network.

Simulation studies were carried out to study the effect of load,
hopcount, and the influence of the routing protocol on the call ac-
ceptance. The increase in the call acceptance rate with the introduc-
tion of load-balancing highlights the importance of load-balancing
in enhancing the system performance. From these studies, we ar-
rive at the following results: (i) load-balancing leads to significant
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improvement in the end-to-end call acceptance rate, and is an im-
portant factor in attaining the maximum end-to-end call acceptance
rate in a given network and (ii) it is indeed possible to provide de-
terministic QoS guarantees for a designated set of nodes which are
characterized by “deterministic guarantee limit”.

Categories and Subject Descriptors: C.2.1 [Net-
work Architecture and Design] Wireless communication; C.2.2
[Network Protocols] Routing protocols; C.4 [Performance of Sys-
tems] Modeling techniques, Performance attributes

General Terms: Algorithms, Theory, Performance

Keywords: Ad hoc wireless networks, QoS guarantees. QoS
routing, TDMA, call acceptance rate, load-balancing, Markov pro-
cess

1. INTRODUCTION
An Ad hoc wireless network is a collection of mobile nodes that
can communicate over radio without any pre-existing infrastruc-
ture. Two nodes can communicate directly with each other if each
lies in the transmission range of the other. Two nodes that cannot
directly communicate can do so in a multi-hop manner in which the
other nodes function as routers. Such networks are used in military
installations and in emergency situations as they permit the estab-
lishment of a communication network at very short notice. How-
ever, these networks are limited by constraints in their bandwidth
and power consumption.

With their widespread deployment, Ad hoc networks now need
to support applications that generate real-time traffic. Such traffic
requires the network to provide guarantees on the QoS of the con-
nection. The important aspects in the process of providing such
guarantees are the routing protocols that establish paths that can
satisfy the QoS requirements and the reservation mechanisms that
reserve the necessary resources along the path. A problem of con-
siderable interest in this regard is that of theoretically estimating
the nature of the guarantees that can be provided by a QoS scheme.
These estimates on the parameters of QoS routing protocols give us
an idea of the maximum guarantees that can be provided, and allow
us to gauge how far the existing schemes are from the ideal limit.

In this work, we consider the problem of QoS routing in a TDMA-
based Ad hoc wireless network, where the QoS constraint on the
calls is that of bandwidth. Our focus is the end-to-end call accep-
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tance rate which is a measure of the number of calls that can be
admitted into the network. The calls arriving in the network belong
to different classes based on which the requirements of the calls
are prioritized. Thus, the parameters that we focus on are: the call
acceptance probability and the system saturation probability. The
variation of these parameters enables us to answer questions such
as 1) What are the maximum number of high-priority calls that can
be sustained in the network at a given load?, 2) What is the likeli-
hood that the network enters a state where no more new calls can
be accepted?, 3) What is the effect of the routing protocol on the
call acceptance?, 4) How close to the theoretical limit do the rout-
ing protocols approach? Then, we address the problem of ensuring
deterministic call acceptance for a certain sub-set of the calls. We
estimate the deterministic guarantee limit which is a mobility-
independent measure of the number of high-priority calls that can
be admitted into the network. We also determine the call accep-
tance probability for the classes for which deterministic guarantee
cannot be provided.

In this work, we model the network at the level of the trans-
mission range of each node. The range of a node is analyzed as
a Markov process where the calls are the entities to be serviced.
The reservation of slots for the call in the transmission range con-
stitutes the service of the call. The modeling of a wireless network
as a collection of Markov processes is unique in that, due to the
local broadcast nature of the channel, the reservation of slots in the
transmission range of a node affects the status of the slots in the
neighboring regions. Capturing this property of wireless networks
is essential to model the characteristics of the network accurately.
Such a modeling must also be able to reflect the characteristics of
the routing protocol used. We begin by analyzing a general case of
a network that can support multiple-classes of calls where preemp-
tion of calls does not exist. We then provide a closed-form estimate
of the call acceptance probability and the saturation probability for
the case of a single-class of users and discuss the probabilities for
the highest-priority class in the preemptive case. We compare the
call acceptance probabilities of shortest-path routing and two rout-
ing protocols that attempt load-balancing. Finally, we estimate the
deterministic guarantee limit.

The rest of this paper is organized as follows: Section 2 briefs the
related work in this area, Section 3 describes our work, Section 4
discusses the details of the simulation, and Section 5 presents the
simulation results. Finally Section 6 concludes the paper.

2. RELATED WORK
In their seminal work[1], Gupta and Kumar introduced a random
network model for studying throughput scaling in a fixed wire-
less network. They showed that even under optimal conditions,
the transport capacity (bit-distance product that can be transmitted
over the network) of the network is θ(

√
n) bit-meters/s, where n is

the number of nodes present in the network, for the protocol model
considered. In [2] an information-theoretic scheme was constructed
for obtaining an achievable rate region in a network of arbitrary size
and topology. The proposed scheme allows a feasible transport ca-
pacity of θ(n) bit-meters/s in a specific wireless network of nodes
located in a region of unit area, as compared to θ(

√
n) bit-meters/s

obtained in [1] for less sophisticated receiver operation.
In [3], the authors showed that by allowing nodes to move, the

throughput scaling changes dramatically. They showed that if node
motion is independent across nodes and has a uniform stationary
distribution, a constant throughput scaling (θ(1)) per source - des-
tination pair is feasible. In [4], the authors studied the transport
capacity of an Ad hoc wireless network overlaid with an infinite
capacity infrastructure network.

While the previous studies analyze the transport capacity of Ad
hoc networks, in this work our focus is on the end-to-end call ac-
ceptance rate which is a measure of the number of calls with end-
to-end bandwidth reservation that can be supported by the network.
The previous studies on transport capacity study how it scales with
the number of nodes. We study the dependence of end-to-end call
acceptance rate on the network load and the routing protocol. Our
work attempts to arrive at generalized bounds that can be used to
analyze routing protocols. A number of QoS routing protocols have
been proposed for Ad hoc wireless networks (for more details, re-
fer [5], [6], [7], and [8]). The framework that we assume is that of
a TDMA-based network. The routing scheme employed influences
the end-to-end call acceptance rate of the network. In this paper,
we investigate the end-to-end call acceptance rate and the influence
of shortest-path routing and load-balanced routing protocols on it.

3. OUR WORK
We consider an Ad hoc wireless network comprising N nodes uni-
formly distributed at random in a terrain of area A. The transmis-
sion range of each node is R. We assume the presence of a slotted
TDMA mechanism at the MAC layer. The total number of slots
available in the network is B. However, it is possible to reuse the
slots spatially depending on the interference pattern of the nodes.
This is the key idea that is used in deriving the bounds.

The bandwidth of a call is measured in terms of the number of
slots used for transmission. A call is setup by reserving slots along
the path of the call. A node may either transmit or receive in a
particular slot (a node is said to receive in a particular slot if any of
its neighbors is transmitting in that slot). A slot is said to be free at
a node j, (1 ≤ j ≤ N) if it is neither transmitting nor receiving
during that slot. For a node j to transmit in a particular slot, the slot
must be free at j and none of the neighbors of j must be receiving
in that slot. For a node j to receive in a particular slot, the slot must
be free at j. This definition permits node 6 to transmit to node 5
in the same slot as the one used by node 1 to transmit to node 2 in
Figure 1, provided nodes 1 and 2 do not hear 6. On the other hand,
in the sender’s range, node 4 must use a different slot to transmit to
node 3 because node 3 hears the transmission by node 1.

1 2

5

6

4

3

Figure 1: An example of possible transmissions.

3.1 System Model
Consider a network of NW = {1, . . . , N} of N nodes that can
supportK classes of calls where class i calls have a higher priority
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than class j (1 ≤ i < j ≤ K) calls. We would like an estimate of
how many calls of a particular class can be supported. This implies
that we can definitely support such a number of class 1 calls where
class 1 is the highest priority class. If all the available slots are
occupied by calls of various classes upon arrival of a class j call,
one or more calls of lower priority classes can be preempted based
on the bandwidth requirement of class j call that has arrived to
ensure that the arrived call be accepted. Thus, we would like to
provide a guarantee on the number of calls of a particular class that
can be accepted.

#x −     slot number x

A5

A6

A1 A3

A4

#2 #3

#4
#1

#5

R

A2

Figure 2: An example scenario.

Assumptions made for the analysis are the following:
• Calls of a particular class-k arrive at each node distributed

according to a Poisson process of mean λk.

• The duration of a call is exponentially distributed with mean
duration 1

µk
.

• We assume that the calls of all classes have equal bandwidth
requirements: each call requires a single slot.

• We do not take node mobility into account in the estimation
of call acceptance and system saturation. (However, the de-
terministic guarantee limit is independent of mobility.)

• We assume that the routing algorithm is such that for any
path found by the algorithm, the number of nodes on the path
that lie within the transmission range of any node on the path
(inclusive of the node itself) is not greater than some constant
c. In the absence of such an assumption, it is possible to
construct a scenario (Figure 2) where a single call needs to
use all the slots in the system. In Figure 2, each of the nodes
on the path is in the transmission range of the other nodes. So
the use of a slot for transmission by one of the nodes implies
that the slot cannot be re-used by the other nodes on the path.
Thus, if node A1 transmits to node A2 on slot #1, slot #1
cannot be used by any of the other nodes to transmit to their
downstream nodes. If we were to consider a P -hop path with
the nodes in the configuration given in Figure 2, the number
of slots used would be P . Hence, it would be difficult to
provide a bound on the number of calls that can be admitted.
This property is satisfied with c = 3 for protocols that ensure
that if a path is to be set up from A1 to A3, the path used is
the link (A1,A3) rather than links (A1, A2) and (A2, A3),

A1

A4 A5

#1

#2
#3

A3
A2

Figure 3: An example to distinguish free slots at a node and
free slots in a region.

where A1, A2, and A3 are nodes such that each can listen
to the other two. This can be done by using an appropriate
forwarding of the route request packets in which a node drops
all except the first route request that it receives.

3.2 Theoretical Analysis
Initially, we assume that call preemption does not occur. We de-
rive upper and lower bounds on the call acceptance probability for
the case of single-hop and multi-hop calls, respectively. Consider
a node j and the region spanned by its transmission range R(j).
Any call passing through R(j) uses up some number of slots. The
number of slots used up in the region R(j) depends on the num-
ber of calls originated from node j, the number of calls from any
of the neighbors of node j, and the number of calls that originate
from outside R(j) and are routed through R(j). A slot is said to
be free in R(j) if no nodes in R(j) are either transmitting or re-
ceiving in that slot (i.e., slot is free at all nodes in region R(j)).
In Figure 3, node A1 transmits to node A2 on slot 1. Node A4

transmits to node A2 on slot 2. Node A5 transmits to node A3 on
slot 3. If the network had a total of 5 slots, the free slots at node
A1 would be {2, 3, 4, 5} while the free slots in the region R(A1)
would be {4, 5}. We can thus view R(j) as a server of slots for
which the calls contend. Although the distribution of call arrivals
of a particular class at each node is known to be Poisson, the dis-
tribution of calls arriving at R(j) is not Poisson due to the splitting
of the Poisson streams (Consider calls arriving at a node based on
a Poisson process of mean λ. Assume that the node has to forward
the call along one of two links. If the node forwards calls in a non-
random manner, the arrival of calls at the downstream node will
no longer be Poisson). We make use of Kleinrock’s Independence
Assumption, according to which, for moderately heavy call arrival
at each node, the net call arrival at the region R(j) can be regarded
as Poisson. Thus, calls of a class-k arrive at R(j) according to a
Poisson distribution with mean:

λk(j) =
i=NX
i=1

fk(i, j)λk

where fk(i, j) is the fraction of class-k calls originating in node i
that pass through the region R(j). This can be rewritten as:

λk(j) = (
X

i/∈R(j)

fk(i, j) + |N(j)| + 1)λk (1)

171



µ  1∆t
1

n

j)
1

λ  ( t∆

j)
1

λ  ( t∆

(n  +1)
1

µ  1∆t j)
i

λ  ( t∆

µ  
i
∆t(n  +1)

i

µ  
i
∆tn

i

j)
K

λ  ( t∆

j)
i

λ  ( t∆

µ  ∆tn
2 2

j)
2

λ  ( t∆
j)

2
λ  ( t∆

2
(n  +1)µ  2∆t

2

1 2

1 1 2

1 2

1 2 1 2
(n  , n  , ..., n  , ..., n   +1)

µ  
K

t
K

n j)
K

λ  ( t∆
µ  

K
∆t(n  +1)

K

∆

21
(n  , n  +1, ..., n  , ..., n   )

1
(n  , n  −1, ..., n  , ..., n   )  

(n  , n  , ..., n  , ..., n   )
1 2 i

i K i K

i
(n −1 , n  , ..., n  , ..., n   )

2 i K

(n  , n  , ..., n +1 , ..., n   )
K

K

i
(n  , n  , ..., n  , ..., n   −1)

K

K

(n +1 , n  , ..., n  , ..., n   )

i K

i

i

K

(n  , n  , ..., n −1 , ..., n   )

Figure 4: The transitions into and out of one of the states of the Markov process representing the region R(j). For the state
(n1, n2, . . . , nK), n1 > 0, n2 > 0, . . . , nK > 0.

where N(j) denotes the set of nodes in the transmission range of
node j. The parameter fk(i, j) is dependent on the routing pro-
tocol. For a protocol such as shortest-path routing, which leads to
heavy loads in the center of the network, fk(i, j) would be high for
nodes j (1 ≤ j ≤ N ) located near the center. For protocols that
implement load-balancing, the value of fk(i, j) should be fairly
uniform across the nodes.

The state of the system R(j) is given by the number of calls of
each class being served (each of which uses up some of the slots of
R(j)) by R(j). We thus model R(j) as aK-dimensional discrete-
time Markov process1 X(t) = (n1, . . . , nK), where nk denotes
the number of class-k calls being served by R(j) at time t [11].

We denote: P ((n′1, . . . , n
′
K)|(n1, . . . , nK)) = P (X(t+∆t) =

(n′1, . . . , n
′
K)|X(t) = (n1, . . . , nK)) as the probability that the

system R(j) is in the state (n′1, . . . , n
′
K) at time t+∆t given it is

in the state (n1, . . . , nK) at time t.

P ((n1, . . . , nk + 1, . . . , nK)|(n1, . . . , nk, . . . , nK)) =

λk(j)∆t (2)

P ((n1, . . . , nk − 1, . . . , nK)|(n1, . . . , nk, . . . , nK)) =

nkµk∆t, nk > 0 (3)

The state-transition diagram representing the transitions into and
out of one of the states of the Markov process is shown in Figure 4.2

The Markov process has a unique steady-state probability distri-
bution [11]. Using Equations (2) and (3) along with the normal-
ization of probabilities, we can calculate the probability that the

1In the most general case of a model corresponding toK classes of
calls, the Markov process has

`
K+B

B

´
states. This is not a problem

for the current analysis since the transitions between the states are
restricted: every state has at most 2K neighboring states, and the
processes associated with any given regions are decoupled. Further,
we are interested in only the steady state of the process and not in
the paths traversed. The state-explosion needs to be tackled for an
analysis that considers coupled processes or preemptive calls: the
interested reader may refer [9] and [10].
2For the case of preemption, the system can move between cer-
tain other states. Corresponding to the case of preemption of a
class-2 call by a class-1 call, the system can move from the state
(n1, n2, . . . , nK) to (n1 + 1, n2 − 1, . . . , nK), n2 ≥ 1.

system is in a particular state (n1, . . . , nK) as:

P ((n1, . . . , nK)) =
1

G(j)

k=KY
k=1

ρk(j)
nk

nk!
(4)

where ρk(j) =
λk(j)

µk
and

G(j) =
X

0≤n1+,...,+nK≤B

k=KY
k=1

ρk(j)
nk

nk!
is a normalization factor.

We would now like to extend this Markov process to distinguish
between calls that terminate in a node in R(j) (call them type-U
calls) and those that do not (type-V calls). Let us say that a fraction
f of the calls terminate in some node in R(j). If the destination
were to be chosen randomly, then f = |N(j)|+1

N
. The state of the

system is now given by:

(n1,U , n1,V , n2,U , n2,V , . . . , nK,U , nK,V )

where nk,U is the number of class-k calls that are type-U calls in
R(j) and nk,V is the number of class-k calls that are type-V calls.
The probability that the system is in a state (n1,U , n1,V , n2,U , n2,V ,
. . . , nK,U , nK,V ) is:

P ((n1,U , n1,V , . . . , nK,U , nK,V )) =

1

E(j)

k=KY
k=1

ρk,U (j)
nk,U

nk,U !

ρk,V (j)
nk,V

nk,V !
(5)

where ρk,U (j) =
fλk(j)

µk
, ρk,V (j) =

(1−f)λk(j)
µk

, and

E(j) =
X

n1,U ,n1,V ,...,nK,U ,nK,V

k=KY
k=1

ρk,U (j)
nk,U

nk,U !

ρk,V (j)
nk,V

nk,V !
is

a normalization factor.
The probability that the system is in a state (n1,V , n2,V , . . . , nK,V )
(a state in which there are n1,V class-1 type-V calls, n2,V class-2
type-V calls, and so on) is:

P ((n1,V , . . . , nK,V )) =
1

H(j)

k=KY
k=1

ρk,V (j)
nk,V

nk,V !
(6)

where H(j) =
X

0≤n1,V +,...,+nK,V ≤B

k=KY
k=1

ρk,V (j)
nk,V

nk,V !
is a nor-

malization factor.
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C1

C2

C3

C5
j

Figure 5: In the region R(j), C1 and C4 are type-U calls; C2,
C3, and C5 are type-V calls. For each type-V call, we see that
at least one slot that has not been used so far in R(j) must be
used. For the type-U calls, slot reuse is possible in some cases.

3.2.1 Call Acceptance Probability
In this section, we are going to derive the call acceptance proba-
bility of both single-hop and multi-hop cases for a non-preemptive
system (a system where the accepted calls are not dropped for a
new call).

LEMMA 1. P (Number of used slots in a region R(j) ≤ x) ≤
P (Number of type − V calls in R(j) ≤ x), where x ∈ N.

Proof: For every type-V call, at least one unique (until then un-
used) free slot in the region R(j) must be used (see Figure 5).
Thus:

Number of type − V calls in R(j) > x ⇒
Number of used slots in R(j) > x

and

Number of used slots in R(j) ≤ x ⇒
Number of type − V calls in R(j) ≤ x

Hence P (Number of used slots in R(j) ≤ x) ≤
P (Number of type − V calls in R(j) ≤ x)

✷

LEMMA 2. P (Number of calls in a region R(j) ≤ x) ≤
P (Number of used slots in a region R(j) ≤ cx), where x ∈ N

and c is the routing − algorithm dependent constant factor that
denotes the maximum number of nodes on a path that lie within
the transmission range of any node on the path.

Proof:

Number of calls in R(j) ≤ x ⇒
Number of used slots in R(j) ≤ cx

Hence P (Number of calls in R(j) ≤ x) ≤
P (Number of used slots in R(j) ≤ cx)

✷

Theoretical upper bound for probability of call acceptance

We now derive an upper bound on the probability of call acceptance
for the cases of single-hop and multi-hop calls.
Single-hop case: Consider a single-hop call from node j to its
neighbor node l. For the call to be accepted, at least one slot must
be free in the region R(j). Thus PAcc (probability of a single-hop
call is accepted) is:

PAcc = P (Number of free slots ≥ 1)

= P (Number of used slots ≤ B − 1)
where B is the total number of slots in the system. From Lemma 1:

PAcc ≤ P (Number of type − V calls ≤ B − 1)
≤ 1− P (Number of type − V calls > B − 1)
≤ 1− P (Number of type − V calls = B)

PAcc ≤ 1−
X

n1,V +n2,V +...+nK,V =B

1

H(j)

k=KY
k=1

ρk,V (j)
nk,V

nk,V !
(7)

For the case of a single-class of calls, Equation (7) reduces to

PAcc ≤ 1− 1

H(j)

ρ1,V (j)
B

B!
(8)

Multi-hop case: We set the constant c = 3. Consider a (M − 1)-
hop call (M ≥ 3) setup along the nodes (p1, . . . , pM ). When a slot
is reserved for transmission between p1 and p2, the total number of
free slots at R(p2) decreases by 1 (since the slot cannot be used
for transmission from p2 to p3). Thus, the total number of slots
available at R(p2) can be considered as B − 1. Call this modified
region R′(p2). When slots have been reserved between p1 and p2,
and between p2 and p3, the number of free slots atR(p3) decreases
by 2 so that the total number of slots at R(p3) can be regarded as
B − 2. Call this modified region R′′(p3). The number of slots,
for the regions R(p3), . . . , R(p(M−1)), is thus effectively, B − 2
(since c = 3). (Thus, according to this notation, a region R′(j) has
one fewer slot, while R′′(j) has two fewer slots). A multi-hop call
setup forM = 5 is shown in Figure 6.

A call is successfully forwarded in region R(j) if slots can be
found inR(j) so that the call having arrived at node j is forwarded
to its next hop in the path. For the call to be accepted, it must first be
successfully forwarded in the region R(p1), must then be success-
fully forwarded through each of the regions R′(p2), R′′(p3), . . .,

P1

P2 P3 P4

P5

Slot #1
Slot #2

Slot #3
Slot #1

Figure 6: Multi-hop call setup. R(P1) needs slot #1 to be free.
R(P2) now cannot use slot #1 and requires slot #2 (some other
slot) to be free. R(P3) cannot use slots #1 and #2, and requires
slot #3 (any other slot) to be free. R(P4) can transmit in slot #1
if it is free.
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R′′(pM−1). A necessary and sufficient condition for successful
forwarding is the presence of at least one free slot in each of the
intermediate regions.
Denote: Successful forwarding of call in R(j) as SF of call in
R(j). Thus PAcc is given by:

PAcc = P (SF of call in R(p1))×
P (SF of call in R′(p2)|SF of call in R(p1))×
P (SF of call in R′′(p3)|SF of call in R′(p2))×

. . .

P (SF of call in R′′(pM−1)|SF of call in R′′(pM−2))

PAcc = P (No. of free slots in R(p1) ≥ 1)×
P (No. of free slots in R′(p2) ≥ 1|SF of call in R(p1))×
P (No. of free slots in R′′(p3) ≥ 1|SF of call in R′(p2))×

. . .

P (No. of free slots in R′′(pM−1) ≥ 1|SF of call in R′′(pM−2)) (9)

From Lemma 1:

PAcc ≤ P (No. of type− V calls in R(p1) ≤ B − 1)×
P (No. of type− V calls in R′(p2) ≤ B − 2) ×
P (No. of type− V calls in R′′(p3) ≤ B − 3)×
. . .

P (No. of type− V calls in R′′(pM−1) ≤ B − 3)

PAcc ≤

0
B@1 −

X
n1,V +n2,V +...+nK,V =B

1

H(p1)

k=KY
k=1

ρk,V (p1)
nk,V

nk,V !

1
CA ×

0
B@1 −

X
n1,V +n2,V +...+nK,V =B−1

1

H′(p2)

k=KY
k=1

ρk,V (p2)
nk,V

nk,V !

1
CA ×

0
B@1 −

X
n1,V +n2,V +...+nK,V =B−2

1

H′′(p3)

k=KY
k=1

ρk,V (p3)
nk,V

nk,V !

1
CA ×

. . .0
B@1 −

X
n1,V +n2,V +...+nK,V =B−2

1

H′′(pM−2)

k=KY
k=1

ρk,V (pM−2)
nk,V

nk,V !

1
CA ×

0
B@1 −

X
n1,V +n2,V +...+nK,V =B−2

1

H′′(pM−1)

k=KY
k=1

ρk,V (pM−1)
nk,V

nk,V !

1
CA (10)

where H ′(j) =
X

0≤n1,V +,...,+nK,V ≤B−1

k=KY
k=1

ρk,V (j)
nk,V

nk,V !
and

H ′′(j) =
X

0≤n1,V +,...,+nK,V ≤B−2

k=KY
k=1

ρk,V (j)
nk,V

nk,V !
.

For the case of a single-class of calls, Equation (10) reduces to

PAcc ≤
»
1− 1

H(p1)

ρ1,V (p1)
B

B!

–
×

»
1− 1

H ′(p2)
ρ1,V (p2)

B−1

(B − 1)!
–
×

»
1− 1

H ′′(p3)
ρ1,V (p3)

B−2

(B − 2)!
–
×

. . .»
1− 1

H ′′(pM−2)

ρ1,V (pM−2)
B−2

(B − 2)!
–
×

»
1− 1

H ′′(pM−1)

ρ1,V (pM−1)
B−2

(B − 2)!
–

(11)

The RHS (Right Hand Side) of Equations (8) and (11) are hard to
solve for in a closed-form. For moderate-to-heavy traffic, ρ > 1

and the inequality remains valid if we replace ρ1,V (pj), 1 ≤ j ≤
M −1 by ρ1,V

Max (the maximum value of ρ1,V (pj) across all the
regions). Denoting the RHS as PMax

Acc :

PMax
Acc = 1− 1

H

ρ1,V
MaxB

B!
for single− hop calls (12)

PMax
Acc =

"
1− 1

H

ρ1,V
MaxB

B!

#
×

"
1− 1

H ′
ρ1,V

MaxB−1

(B − 1)!

#
×

"
1− 1

H ′′
ρ1,V

MaxB−2

(B − 2)!

#M−3

for multi− hop calls (13)

whereH =
b=BX
b=0

ρ1,V
Maxb

b!
,

H ′ =
b=B−1X

b=0

ρ1,V
Maxb

b!
, andH ′′ =

b=B−2X
b=0

ρ1,V
Maxb

b!
.

Theoretical lower bound for probability of call acceptance

In this section, we derive lower bounds on the probability of call
acceptance for the case of single-hop and multi-hop calls.

Single-hop case: For the single-hop case, a call from node j to
its neighbor node l is accepted if there is at least one free slot in the
region R(j). From our assumption about the fact that the routing
protocol satisfies the property that at most c nodes on the path can
hear any other node on the path, we have for a given number of
calls in the region R(j)

PAcc = P (Number of free slots ≥ 1)

= P (Number of used slots ≤ B − 1)
(14)

Using Lemma 2

PAcc ≥ P (Number of calls ≤
—
B − 1
2



)

≥ 1

G(j)

X
n1+n2+...+nK≤�B−1

2 


k=KY
k=1

ρk(j)
nk

nk!
(15)

For a single-class of calls

PAcc ≥ 1

G(j)

i=�B−1
2 
X

i=0

ρ1(j)
i

i!
(16)

Multi-hop case: Consider the attempt to setup an (M − 1)-hop
call (M ≥ 3) along the nodes(p1, . . . , pM ). The probability of
call acceptance is given by Equation (9). From Equation (9) and
Lemma 2

PAcc ≥ P (Number of calls in R(p1) ≤
—
B − 1
2



)×

P (Number of calls in R′(p2) ≤
—
B − 2
2



)×

P (Number of calls in R′′(p3) ≤
—
B − 3
2



)×

. . .

P (Number of calls in R′′(pM−1) ≤
—
B − 3
2



)
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PAcc ≥ 1
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(17)

where G′(j) =
X

0≤n1+...+nK≤B−1

k=KY
k=1

ρk(j)
nk

nk!
and

G′′(j) =
X

0≤n1+...+nK≤B−2

k=KY
k=1

ρk(j)
nk

nk!
.

For the single-class case:

PAcc ≥ 1
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i=�B−1
2 
X

i=0

ρ1(p1)
i

i!
×

1

G′(p2)

i=�B−2
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X

i=0

ρ1(p2)
i

i!
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1
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i

i!
×

1
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i=�B−3
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i
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(18)

Using the same approximations as in Equations (12) and (13), we
can determine the minimum value of the acceptance probability
PMin

Acc :

PMin
Acc =

1

G

i=�B−1
2 
X

i=0

ρMini

i!
for single− hop calls (19)

PMin
Acc =

2
64 1
G

i=�B−1
2 
X

i=0
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3
75 ×

2
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3
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2
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3
75

M−3

for multihop calls (20)

where G =
i=BX
i=0

ρMaxi

i!
,G′ =

i=B−1X
i=0

ρMaxi

i!
, and

G′′ =
i=B−2X

i=0

ρMaxi

i!
.

3.2.2 System Saturation Probability
For the case of a single-class of calls, the probability that the net-
work is saturated i.e., no further calls can be accepted is given by
PSat. If the number of type-V calls in a region is B, then this

would require at least B slots to be used, and no further calls can
be accepted.

P (Saturation in R(j)) = P (B slots are used)

P (Saturation in R(j)) ≥ P (Number of type − V calls at R(j) = B)

≥ 1

H(j)

ρ1,V (j)B

B!
(21)

PSat ≥
i=NY
i=1

1

H(i)

ρ1,V (i)B

B!
(22)

PSat ≥ [
1

H

ρ1,V
MaxB

B!
]

N

(23)

3.2.3 A Summary of the Results

• The Equations (19), (20), (12), and (13) suggest that the call
acceptance decreases with system load, this decrease being
rapid at high loads.

• For an incoming call’s chances of acceptance to be maxi-
mized, Equations (7) and (10) suggest that the minimum ρ(j)
across the network be maximized: this suggests that load-
balancing would help improve the acceptance rate.

• If all the nodes are within the transmission range of one
another (all communication is single-hop), then the upper
and lower bounds (Equations (19) and (12)) converge with
ρk(j) = N

λk
µk

.

• To ensure that the call acceptance is always above a certain
threshold irrespective of the load, Equations (19) and (20)
indicate that the network must be well-provisioned i.e., B
must be sufficiently high.

• As boundary cases, the following are seen to hold for the call
acceptance rates: as the number of slots increases, it tends to
unity. As the call duration increases, it approaches zero.

3.2.4 The Case of Preemption
The analysis so far has been done under the assumption that

high-priority calls cannot preempt lower-priority ones. However,
a realistic scenario may require that high-priority calls are ensured
high probability of call acceptance. This may require introduction
of preemption into the system. The analysis of the steady-state
probabilities of a preemptive Markov process is a difficult prob-
lem. The stationary distribution of the highest priority calls can
be easily obtained since these calls effectively ignore the presence
of other low-priority calls. Thus, the stationary distribution of the
class-1 calls is the same as that of the single-class system given in
Equations (19), (20), (12), and (13).

3.2.5 The Failure of Shortest-path Routing
The analysis tells us that the parameters: the call acceptance prob-
ability and the system saturation probability depend on the load on
the network, the hopcount of the path, and the routing protocol. We
first look at the performance of shortest-path routing relative to the
theoretical guarantees. The routing protocol is related to the call
acceptance and the system saturation probability through the factor
fk(i, j) specified in Equation (1).

Shortest-path routing: Shortest-path routing computes the shortest-
path between the source and the destination where the distance
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Figure 7: The normalized average fraction of calls being routed
to a node with increasing distance from the center for shortest-
path routing. The arrival rate is 0.04 calls per second at a node.
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path routing. The arrival rate is 1 calls per second at a node.

refers to the Euclidean distance between the source and the des-
tination. In a highly dense network, the authors of [12] proved that
the average path length obtained when shortest-path routing is em-
ployed is 0.905R where R is the radius of the network. This leads
to heavier load at the center region of the network. We simulate
shortest-path routing and measure the call acceptance rate. The
Figures 7 and 8 indicate the loading of the center of the network,
and decreasing load away from the center where the ring can be
regarded as a unit of distance from the center (refer Section 4 for
more details). The Figures 9, 10, and 11 show that the shortest-
path routing has a call acceptance rate much below the theoretical
limit. Note that even in Figure 9, the system has several calls with
varying hops, which would be the case in a realistic scenario. The
results shown in Figures 9, 10, and 11 are got by measuring the ac-
ceptances for single-hop, 2-hop, and 3-hop calls, respectively. The
reason that shortest-path routing performs badly is due to the fact
that a majority of the calls are routed through the center of the net-
work resulting in a high load in the center. This problem suggests
the use of load-balancing to alleviate the formation of hotspots and
to increase the call acceptance.
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Figure 9: Call acceptance probability of single-hop calls using
shortest-path routing vs varying load.
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Figure 10: Call acceptance probability of 2-hop calls using
shortest-path routing vs varying load.

3.3 Load-balancing
We consider the following strategies for load-balancing:

• Ring-based routing: Ring-based routing [12] transfers the
load from the center to the periphery of the network. The
scheme makes use of heuristics to balance the load. We de-
fine the following terms:

– The center node or center of a network, C, is the node
for which,

max∀x(HC(C,x)) ≤ min∀y(max∀z(HC(y, z)))

for all nodes x, y, and z in the network.
Here HC(a, b) denotes the hopcount of the shortest
path from node a to node b.

– Each node in the network belongs to a Ring denoted
by Ringi(ri, ri+1). A Ring is an imaginary division
of the network into concentric rings about the center
of the network. The thickness of the ring is given by
ri+1 − ri. A node that belongs to Ringi lies at a
distance in (ri, ri+1) from the center of the network.

The load balancing heuristic that we use is a Preferred Outer
Ring routing Scheme (PORS) [12]. In this strategy, traffic
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Figure 11: Call acceptance probability of 3-hop calls using
shortest-path routing vs varying load.

generated in a node in Ringi and destined for a node in
Ringj must not go beyond the rings enclosed by Ringi and
Ringj . Further, the packets must be preferentially routed
through the outer of the two rings. Thus, for nodes belonging
to the same ring, packets must be preferentially transferred
in the same ring. For nodes belonging to different rings, all
angular transmissions must preferentially take place in the
outer of the two rings while the radial transmissions transfer
packets across the rings. Thus, PORS affects the hopcount
while at the same time moving most of the load away from
the center.

• Bandwidth-limited routing: Bandwidth-limited routing is a
more direct form of load-balancing that uses an estimate or
measurement of the available bandwidth to select a path. It
differs from the two previous methods (shortest-path rout-
ing and PORS) in that it is dynamic: constantly adapting to
changes in the network state. There are two opposing metrics
that such a scheme attempts to reconcile. It tries to choose
paths with the highest available bandwidth. These paths, usu-
ally, tend to be longer than the shortest path. As a result, the
available bandwidth of the path, which is the minimum of the
available on the constituent links, is more likely to decrease.

The scheme that we use is based on the Shortest-dist (P, n)
studies in [13]. Shortest-dist (P, n) heuristic finds a path P
with the shortest distance

dist(P, n) =
kX

i=1

1

rni

where r1, . . . , rk are the max-min fair rates of links on the
path P with k hops. We use a variant of this heuristic. The
weight for the link (u, v) is weighted by

1

B(u, v)n

where B(u, v) is the estimated bandwidth of the link, and n
is a weighting factor. We simply estimate this as the mini-
mum of the number of free slots at nodes u and v. The intu-
ition behind this heuristic is that when the links are weighted
thus, shortest-path routing will select a path that minimizesPi=k

i=1
di

Bi
n where k is the number of hops, di is the Eu-

clidean distance of the ith hop, and Bi is the estimated band-
width of the link traversed on the ith hop. This heuristic tends

Table 1: Parameters used in the simulation
Parameter Value
Number of nodes 50
Number of slots 32
Terrain area 1000 m×1000 m
Transmission range 300 m
Average call duration 30 s
Simulation duration 200 s
Number of seeds 20
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Figure 12: Variation of Call Acceptance vs ρ for Single-hop
calls.

to select links with high available estimated bandwidth that
would also form a short path to the destination. We set the
exponent n to 1 for our experiments.

4. SIMULATION STUDIES
To study the actual behavior of the parameters of interest, we built
an Ad hoc wireless network simulator in C++. The network is
TDMA-based. Reservation involves two steps: finding a path using
one of the routing protocols discussed and reserving slots along the
path. Slot allocation for a particular call is done in a greedy man-
ner. If at any intermediate node, the number of free slots is found to
be inadequate, the call is rejected. Calls are generated at each node
according to a Poisson process and the accepted calls have an expo-
nentially distributed call duration. The nodes are not mobile. The
parameters of the simulation are specified in Table 1. The simula-
tions are run with 20 seeds: each run generates a random topology.
In each run, calls are generated randomly according to a Poisson
distribution with an exponentially distributed duration. We ran the
simulations for a duration of 200s.

For the simulation studies, we vary the load by varying the call
arrival rate at each node. We compare the call acceptance probabili-
ties for varying values of the ratio ρ = (Average Call Arrival Rate
× Average Call Duration). In order to compare the theoretical
values and the experimental results, we need to translate the ρ value
to the ρ1,V

Max value. Thus, we also measure the average fraction
of calls that pass through a region. This factor is an indication of the
nature of the routing protocol used. We then measure the call ac-
ceptance of calls based on their hopcount for different routing pro-
tocols and compare with the theoretical limits. Results presented in
this paper conform to 95% confidence intervals.
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Figure 13: Variation of Call Acceptance vs ρ for 2-hop calls.
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Figure 14: Variation of Call Acceptance vs ρ for 3-hop calls.

5. SIMULATION RESULTS

5.1 Call Acceptance Probability
We have compared the probability of call acceptance of shortest-
path routing, Bandwidth-limited routing (BW), PORS, and the the-
oretical bounds at different values of load (in terms of the ratio
ρ).We have also studied the acceptance probability for hopcount
values of 1, 2, and 3 (Figures 12, 13, and 14). In all the results,
the call acceptance probability value decreases with an increase in
the network load, as expected. Further, the curves depicting the
call acceptance probability values of shortest-path routing, BW, and
PORS lie within the region surrounded by PMax

Acc and PMin
Acc .

PORS performs only marginally better than shortest-path routing
(and in fact worse for single-hop calls) while BW performs signifi-
cantly better. PORS attempts to load balance implicitly by routing
calls to the periphery: this may not be the most effective strategy
because nodes in one ring can interfere with those in the other rings.
Also it does not take into account the fact that a longer path would
result in more resources being consumed affecting the acceptance
rate of calls in the future. This is probably the reason why the
single-hop calls have a lower acceptance rate in PORS. BW, by us-
ing an explicit bandwidth-based load-balancing is evidently more
effective. To bring out the difference in the performance of the
three routing algorithms, we compute the fraction of all generated
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Figure 15: The normalized average fraction of calls being
routed to a node with increasing distance from the center. The
arrival rate is 0.04 calls per second at a node.
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Figure 16: The normalized average fraction of calls being
routed to a node with increasing distance from the center. The
arrival rate is 1 calls per second at a node.

calls that arrive at a node. We compute the average of this fraction
for all nodes that belong to a ring and hence can be considered to be
at a fixed distance from the center of the network. The Figures 15
and 16 plot this average fraction (normalized so that the least num-
ber is 1 and all the others are divided by this least number) for two
different loads on the network. In both cases, shortest-path routing
has a high load near the center. PORS shifts this load to the pe-
riphery but incurs the cost of higher path length. BW behaves like
shortest-path when the network is lightly loaded but shifts the calls
to the periphery with an increasing load.

The difference between the theoretical upper bound and the ex-
perimental results is partly the result of the approximations and as-
sumptions used in our model. However, the difference also reflects
the inadequacy of the existing protocols in load-balancing.

The increase in the call acceptance probability of the load - bal-
ancing schemes as compared to shortest-path routing indicates the
importance of load-balancing in ensuring better throughput in terms
of call acceptance. In fact, load-balancing seems to be an impor-
tant method of approaching PMax

Acc . The results indicate that an
ideal load-balancing based routing protocol can come close to the
theoretical upper bound.
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Figure 18: Rank-based priority scheme.

5.2 System Saturation Probability
The variation of the probability of system saturation with load is
shown in Figure 17. This metric remains near zero for moderate-to-
heavy loads, and takes on an appreciable value only at high values
of load. This indicates that system saturation is a rare occurrence
for the common values of load. Thus, the network rarely enters a
state where every new call is rejected. This also implies that for the
common values of load, it is always possible to ensure that some
fraction of the calls are guaranteed acceptance. This fraction is
based on the values of the probability of call acceptance at that
load.

5.3 Deterministic Guarantees
Our aim is to ensure that a certain number of calls in the net-

work can be assured of acceptance. We can do so by pegging these
calls at a high priority. Consider the following rank-based pri-
ority scheme: (Figure 18) Calls are prioritized according to the
classes to which they belong. In addition, calls that belong to the
highest priority are further allocated to sub-classes which are based
on the address or ID of the source of the call. Further, call ad-
mission ensures that only one call of a given sub-class exists in
the system. This implies that a particular node can originate only
one such highest priority call. Preemption is permitted amongst the
sub-classes themselves so that a high-priority sub-class has a bet-
ter chance of acceptance. Hence a scenario can be envisaged as
follows: the network is deployed in a military scenario in which
the nodes are under the control of various communicating officers.
The node ID can be assigned based on the rank of the officer using

the node. Calls are prioritized at the time of call admission into
various classes. These calls then have probabilities of acceptance
depending on the class to which they have been assigned and the
network state. In addition, the calls of the highest priority class are
assigned to sub-classes based on their node ID. Thus, to ensure that
the call of the highest-ranking officer (say the General) always gets
through, the general’s node would be assigned a high-priority node
ID. Thus, a set of nodes can be designated to ensure certain call
acceptance. To ensure that these guarantees provided are effective,
we need to estimate the number of calls (which is equivalent to the
number of sub-classes) for which certain call acceptance can be en-
sured, and the call acceptance for the sub-classes which lie outside
the former class.

5.3.1 Deterministic Guarantee Limit
The Deterministic guarantee limitD refers to the number of sub-

classes of the highest priority class that can be ensured determin-
istic call acceptance as outlined at the beginning of this section.
These sub-classes are referred to as the deterministic sub-classes.
From

Number of calls in R(j) = x ⇒
Number of used slots in R(j) ≤ cx, (24)

if x =
¨

B
c

˝
, then the number of used slots inR(j) ≤ B. If the total

number of sub-classes in the network =
¨

B
c

˝
, then for every node

j, the number of used slots in R(j) ≤ B. Thus, this is the number
of sub-classes that can be definitely accepted by every region of
the network at a given time. By allocating a unique set of slots to
each of the

¨
B
c

˝
sub-classes, we can ensure that calls of these sub-

classes are accepted (of course, any lower priority calls may need
to be preempted in the process). Thus, the Deterministic guarantee
limitD ≥ ¨

B
c

˝
. This implies that

¨
B
c

˝
sub-classes can be ensured

deterministic call acceptance. However, this being a lower bound
it may be possible for some more sub-classes to be ensured of this
deterministic acceptance.

Independence of the Guarantee Limit and Mobility
At this point, we also would like to point out the effect of the mo-
bility of the nodes on the limit. The deterministic guarantee limit is
independent of the mobility. The set of sub-classes {1, . . . ,¨ B

c

˝}
are ensured of deterministic acceptance even in the face of node
mobility. Mobility in the network leads to path breaks and, sub-
sequent, route reconfiguration attempts. In any such attempt, the
calls belonging to the deterministic sub-classes retain their priority.
Thus, these calls are guaranteed resources during the reconfigura-
tion.

5.3.2 Probability of Acceptance for the Probabilistic
Sub-classes

The sub-classes other than the deterministic sub-classes are re-
ferred to as the probabilistic sub-classes. Since sub-classes are
assigned based on node IDs, there are N sub-classes, designated
{1, . . . , N} in decreasing order of priority. We are considering the
call acceptance of a call belonging to a sub-class n >

¨
B
c

˝
(all

calls in any of the sub-classes {1, . . . ,¨ B
c

˝} are of a higher prior-
ity than this call and are within the deterministic guarantee limit) at
a time t. We denote the probability that a call of sub-class i exists
in the network at time t by pi(t). Let qi(t) = 1− pi(t).

Denote: the acceptance of call of sub-class n as ACCn, and the
number of calls ∈ sub-classes {1, . . . , n− 1} as Count(1, n− 1).
As in Equation (24), if Count(1, n− 1) is less than

¨
B
c

˝
, then for
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every node j, the number of slots used by calls of these sub-classes
is ≤ B − c. All the remaining c slots are either free or are used by
lower-priority calls which can be preempted by the call belonging
to sub-class n. Thus, the call of sub-class n can be accepted. Thus

At time t, Count(1, n− 1) < ¨
B
c

˝ ⇒
Call of sub− class n is accepted

P (Call of sub − class n is accepted|Count(1, n − 1) <

—
B

c



) = 1 (25)

By denoting the probability of acceptance of the call belonging to
sub-class n at time t as Pn(t):

Pn(t) = [P (ACCn|Count(1, n − 1) <

—
B

c



)

× P (Count(1, n − 1) <

—
B

c



)]

+ [P (ACCn|Count(1, n − 1) ≥
—

B

c



)

× P (Count(1, n − 1) ≥
—

B

c



)] (26)

Pn(t) ≥ P (Count(1, n − 1) <
¨

B
c

˝
)

Pn(t) ≥
X

S⊆{1,...,n−1}
|S|≤

j
B
c

k

Y
l∈S

pl(t)
Y

r∈{1,...,n−1}−S

qr(t) (27)

When the calls at each node follow an identical probability distri-
bution i.e., pj(t) = p(t),∀j ∈ {1, . . . , N}, Equation (27) simpli-
fies to

Pn(t) ≥
i=

j
B
c

k
X
i=0

“n − 1

i

”
p(t)iq(t)n−i−1 (28)

6. CONCLUSION
A realistic analysis of the nature of QoS guarantees is crucial in
the design of new protocols and the improvement of existing ones
to handle the growing diversity of demands on networks. In this
paper, we have analyzed a TDMA-based Ad hoc wireless network.
We have derived an upper bound on the probability of call accep-
tance: a bound that gives us a measure of the number of calls that
can be allowed into the network, and a lower bound on the proba-
bility of system saturation: a number that indicates the likelihood
of the network being unable to accept any further calls. Our analy-
sis takes into consideration the behavior of the routing protocol and
the inter-dependence of resources (time-slots) of neighboring re-
gions in a wireless network. Further, our simulation studies indicate
that the set of protocols tested fall short of the established bounds.
Amongst the three protocols compared, the one that incorporated
load-balancing out-performed the shortest-path routing based pro-
tocol. This clearly indicates the importance of load-balancing in
the attainment of high network performance, and the provision of
better QoS guarantees.

We have estimated the deterministic guarantee limit. This limit
indicates that it is always possible to ensure QoS guarantees for a
certain sub-class of calls irrespective of the mobility and resource
constraints of the network.

When the nodes are moving, the number of nodes in a given
region becomes time-dependent. This in turn is reflected in the
factor ρ becoming time-independent. We are studying the effect of
time-dependence of ρ on the call acceptance.

The experimental studies in this work were performed with a
single-class of calls. The next step would involve studying the ef-
fect of introducing multiple classes of calls. Further, we are work-
ing on extending the analysis to handle the case of call preemption,
and on obtaining tighter estimates. The modeling of the routing al-
gorithm needs to be refined so that we can make predictions based
on the fk(i, j) of different protocols. The experimental studies
also need to be extended to compare other protocols to infer the es-
sential and desirable properties of protocols that approach optimal-
behavior.
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