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Abstract— In this paper, we address the problem of video mul-
ticasting in ad hoc wireless networks. The salient characteristics
of video traffic make conventional multicasting protocols perform
quite poorly, hence warranting application-centric approaches
in order to increase robustness to packet losses and lower the
overhead. By exploiting the path-diversity and the error resilience
properties of Multiple Description Coding (MDC), we propose
a Robust Demand-driven Video Multicast Routing (RDVMR)
protocol. Our protocol uses a novel path based Steiner tree
heuristic to reduce the number of forwarders in each tree, and
constructs multiple trees in parallel with reduced number of
common nodes among them. Moreover, unlike other on-demand
multicast protocols, RDVMR specifically attempts to reduce the
periodic (non on-demand) control traffic. We extensively evaluate
RDVMR in the NS2 simulation framework and show that it out-
performs existing single-tree and two-tree multicasting protocols.

I. INTRODUCTION

An Ad hoc Wireless Network (AWN) is a collection of
mobile nodes that dynamically form a temporary network
without any pre-existing infrastructure. AWNSs are character-
ized by high bit error rates and path breaks due to frequently
changing network topology. This makes existing multicast
protocols for wired networks unsuitable for AWNSs, as a result
of which several multicasting protocols for AWNs have been
proposed in the literature. As developments in ad hoc networks
continue, there is an increasing expectation with regard to
content-rich multimedia (example video) communications in
such networks, in addition to traditional data communications.

Video data is marked by

1) High data rate which leads to a considerable data
overhead (which is defined as the total number of data
packets transmitted/forwarded in the network).

2) Soft real-time nature A frame is considered lost if it has
not received before its playback deadline at the receiver.

3) Inter-frame dependency In order to increase coding ef-
ficiency, motion compensated prediction (MCP) is used
to exploit the temporal redundancy among successive
video frames. This leads to a high degree of dependence
among frames which effectively means that if some key
frames are not received, an entire group of received
frames can be rendered useless.

As shown in [1], [2], these characteristics make conven-
tional multicast protocols proposed for AWNs perform quite
poorly for video multicasting. This warrants development

of application-centric video multicasting protocols which in-
crease the error resiliency (i.e., robustness to packet losses)
and reduce the total data overhead.

The recent advances in Multiple Description Coding (MDC)
have made it highly suitable for multimedia applications in
AWNs. MDC offers a way wherein we can split the video
frame into multiple independent packets (also called descrip-
tions), such that even if one of them is received the frame can
be recovered although with degraded quality. This is indeed
beneficial as the ability to even partially recover a frame can
impact whether its subsequent received frames are decodable
or not. We can further increase the error resilience by em-
ploying path-diversity (existence of multiple paths between a
source-receiver pair) and sending each description along an
independent path to the receiver. By making these paths as
node-disjoint as possible, we decrease the correlation of path
breaks among them, hence increasing the probability of atleast
one description reaching the receiver.

In this paper, we exploit the error resilient properties of
MDC along with path-diversity to propose a multiple tree pro-
tocol called Robust Demand-driven Video Multicast Routing
(RDVMR) protocol. RDVMR reduces the data overhead by
reducing the number of forwarders, using a novel path based
Steiner tree heuristic. It constructs multiple trees in parallel,
that have a reduced number of shared nodes (i.e., nodes that are
forwarders for more than one tree). Therefore, each receiver
has multiple independent paths to the source, along which
different MDC descriptions are sent. To summarize, the three
important contributions of this paper are:

1) We propose a novel path based Steiner tree heuristic to
reduce the number of forwarding nodes and hence the
total data overhead.

2) We propose RDVMR protocol which constructs multiple
trees in parallel with a reduced number of shared nodes
among them to provide robustness against path breaks.

3) Finally, we propose and evaluate a simple scheme
wherein we use RDVMR to multicast different MDC
descriptions over the different trees constructed.

The rest of the paper is organized as follows. In Section 1l
we introduce the related work. In Section 11l we discuss the
motivation behind our work. Section 1V describes RDVMR in
detail. In Section V we evaluate RDVMR through simulations,
and finally in Section VI we conclude with possible future
work.



Il. RELATED WORK

Multicasting in AWNs has been studied extensively. Var-
ious approaches to multicasting have been proposed in the
literature. For an excellent taxonomy of them refer [3], [4].
Multicasting protocols disseminate data either by constructing
a multicasting tree [5], [6], or by maintaining a mesh or a
forwarding group [7], or through gossip based approaches [8].
The multicast routing protocols can either employ on-demand
mechanisms like [5], [9], [10] or can rely on proactive (pe-
riodic) mechanisms like [11]. Recent works like [10] address
the scalability issues of multicasting in AWNS.

Multicasting protocols may use Steiner trees [12] as the
underlying distribution network to minimize the number of
additional forwarders needed. Since constructing a Steiner tree
is an NP complete problem, various polynomial time heuristics
that approximate to a Steiner tree have been proposed and
analyzed in wired networks [13]. However such centralized
heuristics require the complete network topology to be main-
tained at the source. However these heuristics are not suitable
for ad hoc wireless networks, because the routing overhead
incurred to maintain the current topology at every node is
quite high. Various distributed algorithms to construct Steiner
trees have also been proposed [14], however they involve a
high degree of message passing and hence may not converge
in ad hoc network scenarios where the topology changes
frequently due to the mobility of nodes. One of the popular
path based greedy Steiner tree heuristics is the Shortest Path
Tree (SPT) heuristic [15] which minimizes the number of
extra nodes added to the tree each time a receiver joins. The
authors of [15] proved that the competitive ratio of such a
greedy approach is O(logn), where n is the number of join-
requests. Although various Steiner tree based multicast routing
protocols for WANSs [16] have been proposed, to the best of
our knowledge, the problem of minimizing the number of
forwarders in AWNSs has not been studied before.

An automatic repeat request (ARQ) based loss recovery
scheme for increasing the reliability would introduce un-
predictable delays hence making it unsuitable for soft real-
time traffic like video. Therefore to make video dissemina-
tion robust to packet losses, various data redundancy based
techniques like Forward Error Correction (FEC) codes and
Multiple Description Coding (MDC) have been proposed in
the literature. Layered Coding (LC) based approaches are
used to address the issue of receiver heterogeneity, wherein
receivers have different video quality requirements based on
their resource constraints. Recently several multipath unicast
routing protocols have been proposed in the literature [17],
[18]. Further, some attempts were made in the video unicasting
by exploiting path diversity [19], [20], [21], [22], [23]. The
authors of [19], [20], [22], [23] describe how MDC can
use multiple paths to distribute descriptions over different
paths for robust transmission. A comprehensive comparative
study on MDC vs. LC for video streaming over multiple
paths was done in [24]. The emphasis in all this work has
been to use multiple paths for the video unicast. Robust
multiple tree multicasting protocols for AWNs that exploit the
global network topology information at the source to construct

multiple trees are discussed in [6], [25]. The authors of [2]
formulated video multicasting as an optimization problem in
order to minimize the average perceived distortion by each
receiver. Then a highly complex objective function using the
global network topology was solved using genetic algorithm
techniques. Although approaches like [2], [6], [25] give good
results, they have a very high cost as they require an underlying
link state routing protocol to provide them with the network
topology. Unfortunately as link state routing [26] relies on
flooding to disseminate the link update information, excessive
control overhead may be generated, especially when high
mobility triggers frequent link state updates. Hence these
approaches are not suitable for realistic AWN scenarios.

Recently Wei and Zakhor proposed MDTMR [1], a protocol
for video multicasting using MDC over multiple trees. It
constructs two node-disjoint trees, one after the other. Each
tree carries a MDC video stream. However it does not guar-
antee receiver connectivity to both trees, moreover it suffers
from a tremendously high control overhead. On the other
hand, our protocol constructs multiple trees in parallel with a
low overhead. The multiple trees constructed have a reduced
number of shared nodes and forwarders.

Il. MOTIVATION

In order to increase robustness, alternate approaches like
gossip and mesh based multicasting could be considered.
However gossip based approaches are unattractive as receivers
may not receive frames sequentially, hence decoding of a video
frame at the receiver could be delayed unless all previous
frames it depends on indirectly are available. The high data
rate of video traffic makes mesh based approaches unsuitable
as the inherent redundancy increases the data overhead sub-
stantially. Moreover a mesh does not provide for any clean
way to partition the video stream into multiple sub-streams
(which is required if we are to send different descriptions over
different multicasting structures). Hence in order to increase
the robustness to packet losses, we employ path-diversity
based approach. By path-diversity we mean that each receiver
has different node-disjoint paths to the source, and hence
we need to construct multiple trees (with reduced number of
shared nodes) that connect the source to each of the receivers.
Further we require that each of the multiple trees has reduced
number of additional forwarders in order to decrease the
overall data overhead.

Most of the existing multicasting protocols in AWNSs con-
struct shortest path trees, that do not optimize on the number
of forwarders required. Having more forwarders leads to re-
dundant data transmissions and unnecessarily depletes energy
of uninterested nodes. This especially assumes significance
for high data rate traffic like video, as the overhead of the
redundant data transmissions becomes substantial. In fact most
of the multicasting protocols do not even account for the data
overhead, measuring just the control overhead. However as
we show in Section V-B that the Normalized Packet Overhead
(NPO) is a better metric to measure the total (data plus control)
overhead of multicast routing protocols.

One possible approach to minimize the number of for-
warders would be to collect the global topology at the source



by means of a link state routing protocol and employ a central-
ized Steiner tree heuristic, and then communicate the trees to
each receiver [25]. In this approach, the receivers in a Steiner
multicast tree have higher hop lengths to the source than they
would in a shortest path tree. In video multicasting, the delay
from the source to any particular receiver should be bounded.
As discussed in Section 1l, the overhead incurred by link
state routing is quite high, hence making centralized Steiner
heuristics unsuitable for AWNs. The distributed algorithms
given in [14] have a very high message passing overhead,
take a long time to converge, and need to use beaconing for
neighbor discovery. On the other hand, path based Steiner
heuristics [27] are attractive as information about the path from
the source to each node is readily maintained (for example by
storing the entire path on a flooded packet originating from the
source). In this paper we develop a novel path based Steiner
tree heuristic to reduce the number of forwarders and hence
the overall data overhead.

We use MDC because of its special property that all
resulting descriptions are equally important, and reception of
any one enables the decoding of that video frame. Therefore
to increase the chances of even one description being received
by a receiver, we must send them on different node-disjoint
paths so as to make them robust against packet losses due to
path breaks. We extend the path-diversity based approach for
unicasting video [19] for multicasting by constructing multiple
trees and then sending different descriptions over them.

The following points must be kept in mind while designing
a multiple tree multicasting protocol for AWNSs that reduces
the number of forwarders and shared nodes.

« Effect of dynamic joins/leaves and mobility The multi-
cast tree has to be updated and if necessary rearranged
as nodes join and leave, or if they move to different
locations. This rearrangement is necessary to maintain
efficiency of the tree throughout the multicast session.

o Minimizing number of forwarders vs. Increasing node
disjointedness It can be seen that as we increase the
node disjointedness among multiple trees, we increase the
number of forwarders. Hence there is a tradeoff between
reducing the number of shared nodes among multiple
trees and reducing the number of forwarders in each tree.

« Shortest path vs. Steiner trees Essentially Steiner based
multicast trees have a higher number of downstream
receivers served by each link, hence increasing the mul-
ticasting efficiency, which can be roughly defined as the
number of receivers served by each link. However there
is a flip side to increasing multicast efficiency, as in
the presence of mobility, more number of receivers are
susceptible to a single link failure. This could increase
the number of packet losses and the repair control over-
head with increasing mobility. Hence there is a tradeoff
involved in reducing the number of forwarders versus
increasing the PDR in presence of mobility.

« Effect of increasing the number of descriptions and trees
We can clearly see that increasing the number of MDC
descriptions and the number of trees would lead to better
error resilience. Due to scarcity of network resources
like bandwidth, energy, and computing power, the data

rate cannot be arbitrarily increased, therefore the number
of descriptions is bounded. The number of node-disjoint
multicast trees that we can practically construct is lim-
ited by the node density, and hence constructing more
than a few trees may not always be possible. Moreover
increasing the number of trees leads to an increased
control overhead, as multiple tree repair attempts would
be happening simultaneously in the network.

IV. AN OVERVIEW OF RDVMR

In order to make RDVMR as demand-driven as possible
(i.e., to minimize the non on-demand control traffic), we base
RDVMR on the Adaptive Demand Driven Multicast Routing
(ADMR) protocol [9]. ADMR achieves very low NPO and
high PDR compared to other conventional AWN multicasting
protocols like ODMRP, ZMRP, and MAODV. ADMR is a
receiver-initiated multicasting protocol, and it uses hard-state
tree repair. Its salient features are: 1) There is no periodic
control traffic like beaconing, or link state updates. 2) Most of
its control information is piggybacked on data packets. 3) It
is standalone, i.e., it does not require any underlying unicast
routing protocol.

RDVMR builds multiple (say K) trees simultaneously,
where each tree has lesser number of forwarders, and hence
reduce the NPO, while maintaining the same PDR as achieved
by the ADMR protocol.

A. Data Structures

The following data structures are maintained by each node:

« TreeState(t,groupld) This stores the parent parent (next
hop to the source) for the tree ¢ of the multicasting group
groupld. It also stores the last sequence number lastSeq
heard from the source through parent, and the cost cost
to reach the source through parent. Loosely speaking,
each node knows of a next hop to the multicasting
source, this next hop is known as the parent of that
node. All nodes, including nodes that are not part of any
multicasting tree, keep track of their parents.

« PacketCache(s) This is a cache of recently heard packet
sequence numbers originating from the source s. It is used
to identify duplicate packets originating from the node s.

o TypeOfNode(t,groupld) This is a bit field which gives
the type of a node for a particular tree ¢ of the
multicasting group groupId. It can be any one of
FWD, RCV, NON.TREE, FWD_AND_RECYV.
FWD nodes are pure forwarders (i.e., they are not
receivers), RC'V nodes are receivers (but not forwarders),
NON_TREE nodes are neither forwarders nor re-
ceivers, FW D_AN D_RECYV nodes are both forwarders
and receivers.

« NodeState(d) This stores the unicast routing information
for the destination d, namely the next hop nztHop,
the last sequence number heard lastSeq, and the cost
cost to reach node d through nxztHop. It is updated on
hearing any packet originating from node d, similar to
the backward routing protocol [28].



B. Protocol Overview

In this subsection we describe how RDVMR builds and
maintains K trees. RDVMR is a tree-based receiver initi-
ated multicasting protocol, where receivers join and leave
on-demand. RDVMR adapts each tree to the continuously
changing network topology and to the changing group mem-
bership. In order to maintain K trees, each packet contains the
treeld, identifying the tree it is meant for, in addition to the
groupld (identifying the multicast group it is meant for). As
an optimization, by maintaining the treeld in each packet as
a bit-vector of size K (named as treeList), a single control
packet can be meant for multiple trees simultaneously. Note
that, when we say that a node gets or sends a packet p along
the tree ¢, we mean that p.treeList has the ** bit set. Hence
by means of using a treeList in each packet, RDVMR is able
to build and maintain K trees in parallel.

The source of the group groupId multicasts data packets
along the tree. It also periodically floods a data packet having
a piggybacked header called SreJoin Advt, which eventually
reaches every node in the network. It advertises a route to
the source of groupld to all nodes in the network, and helps
to refresh the multicast tree. Since the SrcJoinAdvt packet
advertises a route to the source along all trees, it has its
treeList set to all ones, whereas the packets multicasted
by the source advertise a route to it only along a particular
tree ¢. On hearing such a route advertisement to the source
of the group groupld, a node creates (or refreshes) the entry
TreeState(t, groupld). This way every node keeps track of
its upstream node (parent) for the tree ¢ to reach the source.
The source also keeps track of the mean inter-packet time
ipt, which is piggybacked on every packet it sends. A tree
node (i.e., a node that is a forwarder or a receiver) is said
to be disconnected if it has not received any multicast packet
within a small multiple of ipt. In order to keep the multicast
tree intact, the source also multicasts keep alive packets every
ipt if it does not have any data packets to send. Keep alive
packets are multicasted along the tree just like data packets.

When a receiver wishes to join the tree ¢, it unicasts a
joinReq packet to its parent for the tree ¢. In case it does not
have a parent, it floods a MulticastSolicitation packet for
the tree ¢. When a tree node (i.e., a node that is a forwarder or
a receiver for tree t) gets a MulticastSolicitation, it unicasts
it up the tree through its parent to the source. On receiving
a MulticastSolicitation, the source unicasts a joinReply
packet to the corresponding receiver. A node forwarding a
joinReply packet to the node d for the tree ¢, becomes a
forwarder for that tree.

If a forwarder for tree ¢ detects a disconnection, it
multicasts a repair Notification packet downstream. A
repair N oti fication serves to inform the downstream nodes
of the disconnection, and avoids redundant repair attempts by
them when they eventually detect the disconnection. Simulta-
neously the forwarder detecting the break, attempts to locally
repair the tree by flooding a limited tt! Local Reconnect for
the tree ¢. Similar to handling a MulticastSolicitation, a tree
node unicasts a Local Reconnect up the tree ¢ to the source.
The source then unicasts a Local Reconnect Reply to the node

that originated the local repair. A Local ReconnectReply is
processed exactly like a joinReply, i.e., any node forwarding
it becomes a forwarder for the tree ¢. In order to avoid
routing loops we only allow the source to respond to flooded
packets like MulticastSolicitation and Local Reconnect. If
a receiver detects a disconnection, it attempts to rejoin the
group after some time by flooding a MulticastSolicitation
in case the repair attempts of its upstream nodes (i.e., nodes
that are ancestors of this node along the multicast tree) fail. It
can be clearly seen that the repair control overhead increases
with mobility because of the increasing link breaks. The
repair procedure presented in this paragraph is detailed in
Algorithm 1.

RDVMR does not have explicit leave messages, instead
forwarders prune themselves away if they detect that they
do not have any downstream children. Each multicasted data
packet carries a field containing the parent of the node that
forwarded it. This field serves to passively acknowledge the
parent of that node to continue forwarding data. However,
since pure receivers do not forward data packets, they need
to explicitly acknowledge their parents by periodically uni-
casting an acknowledgment packet. This way a forwarder not
having any downstream receivers prunes itself away from the
multicasting tree.

Algorithm 1 DisconnectionHandling
node < Node initiating the disconnection handling
if node is a forwarder in tree ¢ then
Multicasts a RepairNotification packet for tree ¢ down-
stream
Floods a limited ttl LocalReconnect packet for tree ¢
Marks itself as disconnected and schedules expiration
end if
if node is a receiver in tree ¢ then
if node is NOT a forwarder in tree ¢ then
Floods a limited ttl LocalReconnect packet for tree ¢
end if
Schedules a network wide MulticastSolicitation flood
end if

C. Handling of routing packets

This subsection describes the handling of routing pack-
ets in RDVMR. RDVMR has three routing packets
responsible for building and maintaining the multiple
trees. They are MulticastSolicitation, SrcJoinAdvt, and
Local Reconnect packets originated by a receiver, source, or
a forwarder for a particular group, respectively.

Each node in a multicast tree needs to learn of a loop free
route to the source along that tree. In RDVMR similar to other
multicast routing protocols, backward routing is employed. In
backward routing, a node S floods a routing advertisement
for itself (i.e., it sets r.advertisedNode to S), and any node
B hearing such an advertisement » from the node A, may
choose A as the next hop to node S. A routing advertisement
packet r contains a field r.cost to store the cost of the path
it has taken so far starting from its source (which is same as



r.advertisedN ode) and a field r.prevHop which is set to the
node that forwarded r. This is illustrated in Fig. 1. In this
example node S floods a routing advertisement packet r for
itself, which is received by node B through node A (hence
when node B receives r, r.prevHop = A).

S originates a route advt r
with r.advtNode = S

OO,

Routing Advt for S, through A
r.cost=10

r.prevHop = A

r.advtNode = S

r.seq=1

Fig. 1. Illustration of backward routing.
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Fig. 3. Example scenario of a routing loop originating at node A.

We can ensure loop free paths if we impose the following

two conditions:

o The cost in the routing advertisement packet monotoni-
cally increases. That is, in the above example the cost in
the routing advertisement packet received by node B is
more than the cost in the packet received by node A.

o A node is allowed to forward a routing advertisement
r, only if it is received from it’s next hop to the node
r.advertisedNode. This is illustrated in Fig. 2, wherein
node B only forwards the routing packet r if it chooses
node A as its next hop to the node S.

We can easily prove using contradiction that the above two
conditions guarantee loop free paths. Assume that even in the
presence of these conditions routing loops can be formed. Such
a scenario is illustrated in Fig. 3. Without loss of generality
let us assume that node S originates the routing advertisement
which is further forwarded by nodes X, A,B, C, and D. Let us
assume that a routing loop is formed at node A. Since node
B forwarded the routing advertisement it obtained through
node A, node B must have chosen A as its next hop to S,
similarly node C chooses node B as its next hop to S and
node D chooses node C. As the cost carried in the routing
advertisement monotonically increases, node A receives a
higher cost route to node S from node D than it received
from node X. Hence it should have chosen node X and not
node D as its next hop to node S. Hence we have proved that
it is impossible to form a routing loop if our routing protocol
follows the above two conditions.

In order to adapt to the changing network topology, each
routing packet 7, must carry a monotonically increasing unique
sequence number seq, to differentiate between stale and new
routing information. Many conventional AWN routing pro-
tocols consider routing advertisement packets with a higher
sequence number better than routing advertisements with a
better cost. However, it can be clearly seen that such a routing
protocol would converge to a shortest path routing protocol,
as the newest routing advertisement packets for destination S
are likely to first reach a node A along the shortest path from
S to A.

In order to construct Steiner like trees (i.e., trees with
reduced number of forwarders), the route from the multi-
cast source S to any node A in the multicast tree should
not be the shortest path from S to A. Therefore RD-
VMR not only needs to differentiate between stale and
new routing advertisements, it must also make sure that
it does not degenerate into finding shortest path trees.
To achieve this, a node A on hearing a routing adver-
tisement packet r for the node r.advertisedNode, may
choose r.prevHop as the next hop for r.advertisedN ode,
iff (r.cost < NodeState(r.advertisedNode).cost) AND
(r.seq >= NodeState(r.advertisedNode).lastSeq). Essen-
tially a node chooses a neighbor to be a next hop for a
destination, only if it has received a routing advertisement for
that destination from that neighbor which has a higher (hence
newer) sequence number and a better cost. The cost field r.cost
is updated by the cost function (refer Algorithm 2).

Note that a node must forward a routing advertisement from
a neighbor, if it chooses that neighbor as the next hop to its
destination. Doing this ensures that every node in the network
learns of the best route to a particular destination. Therefore a
node must forward its best learned routing advertisement pack-
ets even if those routing packets have been seen by the node
before. That is if a node chooses r.prevHop as the next hop
to r.advertisedNode on hearing the routing advertisement



packet r, it must forward r again, even if it has already seen
(and hence forwarded) r.seq before when it received it through
some other node X (not equal to r.prevHop). This obviously
leads to a high routing control overhead as duplicate routing
packets are also forwarded in case they have a better cost.
Typical AWNSs have network diameters of less than around
ten hops, hence by setting a threshold on the number of times
a duplicate routing packet may be forwarded if it has a better
cost (but is duplicate) achieves a good tradeoff between finding
good routes to the destination versus the control overhead. Any
node that forwards a duplicate but better routing advertisement
packet r increments the field r.dupButBetterCount in r.
When the value of this field reaches a certain threshold, r is
dropped.

As described above, a routing packet » in RDVMR can
either be a MulticastSolicitation, or a SrcJoinAdvt, or
a LocalReconnect packet. In order to maintain upto date
routing state, the rate of sending these routing packets must
keep in step with the mobility. RDVMR uses a mixture of
proactive and reactive routing; the source periodically floods
SrcJoin Advt to proactively refresh the routing state, whereas
the MulticastSolicitation and Local Reconnect packets up-
date the routing state in a reactive manner (as link breaks
happen).

D. Steiner tree heuristic

In this subsection we describe our novel path-based Steiner
tree heuristic, which tries to reduce the number of additional
forwarding nodes required by differentially costing each node
along each tree. The details of the proposed heuristic are
abstracted into a cost function CostOfNode, by means of
which we are able to impose a routing gradient so as to
heuristically reduce the number of forwarders. Note that we
differ from shortest path routing, in which the cost function is
simply the hop count to the source. By differentially costing
receivers, forwarders, and non tree nodes, and by encouraging
links to serve more downstream receivers, we can reduce the
number of forwarders, hence leading to a decreased NPO.

The basic motivations behind the proposed cost function
are:

« Increasing the number of downstream receiversunder
each link By assigning a lesser cost to a forwarder
with more number of downstream children under it, we
encourage an increase in the multicast efficiency (the
bushyness of the tree).

« Making as many receivers as forwar ders By assigning
a lesser cost to receivers, we can lower the number of
extra forwarding nodes needed per tree.

« Decreasing the number of forwarders Similar to other
SPT Steiner heuristics [14], we assign a higher cost to non
tree nodes, hence promoting paths to the source which
have the lowest branch cost to the tree.

o Increasing the node digointedness of the K trees
In order to reduce the number of shared nodes among
different trees, the cost also includes a disjointedness
component, which is higher for nodes being forwarders
for multiple trees, and zero for nodes which are a part of

just one tree. Note that this conflicts with reducing the
number of forwarders, and a tradeoff between them is
achieved by the parameters v and \ in the cost function.

Each node adds its cost as returned by the function
CostOfNode to the cost fields in the routing pack-
ets (namely SrcJoinAdvt, MulticastSolicitation, and
Local Reconnect). The following psuedocode describes the
function CostO f N ode.

Algorithm 2 CostO f N ode
node + Node that is calculating its cost
groupld < Multicast group address
baseCost < NON_PART_OF_TREE_COST
treeld < Tree along which cost is being calculated
if node is a receiver for tree treeld of multicast group
groupld then
baseCost = baseCost * «
elseif node is a forwarder for tree treeld of multicast group
groupld then
ner < numReceiver Descendants(treeld, groupld)
baseCost < (baseCost = ) /ner
end if
if numTreesPartOf(groupld) > 1 then
disjointedCost
A+ NON_PART OF TREE COST
*(numT'reesPartO f(groupld) — 1)
return v x (disjointedCost) + (1 — v) * baseCost
else
return baseCost
end if

The function numTreesPartO f(groupld) returns
the number of trees this node is a forwarder of for
the group groupId. The function numReceiver—
Descendants(treeld, groupId) returns the number of
receiver descendants in the subtree rooted at node for the tree
treeld of the group groupId. We keep track of the number
of receiver descendants under a node for a particular tree by
piggybacking this information on join requests and passive
acknowledgments for that particular tree.

We set a to be much lower than 3, because we want a
receiver to have a much lower cost than a forwarder. Both «
and g are less than one. The parameters v and A control the
tradeoff between the node disjointedness and the number of
forwarders, as discussed earlier.

We try to reduce the number of forwarders by letting
this cost function guide the routing in RDVMR. By greedily
making every path from the source of the multicasting tree to
a particular node in the tree have less number of forwarders,
we are able to reduce the total number of forwarders in the
tree. Although, note that this greedy approach that utilizes
only the path information is not able to reduce the number
of forwarders much compared to the more expensive Steiner
tree algorithms mentioned in [14], which work with the
global network topology, and are hence effective in identifying
candidate Steiner nodes. However unlike SPT heuristic, we
also take into account the properties of the path from the



source to the last tree node (to which SPT would connect a
new node to), and hence do not simply minimize the number
of forwarders added at each step. As shown in Section V-C.3,
that this less greedy approach performs better than SPT.

@ Source . Reciever O New receiver
Q Non-tree node @ Tree node Tree Edge
fffff > Join Req --—---=>Join Reply

Fig. 4. An example to illustrate the cost function.

The cost function is illustrated in Figure 4. In this example,
source S floods a join request having a piggybacked cost.
Node R6 is the new receiver. The join requests arrive at
node R6 through four paths, of which the one through A
and B is chosen as it has the least cost. In this example
NON_PART OF TREE_COST = 100, a = 0.03, 8 =
0.8, and v = 0. The cost of each node and of the join requests
received by node C along different paths are shown in the
figure.

V. SIMULATION STUDIES
A. Simulation framework

We implemented RDVMR in the NS2 simulation frame-
work [29]. We compare its performance with ADMR and
MDTMR [1]. ADMR has been shown to perform better than
other conventional multicasting protocols like ODMRP, and
hence it was chosen for comparison. MDTMR is a two-tree
video multicasting protocol.

We first compare our protocol for the single tree case with
ADMR for various scenarios, and then using multiple trees we
compare our performance with MDTMR. These performance
results are collected by running multiple simulation runs. Each

run of the simulator executes a scenario containing all of
the movement behavior of the ad hoc network nodes and
all application-layer communication originated by the nodes,
generated in advance so that it can be replayed identically
for the different routing protocols and variants studied. Each
routing protocol studied was thus challenged by an identical
workload. For all experiments we set the parameters «, 3, v,
and A in RDVMR to be 0.03, 0.8, 0.2, and 2, respectively.
These values were observed to give good results for typical
AWN settings. We will briefly explain the functioning of
MDTMR in the subsequent paragraph.

MDTMR constructs two node-disjointed trees in a serial
manner. Using MDC it codes each video frame into two
descriptions. Each description is sent along one tree. A frame
is marked undecodable if none of the two descriptions can be
received before its playback deadline. MDTMR measures the
percentage of undecodable frames over the total number of
video frames sent out by the source. The trees are numbered
as T'1 and T'2. In MDTMR the source periodically floods a
joinReq packet for tree T'1, receivers reply with joinAcks
along the reverse path to the source. The joinAcks are
relayed to the source by the intermediate nodes. On relaying a
joinAck for a tree, a node becomes a forwarder for that tree,
and stops forwarding joinReq for the other tree. Hence if a
node becomes a forwarder for tree 7'1, it does not forward the
flooded joinReq for tree T'2. The source floods a joinReq
for tree T2 on receiving a joinReply for tree T'1 (and vice
versa). This way MDTMR constructs disjointed trees. There is
no explicit repair, tree states are refreshed by periodic flooding
of joinReq packets. This leads to a very high overhead. Also
MDTMR may fail to ensure connectivity to all receivers, there
may be some receivers that are not connected to the source
by both trees.

B. Metrics

We evaluate the performance using the following metrics:

1) Percentage of forwarders: This metric is defined as
the percentage of number of pure forwarders to the total
number of nodes in the tree. This measures the efficiency
in terms of minimizing the number of forwarding nodes.

2) Packet Delivery Ratio: It is defined as the average of
the ratio of the number of data packets received by each
receiver over the number of data packets sent by the
source.

3) Normalized Packet Overhead: It is defined as the
ratio of the total number of packets (control and data)
exchanged in the network over the total number of data
packets received by all the receivers. This measures
both the data forwarding efficiency and also the control
overhead of the multicasting protocol.

4) Ratio of undecodable frames: It is defined as the
average of the ratio of number of undecodable frames
experienced by each receiver over the total number of
frames it should have received. A frame is said to
be undecodable if none of its descriptions have been
received before its playback deadline or if the frame
it depends on is undecodable. This metric is more
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indicative of the quality of video received as it takes
into account the delay sensitive nature of video frames,
the inter-frame dependencies and it also highlights the
fact that MDC helps to conceal frame losses caused by
missing packets.

Control overhead: It is defined as the ratio of the total
number of control packets exchanged in the network
over the total number of successfully decoded video
frames at each receiver.

5)

C. Simulation results

1) Simulation scenario: We implemented RDVMR in the
NS2 version 2.1b8. The IEEE 802.11 DCF is used as the
underlying MAC layer protocol. The radio model is based on
the Lucent/Agere WaveLAN/OriNOCO IEEE 802.11 product,
which is a shared-media radio with a transmission rate of 2
Mbps, and a radio range of 250 meters. Our simulation setup
consists of 75 nodes randomly spread in a rectangular terrain
of area 1200X800 m2. Each simulation runs for a period of
900 seconds. There is just one session and the source sends
data throughout the simulation period. All the results presented
in this paper were averaged over 30 simulation runs. 25 of the
total nodes are randomly chosen to be receivers. Each of these
receivers joins at a random time instant, chosen uniformly
from (4, 450) seconds. The receivers do not leave the multicast
session. The source is a CBR source sending 512 byte sized
packets at a rate of four packets per second unless otherwise
stated. We used the Random Way Point model for simulating
the mobility of nodes. Each node moves with some constant
speed (i.e., min speed is equal to max speed) with zero pause
time. The playback deadline is 150 ms, if a packet is not

2

Number of receivers.

Variation of %ge of pure forwarders Fig. 9. Variation of NPO vs. Number of receivers.

20 35 40 45 50 5 10 15 20 2 20 s 40 45 50
Number of receivers

Fig. 10. \Variation of %ge of pure forwarders vs.
Number of receivers.

received within its playback deadline it is considered lost.
Unless otherwise stated we use this simulation setup for our
experiments.

2) Comparison with ADMR for a single tree: We first
compare the performance of RDVMR with that of ADMR
for a single tree. For this experiment, we used a simulation
setup as described in Section V-C.1. We study the behavior
of RDVMR and ADMR as the mobility is increased from 2
m/s to 18 m/s. Similar to ADMR, we fix the periodicity of
flooding SrcJoinAdut to be 30 seconds. Since the multicast
tree changes with time, the structural properties are time
averaged over the entire simulation run. The structural metrics
were got by taking periodic snapshots of the time varying
multicast tree at every second and then averaging the values
obtained. Figures 5 to 7 illustrate our results. It can be seen
from Fig. 5 that the PDR of both protocols decreases with
mobility, however RDVMR achieves almost the same PDR
as that of ADMR at a lesser cost (refer Fig. 6) in terms of
the number of forwarders. It can be seen from Fig. 6 that
the number of forwarders is independent of the mobility. This
reduction in number of forwarders reduces the NPO as can be
seen in Fig. 7.

3) Evaluating the effectiveness of the cost function: In this
experiment we study the effectiveness of our cost function as
the number of receivers is increased. We used the simulation
setup described in Section V-C.1 with a node mobility of 2
m/s. The number of receivers was varied from 5 to 50. When
the randomly chosen receivers are quite far apart (as is the case
when the number of receivers is less compared to the number
of nodes in the network), there is less scope for reducing the
number of forwarders. As can be seen in Fig. 8 both ADMR
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and RDVMR cannot reduce the number of forwarders much in
such scenarios. The proposed cost function is more effective
as the number of receivers increases. The reduced number of
forwarders dictates a falling NPO as can be seen in Fig. 9.
As explained in Section IV-D, we are unable to reduce the
number of forwarders much as we work with lesser topology
information than other non path based Steiner tree heuristics.

We next compare RDVMR’s cost function with SPT. We
used the same simulation setup as used in the previous exper-
iment. Fig. 10 shows that RDVMR’s cost function performs
marginally better than SPT in terms of reducing the number
of forwarders. This is because SPT does not take into account
the already constructed subtree, on the other hand RDVMR
encourages nodes to connect to those subtrees that have a
higher bushiness and more number of receivers. It can be seen
that this less greedy approach performs better than SPT in the
long run.

4) Evaluating RDVMR’s scalability with respect to in-
creasing data rates: Next we evaluate RDVMR’s scalability
with respect to increasing data rates. For this experiment the
simulation setup of Section V-C.1 was used with the source
varying its sending rate from 5 to 45 packets per second and
with a static scenario. It can be seen in Fig. 11 and Fig. 12
that RDVMR scales decently till about 32 packets per second
but beyond that it is unable to handle the increased load. The
reason for this is that with increasing data rates more data
can be lost for the same amount of time for which the path
is broken. Hence the PDR drops with increasing data rate.
This experiment is important because the data rate is directly
proportional to the number of MDC descriptions used. By
increasing the number of descriptions we can reduce the ratio

10 12 14 16 18 2 4 6 8 10 12 14 16 18
Mobility (in ms)

Variation of Ratio of undecodable

Mobility (in mis)

Fig. 16. Variation of NPO vs. Mobility.

of undecodable frames, however the results of this experiment
dictate that for a video frame rate of 8 fps, we should not
consider more than 4 descriptions (i.e., 32 packets/sec).

5) Merits and demerits of using multiple trees for MDC
video multicasting: In our subsequent experiments, we study
the advantages and disadvantages of using multiple trees for
MDC video multicasting. We used the same simulation setup
of Section V-C.1 while varying the node mobility from 2 m/s
to 18 m/s. We conduct two experiments to evaluate the effec-
tiveness of using two and three trees, each carrying a single
description compared to sending multiple descriptions on a
single tree. Each description has a rate of 8 packets/second.

In our first experiment we compare two schemes carrying
two MDC descriptions: SingleTree-2DC and MultiTree-2DC.
The SingleTree-2DC scheme carries both MDC descriptions
on a single tree with a total rate of 16 packets/second. The
MultiTree-2DC scheme uses two trees, each description is sent
over a different tree with a per tree rate of 8 packets/second.
Thus in both cases, the total rate is equal to 16 packets/second.
It can be seen from Fig. 13 that the ratio of undecodable frames
is reduced in scheme MultiTree-2DC compared to scheme
SingleTree-2DC. This is because by sending each description
along a separate tree we decrease the loss correlation among
the two descriptions. It can be seen from Fig. 14 that the NPO
for scheme MultiTree-2DC is less than double the NPO of the
scheme SingleTree-2DC. Hence it can be seen that sending
each of the two descriptions on different independent trees is
advantageous.

In the second experiment we consider two schemes carry-
ing three MDC descriptions: SingleTree-3DC and MultiTree-
3DC. The SingleTree-3DC scheme carries all the three MDC
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descriptions on a single tree with a total rate of 24 pack-
ets/second. The MultiTree-3DC scheme uses three trees, each
description is sent over a different tree with a per tree rate of
8 packets/second. Thus in both cases, the total rate is equal to
24 packets/second. Similar to the previous experiment, it can
be seen from Fig. 15, that the ratio of undecodable frames
is reduced in scheme MultiTree-3DC compared to scheme
SingleTree-3DC. It can be seen from Fig. 16 that the NPO
for scheme MultiTree-3DC is less than triple the NPO of the
scheme SingleTree-3DC.

6) Comparison of RDVMR using two trees with MDTMR:
We next compare RDVMR’s performance to MDTMR [1]. We
use the simulation scenario as mentioned in Section V-C.1. The
node mobility varies from 3 m/s to 18 m/s and the number
of receivers is set to 10. The joinReq flooding interval in
MDTMR was fixed to 3 seconds (as mentioned in [1]). Both
MDTMR and RDVMR send two MDC descriptions on two
trees (i.e., one description per tree). Each description has a data
rate of 8 packets/second. As mentioned earlier MDTMR uses
a naive flooding based tree construction, which has a very high
overhead as can be seen in Fig. 17 and Fig. 18. We observe
from Fig. 19 that RDVMR achieves almost the same ratio
of undecodable frames as MDTMR at a tremendously lower
cost. Moreover unlike MDTMR, RDVMR does not construct
entirely node disjointed trees therefore every receiver can be
connected to the source by both the trees.

V1. CONCLUSION AND FUTURE WORK

In this paper we proposed an effective low overhead, multi-
tree based video multicasting protocol that exploits path-
diversity along with the error resilience properties of MDC
to achieve an improved performance over single and multi-
tree protocols. Simulation results showed that RDVMR out-
performed ADMR and MDTMR in terms of NPO and number
of additional forwarding nodes required. We also observed that
being less greedy helps in reducing the number of forwarding
nodes in the long run compared to other Steiner heuristics like
SPT.

For our future work, we seek to explore novel ways of
allocating the MDC descriptions over multiple trees and also
on how to assign them different rates for better perceived video
quality at the receiver. We also wish to address the congestion
and receiver heterogeneity issues of video multicasting.

Fig. 18. Variation of Control Overhead vs. Mobility. Fig. 19.
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