Computer Networks xxx (2010) XXX—XXX

Contents lists available at ScienceDirect

puter
Computer Networks ('fj*w;rks

journal homepage: www.elsevier.com/locate/comnet

K-Tree: A multiple tree video multicast protocol for Ad hoc

wireless networks

Bheemarjuna Reddy Tamma **, Anirudh BadamP, C. Siva Ram Murthy ¢, Ramesh R. Rao?

@ California Institute for Telecommunications and Information Technology, University of California San Diego, CA 92093, USA
b Department of Computer Science, Princeton University, NJ 08544, USA
€ Department of Computer Science and Engineering, Indian Institute of Technology Madras, TN 600036, India

ARTICLE INFO

ABSTRACT

Article history:

Received 16 July 2008

Received in revised form 5 February 2010
Accepted 24 February 2010

Available online xxxx

Responsible Editor: Prof. Qian Zhang

Keywords:

Ad hoc wireless networks
Video multicasting
Multicast trees
Path-diversity

Multiple description coding

1. Introduction

In this paper, we address the problem of video multicast over Ad hoc wireless networks.
Multicasting is an efficient means of one-to-many communication and is typically imple-
mented by creating a multicast tree. Video multicasting demands high quality of service
with a continuous delivery to receivers. However, most of the existing multicast solutions
do not guarantee this because they are not resilient to mobility of the nodes and do not
exploit error-resilient nature of recently available video coding techniques. Uninterrupted
video transmission requires continuous reachability to receivers which emphasizes the
usage of path-diversity. Hence, we propose a multiple tree multicast protocol which main-
tains maximally node-disjoint multicast trees in the network to attain robustness against
path breaks. We further enhance the robustness by using the error-resilient multiple
description coding (MDC) for video encoding.

We prove that finding a given number of node-disjoint multicast trees for a multicast
session in a given network is NP-Hard. Then we propose a protocol called K-Tree which
maintains the maximal node-disjointedness property of K trees by using a distributed
online heuristic. Through extensive simulation experiments, we show how the proposed
protocol improves the video quality as we use two or three trees instead of a single tree
for multicasting video stream. We also show, through simulations, that the protocol effi-
ciently, in terms of overhead, provides high quality video as compared to an existing
two tree video multicast protocol and a well known mesh-based multicast protocol.

© 2010 Elsevier B.V. All rights reserved.

by a set of mobile hosts (nodes) connected through wire-
less links. As these are infrastructure-less networks, each

With the recent advances in wireless technologies,
wireless networks are becoming a significant part of to-
day’s access networks. Ad hoc wireless networks come
under the category of wireless networks that utilize mul-
ti-hop radio relaying and operate without the support of
any fixed infrastructure. These are zero configuration,
self-organizing, and highly dynamic networks formed

* Corresponding author. Tel.: +1 858 822 2564.
E-mail addresses: btamma@ucsd.edu (B.R. Tamma), abadam@cs.
princeton.edu (A. Badam), murthy@iitm.ac.in (C. Siva Ram Murthy), rrao@
ucsd.edu (R.R. Rao).

1389-1286/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2010.02.013

mobile node should act also as a router. As a router, the
mobile node represents an intermediate node which for-
wards traffic on behalf of other nodes. If the destination
node is not within the transmission range of the source
node, the source node takes help of the intermediate
nodes to communicate with the destination node. Tacti-
cal communication required on battle fields, among a
fleet of ships, or among a group of armored vehicles
are some of the military applications of these networks.
Civilian applications include peer-to-peer computing
and file sharing, collaborated computing in a conference
hall, and search and rescue operations. Some of the

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013
mailto:btamma@ucsd.edu
mailto:abadam@cs.princeton.edu
mailto:abadam@cs.princeton.edu
mailto:murthy@iitm.ac.in
mailto:rrao@ucsd.edu
mailto:rrao@ucsd.edu
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2010.02.013

2 B.R. Tamma et al. / Computer Networks xxx (2010) xxx—-xXxx

applications demand for providing video service for users
of Ad hoc networks, such as first responders, search and
rescue teams, and military units. Such content-rich ser-
vice is more substantial than simple data communica-
tions: it will add value to and catalyze the widespread
deployment of Ad hoc networks. With increased sophis-
tication of applications and growing demand for re-
sources, it has become more challenging to provide
adequate Quality of Service (QoS) for multimedia appli-
cations being delivered over Ad hoc networks.

Ad hoc wireless networks have certain unique charac-
teristics that pose several problems in providing robust
communication services [1]. First, nodes in the network
do not have any restriction on mobility, therefore the net-
work topology changes dynamically. Hence the admitted
sessions may suffer due to frequent path breaks, thereby
requiring such sessions to be re-established over new
paths. The delay incurred in re-establishing a session
may cause some of the packets belonging to that session
to miss their delay targets/deadlines, which is not accept-
able for multimedia applications. Second, nodes in the net-
work maintain link-specific state information like available
link capacity, link stability, and transmission delay. The
state information is inherently imprecise due to dynamic
changes in network topology, traffic load, and channel
characteristics. Hence routing decisions may not be accu-
rate, resulting in some of the real-time packets missing
their deadlines. Finally, other peculiar characteristics of
Ad hoc networks such as lack of central coordination and
fixed infrastructure, error prone shared broadcast radio
channel, hidden and exposed terminal problems [2], and
scarcity of resources like bandwidth and battery power
complicate QoS provisioning for multimedia sessions.

Multicast routing is the problem of sending data pack-
ets to more than one receiver simultaneously. Many cut-
ting edge applications like video conferencing and digital
classrooms require robust multicasting solutions for pro-
viding uninterrupted video transmission. Multicast routing
plays an important role in the typical application scenarios
of Ad hoc wireless networks, namely emergency search
and rescue operations, disaster recovery, and network-cen-
tric military warfare in battlefields. In such hostile environ-
ments, soldiers and first responders cooperatively form
groups to carry out certain tasks that require robust
point-to-multipoint and multipoint-to-multipoint multi-
media communication services. In battle fields, a group of
cooperative soldiers moving in tankers or fighter jets form
an Ad hoc wireless network whose topology changes
dynamically. The major issues in designing a multicast
routing protocol are as follows:

e Robustness: The protocol must be able to recover and
reconfigure quickly from potential mobility-induced
link breaks thus making it suitable for transporting mul-
timedia traffic in highly dynamic environments such as
battlefields.

e Multicast efficiency: A multicast routing protocol should
have high multicast efficiency, which is defined as the
ratio of the total number of data packets (i.e., video
frames) received by the receivers to the total number
of data and control packets exchanged in the network.

e Control overhead: The scarce resource availability in Ad
hoc networks demands multicast routing protocol to
incur very low control overhead while supporting multi-
cast sessions.

e Efficient group management: Group management refers
to the process of accepting multicast session members
and maintaining the connectivity among them until
the session expires. This process of group management
needs to be performed with minimal exchange of con-
trol messages.

e Scalability: The multicast routing protocol should be able
to scale with the number of receivers, number of
sources, number of multicast sessions, and mobility of
nodes.

e Security: Authentication of session members and pre-
vention of non-members from gaining unauthorized
information put additional security requirements on
multicast routing protocol.

Based on how nodes are selected in a topology shape
for establishing distribution paths among multicast group
members (i.e., source(s) and receiver(s)) of a multicast
session, multicast routing protocols can be divided into
two main categories: tree based and mesh-based proto-
cols. In tree based multicast routing protocols, there ex-
ists only one path between source-receiver pair. Hence,
tree based protocols provide high multicast efficiency at
the expense of low robustness. The tree structure can be
easily broken due to movement of any participating node
and packets possibly have to be dropped until the tree is
reconstructed. In mesh-based multicast routing protocols,
there exists mesh structures that are a set of intercon-
nected nodes which can provide more than one path be-
tween source-receiver pair. Mesh-based protocols
provide high robustness in mobile environments as they
provide redundant paths from the multicast source to
receivers for delivering data packets. However, mesh-
based protocols sacrifice multicast efficiency in compari-
son to tree based protocols.

Video multicast problem has been extensively studied
in infrastructure based wired and wireless networks. The
solutions are centered around utilizing central coordina-
tors in multicasting, hence it is difficult to extend them
for peculiar Ad hoc network scenario. Reliable delivery of
video traffic is important as there is time constraint which
discourages automatic repeat request (ARQ) in case of a
packet loss or packet error. Uninterrupted video delivery
is not guaranteed by the existing multicast solutions for
Ad hoc networks, as they have been predominantly de-
signed for data multicast which is not sensitive to delay
and delay jitter. Single tree based multicast [5,6] is not well
suited for video multicast in Ad hoc networks due to the
movement of nodes leading to link breaks in the tree and
hence not ensuring continuous reachability. In order to in-
crease robustness, alternate approaches like gossip [3] and
mesh-based multicasting [7-9] could be considered. How-
ever, gossip based approaches are unattractive as receivers
may not receive frames sequentially, hence decoding of a
video frame at the receiver could be delayed unless all pre-
vious frames it (directly or indirectly) depends on are
available.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 3

Mesh-based multicast has some amount of robustness
but the high frame rate of video traffic makes mesh-based
approaches unsuitable as the inherent redundancy in-
creases the data overhead substantially. Mesh schemes
might give node-disjoint paths to some receivers, but they
can not assure more than one path for all receivers in the
multicast session. Even if multiple paths exist for all
receivers in mesh structure, that is with partially over-
lapped paths for some of the receivers, in order to transmit
a video stream which is partitioned into two independent
sub-streams over different routes to receivers, mesh
schemes require some forwarding nodes relaying more
than one sub-stream (to reduce average hop length to
receivers and control overhead) which could in turn com-
plicate the forwarding process and increase data overhead
significantly compared to multiple tree based multicast
schemes. Hence mesh schemes do not have any clean
mechanism to partition the video stream into multiple
sub-streams and send to the receivers. The reception qual-
ity of video at receivers depends on the path from the
source. If the path has breakups and makeups like any Ad
hoc multicasting solution, the transient state of not receiv-
ing the video packets leads to interruptions. Hence to sus-
tain path breaks we need some redundancy to resort to. By
redundancy we mean multiple tree based multicast
scheme that can provide multiple node-disjoint paths to
receivers. The source has to multicast the video data using
these redundant paths and minimize the number of inter-
ruptions there by improving the video quality. Hence we
propose a multiple tree based multicast routing protocol
for providing reliable video transport services in Ad hoc
wireless networks. Multiple tree protocols not only assure
more than one path to the receivers but also provide con-
trol on what to send on each of the trees.

Having the control, as we mentioned, on what to send
on each of the trees is of paramount importance to video
encoding techniques. Conventional single description cod-
ing (SDC) does not utilize the path-diversity in an efficient
way. It provides redundant data at receiver, receiving the
same stream along different paths does not improve the
quality, but can lead to high data overhead. More recently
error-resilient video coding techniques have been pro-
posed to alleviate the problem of packet loss during trans-
mission in networks. Examples of error-resilient video
coding techniques are layered coding (LC) and multiple
description coding (MDC) [4]. In contrast to a conventional
SDC video encoder that generates a single bitstream, LC
and MDC based coders encode a raw video stream into
two or more sub-streams. The LC based coder encodes
the raw video stream into layers of different importance,
refer Fig. 1. The base layer (BL) sub-stream can be decoded

Raw Video —

Encoding 2
E

alone to provide a basic quality of video while the
enhancement layer (EL) sub-streams are mainly used to re-
fine the quality of the video that is reconstructed from the
BL sub-stream. Also, EL sub-streams can be used for decod-
ing only if the BL sub-stream is available. Therefore, BL is
the most important layer without which video cannot be
decoded and hence requires more protection for LC to per-
form well. For example, BL sub-stream can be transported
on more trees while a few trees might be used for carrying
EL sub-streams. Unlike LC, MDC generates multiple equally
important, and independent sub-streams, also called
descriptions, refer Fig. 2. Each description can be indepen-
dently decoded and is of equal importance in terms of
quality, i.e., there is no decoding dependency between
any two of the descriptions belonging to a video frame.
The multiple descriptions contain complementary infor-
mation so that the quality of the decoded frame improves
with the number of descriptions that are correctly re-
ceived. This is indeed beneficial as the ability to even par-
tially recover a frame can impact whether its subsequent
received frames are decodable or not. MDC even enhances
the scalability of video multicast, because, based on avail-
ability of resources like bandwidth, battery power, and
computing power, receivers can join to multiple trees to
get multiple number of descriptions. Many recent ad-
vances in MDC have made it more widely accepted than
LC for video transmission in wireless networks. Apart from
continuous reachability, continuous delivery of decodable
video data is important. MDC can trivially use the continu-
ous reachability to provide the continuous delivery of dec-
odable video data. On the other hand in LC, we have to
ensure continuous delivery of the BL sub-stream and only
then can we use the EL sub-streams. A more comprehen-
sive comparative study on MDC and LC was done in [4].

The rest of the paper is organized as follows. In Section
2 we present related work. In Section 3 we discuss the the-
oretical foundations of the multiple tree multicast prob-
lem. In Section 4 we propose the K-Tree protocol and
elucidate it with graphical examples. In Section 5 we pres-
ent the simulation scenario and the simulation results. Fi-
nally, in Section 6 we conclude with a discussion on future
work possible.

2. Related work

Multicasting in Ad hoc wireless networks has been
studied extensively in the literature. Different approaches
include constructing structures like trees [5,6] or meshes
[7-9] for multicasting. But most of these solutions are
not robust enough for multicasting video traffic, because
they do not guarantee continuous delivery required for

Encoding 1 B Laver Decoding 1 Outputl
(Basic Quality)
Decoding 0 Output0
(Full Quality)
Decoding 2 No Output
x)

nhancement Layer

Fig. 1. Basic framework of layered coding.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

4 B.R. Tamma et al. / Computer Networks xxx (2010) xxx-xXx

Raw Video

Encoding 1 Deseription | Decoding 1 Outputl
(Basic Quality)

Decoding 0 Output0
(Full Quality)
Encoding 2 —L Decoding 2 Output2
Description 2 (Basic Quality)

Fig. 2. Basic framework of multiple description coding.

uninterrupted video playback at receivers. Some attempts
were made in the video unicasting to reduce the number
of interruptions by exploiting path-diversity [10-15]. The
approach they used was to analyze how to use multiple
paths for robust transmission of video traffic. In [10] base
layer was transmitted with ARQ while enhancement layers
were sent on a different path with no protection. The
authors of [11,12,14-16] describe how MDC can use multi-
ple paths to distribute descriptions over different paths.
The emphasis in all this work has been to use multiple
paths for addressing video unicast (one-to-one) problem.
Multi-path routing has been recently studied in [17,18].
Dynamic source routing (DSR) [19] is an on-demand source
routing protocol, where the packet carries the end-to-end
path information in its header. DSR obtains multiple paths
for the communication pair, but because duplicate copies
of RREQ (route request) packets at intermediate nodes
are discarded, these paths are highly correlated [17,18],
and hence are not suitable for multipath video streaming.
Split multipath routing (SMR) [17] is one of the best known
multipath extensions to DSR [20]. It uses a modified RREQ
packets flooding scheme in the process of route discovery.
The destination node returns the shortest path and another
path that is most disjoint with the shortest path to the
source node. A few other multipath extensions of DSR were
proposed in [21]. But all these solutions have been devel-
oped for achieving robust one-to-one transmission.
One-to-one multipath solutions cannot be trivially ex-
tended to one-to-many multipath transmissions without
tremendous increase in the control overhead. Robust
one-to-many transmission needs structures like multiple
trees. But not much work has been done in this direction.
The independent-tree ad hoc multicast routing (ITAMAR)
[22] creates multiple multicast trees simultaneously based
on different metrics in a centralized fashion. One main
problem of ITAMAR is that routing overhead might be very
large to get enough information of the network to build
multiple trees, and the authors only show how ITAMAR
works based on perfect network information. In [23], the
authors presented an architecture for supporting transmis-
sion of multiple video streams in Ad hoc networks by
establishing multiple routing paths. They proposed an
on-demand multicast routing protocol to transport LC vi-
deo streams. The multicast routing protocol transmits lay-
ered video streaming based on a weight criterion, which is
derived according to the number of receivers, delay, and
expiration time of a route. But as we discussed earlier in
Section 1, LC depends fully on the base layer and hence re-
quires availability of the base layer stream for decoding
enhancement layer(s). The multiple disjoint trees multi-

cast routing (MDTMR) [24,25] protocol creates two node-
disjoint trees one after the other in a serial fashion. Source
triggers tree formation and trees are formed one after the
other. However, this approach might not always ensure re-
ceiver connectivity. The authors of MDTMR themselves
show that unless the node density is high, source cannot
connect to all the receivers. Also the frequent flood of the
network leads to a tremendously high overhead. Our pro-
tocol is aimed at constructing multiple maximal node-dis-
joint multicast trees in a distributed fashion with lesser
overhead in ensuring connectivity to all the receivers. A
preliminary version of K-Tree protocol was appeared in
[29]. In this work, we thoroughly extended that one adding
theoretical analysis, additional performance results on its
scalability, and comparison results with MDTMR protocol
and a well known mesh-based multicast routing scheme
(ODMRP [9]).

Network coding techniques can [26] complement mul-
tiple tree multicast schemes and help to further improve
multicast efficiency, end-to-end latency, and network
throughput. In network coding, a common intermediate
node of multiple unicast sessions sends out a coded packet
that is a linear combination of two or more packets it re-
ceived from its neighbors (i.e., each packet belongs to a dif-
ferent session and comes from a distinct neighbor). When a
receiver gets this coded packet and one or more original
packets (either it already has that original packet as it
being the source of that packet or received it via another
path from the source), it decodes it for obtaining original
packets sent by the source node. Network coding helps to
increase network throughput by reducing number of chan-
nel contentions and packet transmissions. We could em-
ploy network coding in multiple tree multicast schemes
at shared nodes (forwarding nodes in more than one tree)
to further improve multicast efficiency and network
throughput. However, network coding requires that each
shared node should not be part of more than one path
for any receiver [27]. In other words, multiple tree based
multicast session can have shared nodes, but all receivers
should have node-disjoint paths from the multicast source.
Otherwise, receiver node gets only coded packets and will
not be able to decode them. This kind of approach to net-
work coding can be termed as network coding with cod-
ing-oblivious multicast routing [28] as we first construct
multiple trees and then look for coding opportunities.
The most systematic approach to network coding is cod-
ing-aware multicast routing where in we select overlapped
paths to different receivers (which has no effect on robust-
ness as these paths carry different sub-streams for differ-
ent receivers) for increasing coding opportunities.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 5

However, it is very challenging to design such coding-
aware multicast routing schemes due to the additional
constraint on nature of shared nodes compared to our K-
Tree protocol. To the best of our knowledge, there exists
no coding-aware multicast routing protocols for Ad hoc
wireless networks.

3. Graph theoretic approaches

As already pointed out, an efficient approach to ro-
bust multicast communication is constructing multiple
multicast trees and sending one MDC description on
each tree. The trees used in multicast session must be
as disjoint as possible to obtain reliability in case of
breakdown of one or more trees. Hence we have to find
out node-disjoint (meaning forwarding nodes in each
tree are distinct) trees for multicast communication. The-
oretically we can have as many node-disjoint trees as the
network allows. But resource constraints at nodes im-
pose some upper bounds on the number of such trees
the network can afford. Hence there is a trade-off be-
tween video quality and resource usage. In such a case
we need to construct and maintain a given number of
node-disjoint multicast trees in the network. Also based
on the video encoding and streaming options available
at the multicast source, not all receivers might want to
connect to all the sub-streams from the source. Hence
each receiver has a list of trees that it wants to partici-
pate in. These trees have to be node-disjoint for robust-
ness. For example if the source is using MDC for video
encoding and it is streaming different descriptions
through different trees, say 3 trees, and due to receiver
heterogeneity, all receivers need not connect to all 3
trees. Hence based on the video encoding and the recei-
ver heterogeneity, the set of trees that a receiver wants
to participate in changes. Hence we need to maintain
maximal node-disjoint multicast trees where receivers
need not be a part of all the trees. A node that is receiv-
ing in some subset of trees can participate in other trees
as forwarding node. Further, a node that is receiver in
one multicast session can participate in other multicast
sessions as an intermediate node.

Feasibility of constructing a given number of node-
disjoint multicast trees may not be always possible. Max-
imum number of node-disjoint trees possible in a net-
work would give us an idea on the feasibility of finding
a given number of node-disjoint trees. A simplification
to the problem is to look at the case when there is only
one receiver. A reliable video multicast (in this case a
unicast) would require the search and maintenance of a
given number of node-disjoint paths between the source
and the receiver. A simple extension to the problem is
finding the maximum number of node-disjoint paths pos-
sible. If we can answer this question we can throw light
on the answer to the previous question on finding max-
imum number of node-disjoint trees. This is the well ex-
plored disjoint path problem or the 0-1 maximum-flow
problem [30-34]. It has been proved in [34] that this
problem of finding the maximum number of node-dis-
joint paths between two given nodes can be solved in

polynomial time. Our objective is to find out node-dis-
joint trees between the source and receiver nodes such
that each tree contains at least all those nodes which
wish to participate as receivers (leaves) in that tree. That
is each receiver has a list of trees that it wants to partic-
ipate in. The list of trees that a receiver wants to partic-
ipate in is represented through a bit vector. If the ith bit
in the bit vector is set then the receiver wants to partic-
ipate in the ith tree. The next section formally describes
the problem that has to be solved to get the trees as re-
quired by the receivers. We introduce it as a packing
problem as we are trying to pack multiple trees into
the network.

3.1. K-Tree Packing Problem

In this section we introduce K-Tree Packing Problem
(KTP) [35]. Here we assume that a multicast session con-
tains only one source node and formulate KTP problem.
An instance of KTP consists of a graph G(V,E), where V is
the set of nodes and E is the set of edges in the network;
a set of nodes, T = {s:seV}u{r;: rieV,1 <i < I}, where s
is the source, the r;s are receivers, | is the number of receiv-
ers, and each receiver has a K-bit vector, B;. The objective is
to find K intermediate-node (non leaves) disjoint trees of G,
say Xj, 1 <Jj <K, such that receiver r; is a leaf node in tree
X; if the jth bit in the K-bit vector of receiver r; is set to one.
We now prove that KTP is NP-Hard when we need to find
the maximum number of intermediate-node-disjoint trees
out of these K trees that are needed to be found. We also
prove that KTP is fundamentally harder for directed
graphs. In case of directed graphs we prove that KTP is
NP-Hard even for K =2. We prove our hardness result
via a reduction from Edge Disjoint Path Problem (EDP).
EDP is considered one of the “classic” NP-Hard problems.
An instance of EDP has a graph G(V,E), and a multi-set
T = {(si,t;) : Si, tieV}, of source (s;s) sink (t;s) pairs. The
objective is to connect as many of these pairs as possible
using edge disjoint paths. Past work on EDP includes
[36-40].

3.1.1. Overview of proof

We prove our hardness result via a reduction from EDP.
EDP is NP-Hard and also hard to approximate as shown in
[39,40]. In Section 3.1.2 we show how to translate an in-
stance F of EDP into a simple instance H of KTP. In Sec-
tion 3.1.3 we show how to take solution to KTP in H back
into a solution to EDP in F. In Section 3.1.4 we tie all the
analysis together. In Section 3.1.5 we show how our anal-
ysis can be extended to give hardness result for directed
graphs via a reduction from directed subgraph homeomor-
phism [41].

3.1.2. Construction of a simple KTP instance

Consider an undirected graph G with vertex (node) set V
and edge set E, and a set T = {(s;, t;) : Si, t;i€V,1 < i<k} of
source-sink pairs. This constitutes an instance of EDP, F.
We convert it to an instance of KTP as follows. For each
source node s; introduce a new dummy source node ;.
Similarly for each sink node t; introduce a dummy sink
node t;. Now add edges between corresponding dummy

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

6 B.R. Tamma et al. / Computer Networks xxx (2010) xxx—-xXx

sources and the real sources and similarly between corre-
sponding dummy sinks and real sinks. Now call the pairs
(s;,t7) as the revised source-sink pairs. It should be noted
that s;s and t;s need not be distinct. In such a case we han-
dle in the following way. For each non-unique source or
sink, replicate the node and add edges from this replicated
node to all the nodes that the original node is connected to,
for example if s, = s, then replicate s, and then add edges
from this duplicate node to all those nodes to which s, was
connected. Now construct a new graph G’ with vertices as
the edges of G (with revised source-sink pairs). Add edges
between vertices of G’ if the corresponding edges in G are
incident upon a vertex in G. Each vertex n;; in G’ therefore
represents an edge joining vertices i and j in G. Let us de-
note the edges in G connecting the dummy sources and
sinks to real sources and sinks as s/s and /s in G'. Introduce
a new node s into the graph G'. Add edges joining s to each

Fig. 3. Graph G with an EDP with k = 3.

Fig. 4. Graph G with dummy sources and sinks.

of the nodes s}. Hence the source s is now connected to ex-
actly k vertices. Consider the set T' = {s} U {s} : 1 <i <k}
u{t/ : 1 <i<k}, call s as the source and the set {s/:1 <
i<kiu{t/:1<i<k} as the set of receivers {r;:1<
i< 2k}. Here we assume that r;=s/,1<i<k and
ri=t/,k+1<i< 2k Define for each receiver r;, a k-bit
vector, B;, as follows. B;,1 <i < k is a k-bit vector with all
1’s except for the ith bit and B;, k + 1 < i < 2k is a k-bit vec-
tor with all 0's except for the (i — k)th bit. Now the graph G’
with all the new nodes, new edges together with (V,E) and
the set T' and k-bit vectors B;s constitutes an instance of
KTP, H, with K = k. The objective is to find out intermedi-
ate-node-disjoint trees of G' which have the leaves as r;s,
corresponding to the k-bit vectors B;. Fig. 3 shows an in-
stance of EDP in graph G. Fig. 4 shows dummy sources
and dummy sinks added to G. Fig. 5 shows G' with source
s constituting an instance of KTP (we renamed the vertices
in G to illustrate the construction of G').

3.1.3. From KTP to EDP

Here we show how the solution to H is also a solution
to F. Consider a solution to H. The solution to H has as
many trees of the given K as possible with those nodes
as the leaves whose bits in B; are set. Consider the solu-
tion to be satisfying only a few of the K required ones.
We claim that this set of trees that are satisfied also
encompasses a solution to the EDP, F. Consider the nodes
s!'s, each of these wants to be a leaf in all the trees except
the ith tree (k-bit vector B; for these defines it). Contrary
to this, each of the nodes t! wants to be a leaf only in the
ith tree. Hence the only connectivity possible between the
source node s and the node t/ must be through the node
s!. Hence the solution to H has a certain number of node-
disjoint paths between the pairs (s/,t/). Now consider a
solution to F. It has the maximum number of source-sink
pairs, (s;,t;)s, connected via edge disjoint paths. These
paths represent maximum number of edge disjoint paths
also between the source-sink pairs (s}, t;). Hence they rep-
resent maximum number of node-disjoint paths in G’ for
the source-sink pairs (s/,t;). Let the number of trees in
the solution to H be k, and the number of paths in the
solution to F be k;. Solution to F is trivially a solution to
KTP in H. This is because each of the nodes s; can directly
connect to s for connectivity in trees except the ith tree

516

Fig. 5. Graph G’ with source s forming a KTP.

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 7

and act as an intermediate node for the ith tree, t reaches
source through the node s}, which is the only node which
can connect in X; to the source. Hence the solution to F
satisfies k; trees of the wanted K trees. Since kj is the
maximum number of trees possible we have that
kn = ks, Also since solution to H represents a certain
number of node-disjoint paths between source-sink pairs
(s{,t{) (as t{ can reach the source s only through s/), k
can be at most the maximum number of pairs, (s/,t])s,
we can connect with node-disjoint paths, which is in fact
ks. Hence kj, < k;. Hence a solution to H maps directly to a
solution to F.

3.1.4. Hardness of KTP

We here connect our analysis in the previous sections
and prove that KTP is at least as hard as EDP which is
NP-Hard. Given an algorithm to solve KTP, and an in-
stance of EDP, convert the EDP instance into a simple
instance of KTP using the method in Section 3.1.2 and
because of the mapping possible given in Section 3.1.3,
solution to KTP is same as the solution to EDP. Hence
KTP is at least as hard as EDP which is NP-Hard. Hence
the problem of finding maximum number of node-dis-
joint multicast trees according to a given configuration,
where receivers are leaves in the trees they want to par-
ticipate in, is NP-Hard.

3.1.5. KTP for directed graphs

In this section we use the result that EDP is funda-
mentally hard in directed graphs to prove that KTP is
fundamentally hard in directed graphs. In directed
graphs, it is established that given two source-sink pairs
(s1,t1) and (sp,t;), it is NP-Hard to determine node-dis-
joint paths between the sources and corresponding sinks
[41]. Scaling the analysis done in Sections 3.1.2, 3.1.3,
3.1.4 we get that KTP is NP-Hard even for K = 2 in direc-
ted graphs.

3.2. Online heuristic

In this section we look into an online heuristic solu-
tion to find a given number of node-disjoint multicast
trees. We seek to find out maximally node-disjoint mul-
ticast trees (allowing some amount of overlap) in the
network and maintain them for transporting video sub-
streams given by MDC coder. This overlap leads to
reduction in robustness but as proven even with the
complete knowledge of network topology we may have
no polynomial time solution to our problem of finding
node-disjoint trees. Moreover, it is well known that
maintaining complete network topology in Ad hoc net-
works involves very high overhead as the topology keeps
continuously changing due to unrestricted mobility of
the nodes. Hence we need a distributed approach to con-
struct multicast trees and not a centralized one. Also in a
realistic multicast scenario receivers keep joining and
leaving the multicast group as time progresses. Hence a
centralized heuristic approach would not work efficiently
as the heuristic has to applied again and again to ac-
count for receivers joining and leaving. The heuristic
has to be online to accept receiver requests to join and

to leave on the fly. These two requests are sufficient to
model such a network where there is no mobility or
mobility is so low that it would never affect the topology
of the network. Mobility is a characteristic feature of Ad
hoc networks and hence the topology of the network
keeps changing. Hence to model this kind of dynamic
system, we also need to include a request called the
movement request. This request changes the network
topology, in a certain way. The change might be reflected
in the multiple multicast tree system, that is, it might
lead to tree break or it might create possibilities for a
better system (lesser overlap). Hence each movement re-
quest changes the adjacency matrix and creates possibil-
ity of maintenance or betterment of the multiple tree
system.

Heuristic approaches can help to reduce the overlap by
minimizing the number of common nodes among differ-
ent trees. Hence we propose a distributed online heuristic
solution to minimize the number of intersections, while
serving the requests online, among the trees it has to
maintain. Let us henceforth call such a system as K-Tree
system where we are trying to maintain K maximally
node-disjoint multicast trees. A join request would in-
volve passing some control messages in the network
and getting the new K-Tree system. A leave request would
involve percolating up the trees a delete message until a
node with out-degree more than one (which indicates
minimum number of receivers under its branch of tree)
in that tree is met.

A movement request would involve changing a node
position according to the request. For simplicity let us as-
sume movements occur in bursts. The reason for this
assumption is that it would be difficult to model a contin-
ually moving node theoretically. Hence we assume that a
node moves in bursts of distance and these movement
bursts are instantaneous. These bursts partially capture
what can happen in a real network. A network system does
not wait until a node has become stationary. Even mobile
nodes participate in tree formations and repairs. Hence a
good model should consider this and make necessary
assumptions to consider participations during the node
movement. Thus we assume all movement requests are
in bursts of small distances.

It is already easy to see that, that online algorithm is
the best one which serves the request with minimum
message passing, adding the least possible number of for-
warding nodes, and making the least increase in the
number of intersections among the trees in the system.
But some thought would directly prompt us to the fact
that there is mobility. Minimization of forwarding nodes
can lead to a problem. When a node moves from one
place to another, in the network, it might lead to a sub-
stantial number of receivers dependent on this to go or-
phan for the time until the system takes care of them.
Hence it is in the best interest not to go for trees trying
to minimize the number of forwarding nodes. At the same
time it would not be appropriate to include many for-
warding nodes. This is because a tree system with more
forwarding nodes leads to more movement requests lead-
ing to maintenance requests. This observation comes from
the fact that not all movement requests can lead to

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

8 B.R. Tamma et al. / Computer Networks xxx (2010) xxx—-xXxx

maintenance requests. But as number of nodes increases,
the fraction of movement requests leading to mainte-
nance requests also increases.

Hence the problem now boils down to finding an algo-
rithm which serves the requests by minimizing the num-
ber of forwarding nodes and minimizing the control
overhead and also minimizing the fraction of movement
requests leading to maintenance requests and also the
number of intersections among the trees. We try to solve
this problem by a weight (a positive quantity used to judge
a node) model.

Weight model: To attain node-disjointedness with a
weight model we incorporate a penalty system. We penal-
ize a node for participating in more than one tree. The pen-
alty inculcated increases with the number of trees the node
participates in for a given multicast session. We associate a
weight with each node. The penalty increases the weight of
the node as the number of trees it participates in increases.
The system, for each request of multicast session, has to re-
duce the total increase in weight of the nodes in the
network.

In assigning weights to the nodes it must be noted that
a single node serving two trees must weigh more than
two nodes, which are each serving a tree. In a similar
way, it has to be noted that choosing a single node for [
trees should increase the weight more than the case
when | different nodes are chosen for the [trees. Hence
the minimum weight of a node participating in [trees
should be at least [times the weight of a node participat-
ing in [— 1 trees. The following cost model satisfies these
conditions.

o The weight of a node in the graph is zero if it participates
in no trees for a given multicast session.

e The weight of a node in the graph which participates in
one tree is x, for some x > 0.

e The weight of a node in the graph which participates in [
trees, w;, [< kis [« w;_; +y for some y > 0.

e The cost of a path is the sum of the weights of the nodes
in the path.

e The cost of an operation on the graph is the positive
change in the total weight of the graph.

The term y can be used to quantify the number of
intersections among the trees while node participations
can be captured by the term x. If x is large compared
to y then, in the total weight of a path, the contribution
made by node participations will dominate the contribu-
tion made by the number of intersections and vice-
versa.

Bringing in other parameters like local contention,
node bandwidth, remaining battery lifetime, link latency,
number of multicast sessions a node participate in, etc
into weight calculation of forwarding nodes could help
us in finding more efficient trees. But obtaining values
for some of these additional parameters at the routing
layer requires cross-layer solutions, which is beyond the
scope of our work. However, weight function proposed
in this work provides a general framework for bringing
in other relevant parameters easily into node’s weight
calculation.

4. The K-Tree protocol

In this section we present our K-Tree protocol which is
modeled as an online algorithm based on the weight
model discussed in the previous section. The protocol
defines how each of the requests (Join, Leave, Movement)
is handled while trying to minimize the total weight of
the nodes in the network. Minimizing the weight is the
heuristic idea behind reducing the number of shared
nodes among the trees. A scenario for the protocol would
be to maintain maximal node-disjoint multicast trees
while processing a request sequence. Each request in
the sequence triggers an operation on the network which
determines the changes that need to be done to the net-
work in order to serve the request and maintain the mul-
tiple tree system. The changes are usually accomplished
by passing control messages in the network. These mes-
sages contribute to the control overhead of the protocol.
In order to reduce this overhead we relax our condition
that each receiver should be a leaf in the tree that it
wants to participate in. By allowing a receiver to be a for-
warder, overhead can be reduced to an extent in realistic
scenarios. For example, a forwarder who wants to later
become a receiver can directly become so without any
message passing.

We elucidate the protocol by partitioning it into two
phases. The first phase describes how a receiver node joins
the multiple tree system. The next phase describes how the
maintenance of the multiple tree system is done. Both the
phases illustrate how the weight model is used to mini-
mize the number of shared nodes in a greedy fashion. Here
we assume that multicast source advertises by other
means, such as periodic advertisements and pre-sharing
using public key cryptography [42], to all nodes in the net-
work it’s multicast group address and number of trees (i.e.,
MDC descriptions) in which it is streaming the multimedia
content.

4.1. Multiple tree initialization phase

The tree initialization phase is initiated by the receiv-
ers. Each node in the network can participate in the K-
Tree system either as a receiver or a forwarder. Hence
each node represents its participation in the K-Tree sys-
tem using a K-bit vector, kvp. If the jth bit in kvp is set
then the node is either a receiver or a forwarder for the
jth tree, X;. When some node wishes to become a recei-
ver, it uses a K-bit vector, kvj, to represent the trees that
it wishes to join. If the jth bit is set in kvj then the node
wishes to be a receiver in tree X;. A node which wishes
to become a receiver in X; can trivially become so, if it is
already a forwarder in X;. Thus the receiver needs to join
only those trees where it is not currently participating as
a forwarder. Hence it forms a K-bit vector, kvs, which
represents the trees for which it is not a forwarder but
it wants to join. If jth bit is set in kvs, then the node
is not a forwarder in tree X; but it wants to join in that
tree now. It then floods the network with a Join Request
control packet expressing its wish to join in the trees
represented by kvs. Hence a node wanting to become a
receiver follows the Algorithm 1, Join Group.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 9

Algorithm 1. Join Group

node — node requesting to join;
kvp — K-bit vector representing the participation of
node in the tree system as a forwarder;
kvj < K-bit vector representing the trees that node
seeks to join;
kvs — K-bit vector representing the trees that node
has to send with Join Request control packet;
needed — 0;
fori — 1 to K do
kuvs[i] — O;
if kvjfi] = 1 and kwvp[i] = 1 then
Become a receiver in that tree using the existing
path as a forwarder;
end if
if kvj[i] = 1 and kvpli] = 0 then
kvs[i] — 1;
needed «— 1;
end if
end for
if needed = 1 then
Send Join Request control packet with bit vector kvs;
Set a timer with value MAX_REPLIES_TIMER,;
end if

The flooded Join Request control packet reaches different
nodes in the network. Any flooding technique needs a con-
trol mechanism to avoid the situation where nodes continu-
ously keep exchanging the same packet over and over again.
Hence a node when receives a Join Request control packet has
to check if the packet has been already processed by the node
before. To make this identification, each jJoin Request control
packet carries the full path that it has traversed. If the node is
in the path traversed by the packet, then the packet is
dropped. Otherwise the node has to check if it can reply to
the sender of this Join Request control packet. A reply can
be sent only in the case when the node receiving the packet
participates in any of the trees sought by the Join Request
control packet. The receiving node has to check its kvp to find
out to how many trees it can send a reply. The node then re-
plies using a K-bit vector, kvr to the sender of Join Request
control packet using the Join Reply control packet. If jth bit
in kvr is set then the node is replying for the tree X;, meaning
the node participates in X; and also that the join Request con-
trol packet sender wants to join X;. The Join Reply control
packet contains the complete path information to the source,
that is, the nodes and their participation vectors in the path
to the source for each of the trees represented by kvr.

As long as there are trees for which the node cannot re-
ply (as it may not be participating in them at the moment),
the Join Request control packet has to be forwarded to other
nodes. That is, even if there is one tree for which a reply
has not been sent by this node then the node needs to for-
ward the Join Request control packet with the vector kvf. If
the jth bit in kvf is set then it means the node cannot reply
to the Join control packet sender for tree X; as it does not
participate in it. Algorithm 2, Process Join Request control
packet, explains how a node that receives a Join control
packet processes it.

Algorithm 2. Process Join Request Control Packet

node — node that received the Join Request control
packet;
kvp — K-bit vector representing the participation of
node in the tree system as a receiver/forwarder;
kvj — K-bit vector representing the trees that Join
Request seeks;
kvf < K-bit vector representing the trees that the
Join Request has to be forwarded with;
kvr «— K-bit vector representing the trees that node
can send jJoin Reply for;
path — path traversed by Join Request control packet;
repneeded «+ 0;
fwdneeded « 0;
if node is in path do
exit;
end if
fori — 1toKdo
kufli] « 0;
kvr[i] — 0;
if kvjji] = 1 and kwvp[i] = 1 then
korli] — 1;
repneeded « 1;
end if
if kvj[i] = 1 and kvpli] = 0 then
kofli] — 1;
fwdneeded « 1;
end if
end for
if repneeded = 1 then
Form Join Reply with the complete path information
to source for the trees represented
by kvr;
Send jJoin Reply control packet back in the path with
kvr as the vector;
end if
if fwdneeded = 1 then
Append node to path;
Forward Join Request control packet with kvf as the
vector;
end if

An example of tree initialization is shown in Figs. 6 and
7. Fig. 6 shows a multicast session in which 4 receivers
(nodes 3, 8, 12, and 18) have already joined along the
two (K = 2) trees. It also shows weights of the nodes, deter-
mined based on nodes’ current participation vectors. Node
5 is a new receiver who wants to join into the session. As
shown in Fig. 7, node 5 broadcasts a combined Join Request
packet which is in turn forwarded by non-participating
nodes 4, 6, and 7 for both trees and a current forwarding
node 2 for one of the trees. Since node 2 is already a for-
warder for Tree 2, it can directly reply for that tree while
it has to forward Join Request for Tree 1.

The receiver when receives a Join Reply packet has to
collect the reply and store all the paths that are obtained
due to this reply. For each tree X;, for which a Join Request
control packet was sent, the receiver stores all paths that

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

10 B.R. Tamma et al. / Computer Networks xxx (2010) xxx—-xXxx

are obtained. It uses caches to store the paths obtained
through Join Reply control packets. Each receiver that has
an outstanding Join control packet, meaning there is Join
Request control packet which has been sent whose timer
has not expired yet, maintains a cache called ReplyBuf
which stores a certain number of replies per tree.

After the MAX_REPLIES_TIMER timer expires, the receiver
has to choose those paths to each of the trees that it sought,
which add the least amount of weight to the multiple tree
system, as this would be intuitively minimizing the number
of intersections among the trees. It evaluates all possible
path combinations that can be chosen to reach each of the
trees. But it chooses those paths which add the least amount
of weight to the system. Hence a receiver upon the expiry of
the timer follows the Algorithm 3, Paths Selection.

Algorithm 3. Paths Selection

kvj — K-bit vector representing the trees that the
Join Request sought;

ReplyBuf « Array which can store MAX_REPS number
of replies per tree;

combo « Array representing all possible combinations of paths in
K trees;

[* comboli][j] stands for the path to source in jth tree of
ith combination of paths */
numCombos < Number of combinations possible;
minAddedWeight < INTEGER_MAX;
for i — 1 to numCombos do
nlist «— array of distinct nodes in the paths of
comboli];
[* nlist now has the nodes in comboli] with their
present participation vectors */
oldWeight — calcWeight(nlist); [* refer Algorithm 4
*
Size « size of nlList;
for j — 1 to size do
for k — 1 to K do
if nList[j] is in path comboli][k] then
Set kth bit in the participation vector of node
nList(j];
end if
end for
end for
[* nlist now has the nodes with their updated
participation vectors according to paths of comboli]
*
newWeight — calcWeight(nlist);
addedWeight +— newWeight-oldWeight;
if addedWeight < minAddedWeight then
minAddedWeight «— addedWeight;
minCombo — comboli];
else if addedWeight = minAddedWeight then
Out of minCombo and comboli], select the
combination that gives maximal node-disjoint trees
(i.e., the combination having minimum number of y
terms in the added weight);
end if
end for
Send Join Ack control packets along the chosen
combination of paths, minCombo;

In continuation to our example tree initialization, as
shown in Fig. 8, new receiver node 5 gets Join Reply packets
from current tree nodes: node 3 replies for both trees and
node 2 replies for tree 2 and node 1 replies for tree 1 and
node 8 replies for both trees. Each Join Reply packet carries
the complete path information from the source S to recei-
ver node 5. Let paths retrieved from reply packets be
P11> P31s Ds1» DPa2s P32y Pgp, Where p; represents the path
from the source to receiver node 5 via node i for tree j.
Hence, the new receiver node 5 has 9 combinations (i.e.,
3 replies for tree 1 multiplied by 3 replies for tree 2) of
paths to choose from.

The x and y values of the weight model affect the nat-
ure of trees constructed by Algorithm 3, Paths Selection. If
x is large compared to y, Algorithm 3 selects paths that
add least number of new forwarders into the K-Tree sys-
tem. In other words, it tries to construct trees with more
number of intersections among them. But such shared
trees lack robustness against path breaks. If y is large
compared to x, Algorithm 3 leads to construction of max-
imal node-disjoint trees. Eventhough node-disjoint trees
are more robust against path breaks, they increase aver-
age hop length to the receivers participating in the K-Tree
system.

Algorithm 4. calcWeight(nList)

[* nList is an array of nodes along with their
participation vectors */

size — size of nList;

weight « 0;

for i — 1 to size do
weight — weight + weight of the node nList[i];
/* Weight of a node participating in [trees is w; */
Fwi=lxw_+y;, 1<I<K?/
[* wi = x ; Refer Section 3.2 for more details on the
weight model */

end for

return weight;

The receiver now finally has to send the Join Ack control
packets to acknowledge the nodes in the paths chosen. It
simply unicasts Ack control packets to its immediate par-
ents in each of the trees and they in turn percolate it up.
The nodes receiving Join Ack packets establish forwarding
states and initialize timers for tree maintenance and tree
tear down. Tree maintenance is triggered when either a
data packet or KeepAlive control packet does not arrive
from the parent in time KEEP_ALIVE_TIME. The multicast
source starts sending KeepAlive control packets, passively
by piggybacking in data packets or explicitly when the
source is not sending data temporarily. Forwarders in turn
keep forwarding these packets down the trees. The KeepA-
live also has a K-bit vector representing the trees it wishes
to refresh, it carries along with it the path information for
these trees, that is, the nodes and their participation vec-
tors. KeepAlive packets are also used to update the path
information by the nodes in the trees.

In continuation to our example tree initialization, new
receiver node 5 follows the Algorithm 3, Paths Selection

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 11

4 (w=0)
O 5= O

=0)

2 (w

23 (w=0)

O 11 (w=0)

12 (w=2x+y)

2X+y)

8 (w=!

15 (w=x)

O 19 (w=x)

18 (w=2x+y)

16 (w=0) 17 (w=x)

Source O Node in the Network O Forwarder in Tree 1 O Forwarder in Tree 2

. Receiver O Forwarder in Both Trees _— LinkinTreel — -------- Link in Tree 2

Fig. 6. K-Tree initialization: K-Tree depicting a multicast session with two trees. Nodes 3, 8, 12, and 18 have already joined along the two trees.

4 (w=0) s
A DR

g

4

6 (w=0) =

7 (wzob

O 11 (w=0)

12 (w=2x+y)

8 (w=2xty)

16 (w=0) 17 (w=x)
18 (w=2x+y)

Source O Node in the Network O Forwarder in Tree 1 Q Forwarder in Tree 2

. Receiver O Forwarder in Both Trees =~ ———— LinkinTree 1 ~ --oemeeoees Link in Tree 2

————— = Combined Join Request

Link in Tree 1

----------- = Join Request for Tree 1

Fig. 7. K-Tree initialization: K-Tree depicting a multicast session with two trees. Node 5 broadcasts a combined Join Request packet into the network.

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

http://dx.doi.org/10.1016/j.comnet.2010.02.013

12

4 (w=0)

O

O 11 (w=0)

12 (w=2x+y)

16 (w=0)

Source

O Node in the Network

Receiver @ Forwarder in Both Trees

Combined Join Reply

~

O
Oy 00

1 (w=2x+y)

O Forwarder in Tree 1

B.R. Tamma et al./ Computer Networks xxx (2010) xxx-xXxx

=0)

O

5 (w=0)

22 (w

~.

7 (w=0)Q

2X+y)

8 (w:

18 (w=2x+y)

O Forwarder in Tree 2

Link in Tree 1 Link in Tree 2

Join Reply for Tree 2

Join Reply for Tree 1

Fig. 8. K-Tree initialization: K-Tree depicting a multicast session with two trees. Node 5 gets six Join Reply packets (three per each tree).

Table 1
Comparison of path combinations.

Combination Added weight
P11 and py, 3x+ 2y

P11 and p3, 4x + 2y

P11 and pg, 5x + 2y

ps3; and py, 3x+y

P31 and p3, 4x + 2y

P31 and pg, Sx+y

Pgy and py, 4x +y

Pg1 and p3; 5x+y

Pg1 and pg, 6x + 3y

and decides that p;; and p,, is the best combination as
shown in Table 1. Then node 5 unicasts Join Ack packets
along paths p;; (5—4—3) and p,, (5— 2) for trees 1
and 2, respectively (refer Fig. 9). Fig. 9 also shows that
the weights of nodes 4 and 5 have increased by x (from 0
to x) and 2x + y (from O to 2x + y), respectively due to join-
ing of node 5 into the multicast session. However, there is
no increase in the weight of node 2 (forwarder in tree 2) as
the new receiver node 5 is joining via node 2 only for the
tree in which node 2 is already part of (i.e., tree 2). Simi-
larly, there is no increase in the weight of node 3 (receiver)
as it is already part of both trees. Finally, Fig. 10 shows
revised K-Tree system after new receiver node 5 joined
into the multicast session.

4.2. Multiple tree maintenance phase

The multiple tree maintenance is done in a soft state
manner. Whenever, a receiver or a forwarder gets a data
packet or explicit KeepAlive control packet in a tree then
it refreshes its timers for that tree. When the timer expires,
that is if there is no data packet or a KeepAlive control pack-
et for a KEEP_ALIVE_TIME time then the node initiates this
process. The node initiating this process sends out a Join
Request control packet for those trees alone which are bro-
ken. It may happen that a few trees are broken simulta-
neously. Hence whenever there is a tree where there is
no packet since KEEP_ALIVE_TIME time, all the other trees
are tested for timeouts, and all the trees that are broken
are found out and a combined join request for those trees
is sent. This is done using the Join Request packet by setting
only those bits in the K-bit vector. Because it is a mainte-
nance operation, the tree might just be nearby, so the time
out for starting the processing of the received Join Reply
packets is maintained much lesser than the one corre-
sponding to the tree initialization process. Also since the
tree is expected to be nearby, the Join Request packet will
initially be sent out with a time-to-live (ttl) of 3. If the node
initiating the tree maintenance fails to get any Join Reply
packets within a specific amount of time, then it sends a
ttl free Join Request packet. An example of tree mainte-
nance is shown in Fig. 11. When the node 1 moves away,
the link in tree 1 between node 10 and node 1 is broken.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 13

22 (w=0)

> 4 (w=x/0)
X
N
r) Q < 5 (w=2x+y/0) Q

Q; (w=x/x) 6 (W=0)Q

O ’ 1 (w=2x+y) 7 (w:O)O
11 (w=0)

12 (w=2x+y)

8 (W=2x+y)

16 (w=0) 17 (w=x)
18 (w=2x+y)

@ Source O Node in the Network O Forwarder in Tree 1 O Forwarder in Tree 2

. Receiver O Forwarder in Both Trees _— LinkinTreel ~ -------- Link in Tree 2

- Join Ack for Tree 1 === Join Ack for Tree 2

Fig. 9. K-Tree initialization: K-Tree depicting a multicast session with two trees. Node 5 unicasts Join Ack packets along paths p;; (5 —4 — 3) and p,,

(5—2).

=0)

4 (w=x)
5 (w=2x+y) Q

22 (w

@ e
. 2 (W=x)

O Q2 e
11 (w=0)

“Ls
12 (w=2x+y) > wsoy

-

“\ 20 (w=2x+y)

8 (w=2x+y)

16 (w=0)

‘ 18 (w=2x+y)
Source O Node in the Network O Forwarder in Tree 1 O Forwarder in Tree 2

. Receiver O Forwarder in Both Trees ———— LinkinTreel ~ oceeeeees Link in Tree 2

Fig. 10. K-Tree initialization: K-Tree depicting a multicast session with two trees. New receiver node 5 has joined into multicast session.

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

http://dx.doi.org/10.1016/j.comnet.2010.02.013

14 B.R. Tamma et al. / Computer Networks xxx (2010) xxx-xxx

@ Source

m— Join Request for Tree 1

O Node in the Network
O Forwarder in Both Trees

O Forwarder in Tree 1

_— Link in Tree 1

Join Reply for Tree 1

O Forwarder in Tree 2

,,,,,,,, Link in Tree 2

Join Ack for Tree 1

Fig. 11. K-Tree maintenance: K-Tree depicting a multicast session with two trees. Link between node 10 and node 1 is broken in tree 1. The downstream

node 10 triggers the maintenance process.

The downstream node 10 detects the breakup and triggers
the maintenance process. It broadcasts a Join Request con-
trol packet with a ttl of 3. This control packet is replied by
node 12. Then an exchange of join Reply and Join Ack pack-
ets reconnects the node 10 to tree 1. Fig. 12 shows recon-
structed tree 1 after the maintenance process.

K-Tree protocol does not have explicit leave messages,
instead forwarders prune themselves away if they detect
that they do not have any downstream children. Each mul-
ticasted data packet carries a field containing the parent of
the node that forwarded it. This field serves to passively
acknowledge the parent of that node to continue forward-
ing data. Forwarder discards the forwarding state when it
does not overhear passive KeepAlive control packets from
the downstream nodes for TREE_TEAR_DOWN_TIME. How-
ever, since pure receivers do not forward data packets, they
need to explicitly acknowledge their parents by periodi-
cally unicasting an explicit KeepAlive control packet. This
way a forwarder not having any downstream receivers
prunes itself away from the K-Tree system.

5. Performance results
We use the simulation model based on NS-2 [43] to

evaluate the performance of proposed K-Tree protocol.
The Monarch research group in CMU has extended the

NS-2 network simulator to include physical layer, link
layer, and MAC layer models to support multi-hop wire-
less network simulations. The IEEE 802.11 DCF is used as
the underlying MAC layer protocol. The radio model is
based on the Lucent/AgereWaveLAN/OriNOCO IEEE
802.11 product, which is a shared-media radio with a
transmission rate of 11 Mbps, and a radio range of
250 m. The random waypoint model is used to model
mobility of the nodes. Each node moves with some con-
stant speed (i.e., minimum speed is equal to maximum
speed) with zero pause time. To change the mobility le-
vel of the network we change the speed from 3 m/s to
18 m/s in steps of 3 m/s. The main purpose of studying
high node speeds is to evaluate the dynamics of mobile
Ad hoc network and demonstrate that multiple tree
structure is constructed and maintained efficiently by
our K-Tree protocol. We can think of some futuristic
applications in network-centric military warfare scenar-
ios in which high-moving war plane jets forming a mo-
bile Ad hoc network for streaming multimedia content.
We may not have people moving at this high speeds in
any civilian applications. In each run, we simulate a 65
node Ad hoc wireless network within a 1350 x 1200 m?
area. Each simulation is 900 s long and the results are
averaged over 30 runs. We randomly choose one sender
and 10 receivers in each simulation who join and leave
the multicast trees randomly during the 900 s interval.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 15

Source
. Receiver

O Node in the Network
O Forwarder in Both Trees

Fig. 12. K-Tree maintenance: K-Tree depicting a multicast session with two trees. It shows reconstructed tree 1 after the maintenance process.

0.5
0.45

I
~
\

‘

0.35]

o
w
‘

‘

0.25]

o
N
‘

‘

0.15 | R .

Ratio of Bad Frames (RBF)

o
-
T
.

.

005 |~]

3 6 9 12 15 18
Mobility (m/s)

Fig. 13. Variation of RBF vs. mobility for K-Tree (K =1) and K-Tree
(K =2).

5.1. Metrics

We use the following metrics to evaluate and compare
different settings of our protocol with an existing multiple
tree based multicast protocol and a mesh-based multicast
protocol.

(1) Ratio of bad frames (RBF): It is the ratio of number of
bad frames (totaled for all receivers) vs. the number

O Forwarder in Tree 1

_— Link in Tree 1

O Forwarder in Tree 2

,,,,,,,, Link in Tree 2

of frames that have to be received in all, by all the
receivers. We define a frame as bad if none of the
multiple descriptions of a frame are received at the
receiver before the playback deadline of that frame.
This is a better metric than packet delivery ratio as
this captures the time constraint characteristic of
the video stream.

(2) Normalized packet overhead (NPO): It is the ratio of
the total number of control and data packets
exchanged in the network over the total number of
data packets received by the receivers. This is used
to illustrate the forwarding efficiency and also main-
tenance ability.

(3) Normalized control overhead (NCO): It is the ratio of
the total number of control packets exchanged in
the network over the total number of data packets
received by the receivers. This is used to illustrate
the overhead of the protocol and also the mainte-
nance ability.

5.2. Simulation results

In our simulations we have chosen the following values
for the parameters of K-Tree protocol. x=1, y = 3, KEEP_A-
LIVE_TIME =250 ms, MAX_REPLIES_TIMER =200 ms, and
MAX_REPS = 4.

5.2.1. Effect of increasing K
Here we show how the protocol seamlessly scales from
one tree to two trees and three trees without doubling and

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

16 B.R. Tamma et al./ Computer Networks xxx (2010) xxx-xxx

tripling the overhead and at the same time improving the
video quality at the receivers. We compare the results for
K =1 against K = 2. In this case we use a two description
coding of video. The total video transmission rate is fixed
at 48 Kbps with 8 frames per second. MDC coder generates
2 descriptions with 24 Kbps in each description. We have
kept packet rate as 8 packets per second with each packet
having a size of 3 kilo bits in each description. When K = 1
we send both the descriptions on the same tree and when
K =2 we use one tree per description. Similarly we com-
pare K =1 and K = 3. Here we split the video into three
descriptions each of 8 packets per second with packet size
of 2 kilo bits. The playback deadline for a frame is 120 ms
after it was created. We use the same deadline for all our
simulations.

e Comparison of K-Tree (K = 1) and K-Tree (K = 2): Fig. 13
shows the expected decrease in the RBF when K is
increased for different mobility values. RBF has almost
fallen down by 60% when moving from K =1 to K = 2.
As expected RBF values for both the cases decrease with
increasing mobility. Fig. 14 shows the expected increase
in the overhead due to increase in the number of for-
warders. But it has to be noted that the NPO has not
doubled, yet a significant improvement has been
achieved in RBF. This directly follows from the fact that
the protocol, K-Tree, uses bit vectors in common join
and maintenance control packets to reduce overhead.

e Comparison of K-Tree (K = 1) and K-Tree (K = 3): Fig. 15
shows the expected decrease in the RBF when K is
increased. RBF has almost fallen by 65% when moving
from K = 1 to K = 3. Fig. 16 shows the expected increase
in the overhead due to increase in the number of for-
warders. NPO has not tripled, yet there is a substantial
decrease in RBF. This again shows importance of the
bit vectors in control packets for reducing the overhead.

It is to be noticed that in Figs. 13-16, there is a marginal
decrease in RBF/NPO values at 15 m/s compared to 12 m/s.
It could be explained as follows. When a receiver detects
that its upstream forwarding node moves away and the

Normalized Packet Overhead (NPO)
w

1 L L L L
3 6 9 12 15 18

Mobility (m/s)

Fig. 14. Variation of NPO vs. mobility for K-Tree (K =1) and K-Tree
(K=2).

0.5
045 |
0.4t]
0.35 |]
03t]
0.25 |]
02t]
0.15 |]
01 | PR e]

0.05 | o]

Ratio of Bad Frames (RBF)

3 6 9 12 15 18
Mobility (m/s)

Fig. 15. Variation of RBF vs. mobility for K-Tree (K =1) and K-Tree
(K =3).

5 T . \
o K-Tree (K=1) —o—
L 45} K-Tree (K=3) e
® 4 . e J
@
< e
g 35]
o o
® 371 . J
X
®
825t J
e
N 27]
©
E 15 ¢ 1
o
z L ‘ ‘ ‘ ‘ ‘

3 6 9 12 15 18

Mobility (m/s)

Fig. 16. Variation of NPO vs. mobility for K-Tree (K =1) and K-Tree
(K =3).

path to multicast source is broken, it initiates route main-
tenance by sending a Join Request packet with ttl of three.
Due to the random movement of nodes in the network ter-
rain (we use Random Way Point mobility model in our
simulation studies and consider 1350 x 1200 rectangular
terrain with boundaries) and high mobility of nodes, some-
times broken paths get repaired automatically when for-
warders bounce back after hitting terrain boundary. This
automatic repair can happen quite quickly when nodes
move at high speeds and hence can lead to slight decrease
in RBF/NPO at high speeds as observed in above plots.

5.2.2. Saturation of K-Tree protocol

Here we show beyond what value of K the performance
of k-Tree protocol saturates. To find out its saturation
point, we conducted experiments by varying K from one
to four. Similar to our previous experiments, here also we
set the total video transmission rate fixed at 48 Kbps with
8 fps. But we use different MDC coders for different num-
ber of trees such that number of MDC descriptions sent
in the multicast session matches with number of trees

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xXx—-xxx 17

0.5 T T T . : :
K-Tree (K=1)
K-Tree (K=2) -

[y 04 K-Tree (K=3) |
@ K-Tree (K=4) =~
Py
[0]
€ 03¢ i
o
[T
3
m 02 g 7
G
o)
§ 0.1t 1

O 1 1 1 1 1 1

3 6 9 12 15 18
Mobility (m/s)

Fig. 17. Variation of RBF vs. mobility for K-Tree (K = 1-4).
__6 T T : : :
®) K-Tree (K=1) —=—
o K-Tree (K=2) - o--oe
= K-Tree (K=3) x|
2 K-Tree (K=4) -~
(]
< v M
24 - x B
@) v e
ko) v x
X . [— SR .
< 3 B 1
o
el
(0]
N
T2 i
g E//
[s)
Z 1 1

1 L L L L
3 6 9 12 15 18

Mobility (m/s)

Fig. 18. Variation of NPO vs. mobility for K-Tree (K = 1-4).

constructed. In other words, we send only one MDC
description per tree. In case of K-Tree (K =1), we use
SDC (single description coding) coder which basically gen-
erates single description stream at 48 Kbps (8 packets per
second with packet size of 6 Kb). For all other K-Tree
schemes (K = 2-4), we use MDC coders which, respectively,
generate K descriptions at 4 Kbps in each description
(8 x K packets per second with packet size of £ Kb).

Figs. 17 and 18 show variation in RBF and NPO vs.
mobility for different K-Tree schemes, respectively. As we
have seen earlier, here also we observe that RBF reduces
significantly only when moving from K = 1 to K = 2 with-
out doubling NPO. If we go for K = 3, RBF reduces further
to some extent by incurring some additional control over-
head, but as we see from the plot it saturates at K = 3. This
happens because for higher values of K, due to lack of
node-disjoint trees in the network, the resulting trees con-
tain a lot of shared forwarding nodes. The shared nodes
face higher contention and have to handle higher traffic
load for higher values of K (packet rate increases linearly
with K). Further, if a forwarding node moves away, it could
result in multiple tree breaks. Hence we conclude that

increasing K beyond three does not lead to any perfor-
mance benefits in our K-Tree protocol.

5.2.3. Comparison of K-Tree (K = 2) with ODMRP and
MDTMR

Here we compare K-Tree with a well known mesh-
based multicast routing, ODMRP [9] and an existing multi-
ple tree protocol, MDTMR [25]. ODMRP builds a multicast
mesh by periodically flooding the network with control
packets to create and maintain the forwarding state of each
node, when the source node has packets to send. It uses a
forwarding group concept where in only a subset of nodes
forwards the multicast packets via scoped flooding.
MDTMR constructs two node-disjoint trees one after the
other. It then uses a two description coding to use the
two trees for sending the descriptions. It maintains the
trees by periodically flooding a joinReq control packet.
Receivers reply with joinAck control packets. Disjointed-
ness is maintained when a node forwarding a joinReq for
one tree does not forward joinReq for the other tree. Since
there is no explicit repair involved, frame rate might be af-
fected and also due to the periodic flood there might be
high overhead in the system. Also the authors of [25]
themselves point out that unless the network is dense all
receivers might not participate in the trees leading to a
drastic increase in average frame loss rate.

We have kept the joinReq flood interval for MDTMR as
6 s. In this case we use a two description coding of the vi-
deo. The total video transmission rate is fixed at 62.4 Kbps
with 8 frames per second. MDC coder generates 2 descrip-
tions with 31.2 Kbps in each description. We have kept
packet rate as 8 packets per second with each packet hav-
ing a size of 3.9 kilo bits in each description. We send one
description per tree in case of MDTMR and our K-Tree
(K = 2). In case of ODMRP, we send both descriptions on
the same mesh structure.

Fig. 19 shows how our protocol with two trees fares
against ODMRP and MDTMR protocols. MDTMR performs
marginally better compared our protocol for slower speed
of 3 m/s. But if we look at Figs. 20 and 21, this marginal
improvement was achieved at the cost of very high control
overhead (more than three times compared to our proto-

0.2 T

K-Tree (K=2) —e—
MDTMR -
ODMRP -

0.15
0.1

0.05

Ratio of Bad Frames (RBF)

O 1 1 1
3 6 9 12 15 18

Mobility (m/s)

Fig. 19. Variation of RBF vs. mobility.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

18 B.R. Tamma et al. / Computer Networks xxx (2010) xxx—-xXx

MDTMR -

Normalized Packet Overhead (NPO)
N W A O O N © © O

! ! !

3 6 9 12 15 18
Mobility (m/s)

N

Fig. 20. Variation of NPO vs. mobility.

_.8

S —

377. >>>>>>>>>> * R R .)

e)

36 ’

<

25l K-Tree (K=2) —o— 1

o MDTMR e

o

547 |

c

o)

03, 7

o

N

T 2[|

3

e S
3 6 9 12 15 18

Mobility (m/s)
Fig. 21. Variation of NCO vs. mobility.

col). The control overheads in ODMRP and MDTMR are tre-
mendous. MDTMR has the highest overhead due to the fre-
quent flooding of the network to refresh the forwarding
state. This is because there is no exclusive maintenance
in MDTMR. The overhead would only increase with the de-
crease in the joinReq flooding interval. The authors of
MDTMR protocol [25] set the joinReq flood interval as 3 s.
Control overhead in our protocol is low because of the pig-
gybacked KeepAlive packets. As the mobility increases, K-
Tree proves to be a better protocol as the maintenance is
done whenever there is a path break. This is not the case
with MDTMR, in case of a path break, the receivers affected
have to wait until the next joinReq flood to reconnect to the
source. Similar to MDTMR, ODMRP also does periodic con-
trol packet flood to refresh the forwarding state. It results
in higher control overhead compared to our protocol.
Hence K-Tree outperforms ODMRP and MDTMR as the
mobility increases with much lesser overhead as shown
in the simulations.

Scalability of K-Tree protocol: We now illustrate scala-
bility of our K-Tree protocol against MDTMR protocol
which constructs trees sequentially. We measure

scalability in terms of receiver join delay. The receiver
join delay is defined as average time taken by a recei-
ver to join into a multicast session or refresh it's group
membership status. Fig. 22 shows join delay times of
K-Tree protocol (K=1-3) and MDTMR. The join delay
times shown in this plot are obtained when nodes

N
n
(=]
T
1

Join Delay (ms)

(3]
(=3
[=]
T
1

@
3
T

om0 4

2-Tree 3-Tree 4-Tree MDTMR
Routing Scheme

Fig. 22. Scalability of K-Tree protocol.

o
w

o

N

o
T
.

o
[N
T
.

MDTMR —o—
K-Tree (K=2) --- o--oe

Ratio of Bad Frames (RBF)
o
= =
N 3

©

o

o
T

4 10 16 22 28 34 40
Number of Receivers

Fig. 23. Variation of RBF vs. number of receivers (mobility = 0 m/s).

Sr MDTMR —o—]
K-Tree (K=2) - oo

Normalized Control Overhead (NCO)

Number of Receivers

Fig. 24. Variation of NCO vs. number of receivers (mobility = 0 m/s).

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xxx—-xxx 19

move at 3 m/s. Since receivers use combined Join
Request packets in our K-Tree protocol to join into
multiple trees parallelly, join delay does not increase
linearly with K. But serial MDTMR constructs two trees
in sequential fashion and hence receivers face higher
join delays.

Effect of receiver density: Figs. 23 and 24 show the com-
parison of MDTMR vs. K-Tree for different number of
receivers in a static scenario. As the number of receivers
increases, the control overhead (NCO) in both the proto-
cols steadily increases but the overhead in MDTMR is
higher than that of K-Tree. The RBF of both the proto-
cols is almost the same, K-Tree being slightly better as
number of receivers increases. This is due to the earlier
mentioned fact that MDTMR fails to connect all the
receivers to the source when the network is not very
dense.

Figs. 25 and 26 compare MDTMR and K-Tree at a low
mobility of 6 m/s. They show that RBF and NCO increase
with the number of receivers in the presence of mobility.
Unlike in K-Tree protocol, overhead in MDTMR is affected
by only the number of receivers and not the mobility as

0.3 T T T T T T

o

N

o
T
.

o
N
T
.

MDTMR —=—
K-Tree (K=2) --- oo

Ratio of Bad Frames (RBF)
o
=) =
- 3

o

o

o
T

4 10 16 22 28 34 40
Number of Receivers

Fig. 25. Variation of RBF vs. number of receivers (mobility = 6 m/s).

Sr MDTMR —e— -
K-Tree (K=2) --- oo

Normalized Control Overhead (NCO)

Number of Receivers

Fig. 26. Variation of NCO vs. number of receivers (mobility = 6 m/s).

0.3 : , ' ' ' |
0.28 |
0.26 |
0.24
0.22

02 r
0.18
0.16 1
0.14 f MDTMR —o— 1
0.12 K-Tree (K=2) -

0.1 1 1 1 1 1 1
4 10 16 22 28 34 40

Number of Receivers

Ratio of Bad Frames (RBF)

Fig. 27. Variation of RBF vs. number of receivers (mobility 18 m/s).

~
T
1

6 L 4

5 MDTMR —o— -~
K-Tree (K=2) --- Lo

4t]

.

w
T
.
1

N
T
.
1

o

Normalized Control Overhead (NCO)

4 10 16 22 28 34 40
Number of Receivers

Fig. 28. Variation of NCO vs. number of receivers (mobility = 18 m/s).

there is no explicit maintenance phase. The overhead stea-
dily increases in case of K-Tree due to the fact that the size
of the tree increases with the number of receivers. More
the number of nodes in the tree, more the probability of
maintenance. Figs. 27 and 28 compare MDTMR and K-Tree
for a high mobility of 18 m/s. Here both RBF and overhead
increase with the number of receivers as expected. But the
increase in RBF in case of K-Tree is not as rapid in case of
MDTMR as K-Tree has an explicit maintenance phase and
also K-Tree ensures paths to all the receivers whenever
possible. The results have shown that K-Tree outperforms
MDTMR as the number of receivers increases with a lesser
overhead.

6. Conclusion and future work

In this paper we proved that finding node-disjoint
multicast trees, where receivers are leaves of trees with
a particular configuration, is NP-Hard. We then designed
a multiple tree based multicast routing scheme, K-Tree
protocol, which exploits path-diversity for robustness vi-
deo multicasting. We have shown that the protocol
scales to two or three trees without doubling or tripling

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

http://dx.doi.org/10.1016/j.comnet.2010.02.013

20 B.R. Tamma et al./ Computer Networks xxx (2010) XXX—Xxx

the overhead, respectively. But as already discussed, the
path-diversity may increase the number of forwarders
and hence may increase the data forwarding overhead.
Further work might involve finding correlated but yet
trustable paths instead of finding disjointed paths. That
is to allow correlations but in a way to reduce overhead
and also at the same time maintaining the robustness.
Also the weights used for correlation might be taken as
functions of battery power, number of multicast sessions
a node participate in, local contention, and bandwidth
available at nodes for choosing paths to trees. This would
help bringing in energy, bandwidth, and load awareness
into the protocol. We would like to employ network cod-
ing techniques at shared nodes of multiple trees con-
structed by our K-Tree protocol and investigate how
they could effectively improve the network performance.
Developing coding-aware mesh or tree based multicast
routing protocols for Ad hoc wireless networks is an-
other future research direction.

References

[1] T. Bheemarjuna Reddy, I. Karthigeyan, B.S. Manoj, C. Siva Ram
Murthy, Quality of service provisioning in ad hoc wireless networks:
a survey of issues and solutions, Ad Hoc Networks Journal 4 (1)
(2006) 83-124.

[2] F.A. Tobagi, L. Kleinrock, Packet switching in radio channels: part II -
the hidden terminal problem in carrier sense multiple-access and
the busy-tone solution, IEEE Transactions on Communications 23
(12) (1975) 1417-1433.

[3] J. Luo, P.T. Eugster, J.-P. Hubaux, Route driven gossip: probabilistic
reliable multicast in ad hoc networks, in: Proceedings of IEEE
INFOCOM, vol. 3, 2003, pp. 2229-2239.

[4] J. Chakareski, S. Han, B. Girod, Layered coding vs. multiple
descriptions for video streaming over multiple paths, in:
Proceedings of ACM Multimedia, 2003, pp. 422-431.

[5] EM. Royer, C.E. Perkins, Multicast operation of the ad hoc on-
demand distance vector routing protocol, in: Proceedings of ACM
MOBICOM, 1999, pp. 207-218.

[6] P. Sinha, R. Sivakumar, V. Bharghavan, MCEDAR: Multicast Core
Extraction Aistributed Ad Hoc Routing, in: Proceedings of IEEE
WCNC, 1999, pp. 1313-1317.

[7] JJ. Garcia-Luna-Aceves, E.L. Madruga, The core-assisted mesh
protocol, IEEE Journal on Selected Areas in Communications 17 (8)
(1999) 1380-1994.

[8] H. Jiang, S. Cheng, Y. He, B. Sun, Multicast along energy-efficient
meshes in mobile ad hoc networks, in: Proceedings of IEEE WCNC,
vol. 2, 2002, pp. 807-811.

[9] Sung Ju Lee, William Su, M. Gerla, On-demand multicast routing
protocol in multihop wireless mobile networks, Mobile Networks
and Applications 7 (6) (2002) 441-453.

[10] S. Mao, S. Lin, S. Panwar, Y. Wang, Reliable transmission of video
over ad-hoc networks using automatic repeat request and multi-
path transport, in: Proceedings of IEEE VTC, 2001, pp. 615-619.

[11] S. Lin, Y. Wang, S. Panwar, Video transport over ad-hoc networks
using multiple paths, in: Proceedings of ISCAS, 2002, pp. 57-60.

[12] S. Mao, S. Lin, S. Panwar, Y. Wang, E. Celebi, Video transport over ad
hoc networks: multistream coding with multipath transport, IEEE
Journal on Selected Areas in Communications 21 (10) (2003) 1721-
1737.

[13] El Al, A.A. Saadawi, T. Myung Lee, Improving interactive video in ad-
hoc networks using path diversity, in: Proceedings of IEEE MASS,
2004, pp. 369-378.

[14]].G. Apostolopoulos, Reliable video communication over lossy packet
networks using multiple state encoding and path diversity, in:
Proceedings of VCIP, 2001, pp. 392-409.

[15] S. Somsundaram, K.P. Subbalakshmi, R.N. Uma, MDC and path
diversity in video streaming, in: Proceedings of IEEE ICIP, vol. 5,
2004, pp. 3153-3156.

[16] Yuan Chen, Shengsheng Yu, Jingli Zhou, Jun Fan, Video transmission
over ad hoc networks using multiple description coding and
clustering-based multiple paths, in: Proceedings of Eighth ACIS

International Conference on Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, vol.
3, 2007, pp. 792-797.

[17] SJ. Lee, M. Gerla, Split multipath routing with maximally disjoint
paths in ad hoc networks, in: Proceedings of ICC, 2001, pp. 3201-
3205.

[18] K. Wu, J. Harms, On-demand multipath routing for mobile ad hoc
networks, in: Proceedings of EPMCC, 2001, pp. 1-7.

[19] D.B. Johnson, D.A. Maltz, Y. Hu, The Dynamic Source Routing
Protocol for Mobile Ad Hoc Network, Internet-Draft, draft-ietf-
manet-dsr-09.txt, 2003.

[20] P. Pham, S. Perreau, Performance analysis of reactive shortest path
and multi-path routing mechanism with load balance, in:
Proceedings of INFOCOM, 2003, pp. 251-259.

[21] A. Nasipuri, S.R. Das, On-demand multipath routing for mobile ad
hoc networks, in: Proceedings of IEEE ICCCN, 1999, pp. 64-70.

[22] Sajama, Zygmunt J. Haas, Independent-tree ad hoc multicast routing
(ITAMAR), Mobile Networks and Applications 8 (5) (2003) 551-566.

[23] Meng-Yen Hsieh, Yueh-Min Huang, Tzu-Chinag Chiang,
Transmission of layered video streaming via multi-path on ad hoc
networks, Multimedia Tools and Applications 34 (2) (2007) 155-
177.

[24] W. Wei, A. Zakhor, Multipath unicast and multicast video
communication over wireless ad hoc networks, in: Proceedings of
BROADNETS, 2004, pp. 496-505.

[25] W. Wei, A. Zakhor, Multiple tree video multicast over wireless ad hoc
networks, IEEE Transactions on Circuits and Systems for Video
Technology 17 (1) (2007) 2-15.

[26] R. Ahlswede, N. Cai, S.-Y.R. Li, RW. Yeung, Network information flow,
IEEE Transactions on Information Theory 46 (4) (2000) 1204-1216.

[27] Ying Zhu, Baochun Li, Jiang Guo, Multicast with network coding in
application-layer overlay networks, IEEE Journal on Selected Areas in
Communications 22 (1) (2004) 107-120.

[28] S. Sengupta, S. Rayanchu, S. Banerjee, An analysis of wireless
network coding for unicast sessions: the case for coding-aware
routing, in: Proceedings of IEEE INFOCOM, 2007, pp. 1028-1036.

[29] B. Anirudh, T. Bheemarjuna Reddy, C. Siva Ram Murthy, K-Tree: a
multiple tree video multicast protocol for ad hoc wireless networks,
in: Proceedings of HiPC, 2006, pp. 424-435.

[30] L. Ford, D. Fulkerson, Flows in Networks, Princeton University Press,
1962. pp. 297-333.

[31] AV. Goldberg, R.E. Tarjan, A new approach to maximum flow
problem, in: Proceedings of Symposium on Theory of Computing,
1986, pp. 136-146.

[32] G.D. Hachtel, F. Somenzi, A symbolic algorithms for maximum flow
in 0-1 networks, Formal Methods in System Design 10 (February)
(1997) 207-219.

[33] RJ. Anderson, J.C. Setubal, On the parallel implementation of
goldberg’s maximum flow algorithm, in: Proceedings of ACM
Symposium on Parallel Algorithms and Architectures, 1992, pp.
168-177.

[34] L. Li, T.A. Marsland, A parallel algorithm for finding a maximum flow
in 0-1 networks, in: Proceedings of Annual Conference on Computer
Science, 1987, pp. 231-234.

[35] J. Cheriyan, M.R. Salavatipour, Packing element-disjoint steiner
trees, in: ACM Transactions on Algorithms, vol. 3, no. 4, Article No.
47, 2007.

[36] Y. Aumann, Y. Rabbani, Improved bounds for all optical routing, in:
Proceedings of SODA, 1995, pp. 567-576.

[37] A. Baveja, A. Srinivasan, Approximate algorithms for disjoint paths
and related routing and packing problems, in: Proceedings of IEEE
Symposium on Foundations of Computer Science, 1998, pp. 416-
425.

[38] C. Chekuri, S. Khanna, Edge-disjoint paths revisited, in: Proceedings
of SODA, 2003, pp. 628-637.

[39] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, M. Yannakakis,
Near-optimal hardness results and approximation algorithms for
edge-disjoint paths and related problems, in: Proceedings of
Symposium on Theory of Computing, 1999, pp. 19-28.

[40] M. Andrews, L. Zhang, Hardness of undirected edge-disjoint paths
problem, in: Proceedings of Symposium on Theory of Computing,
2005, pp. 276-283.

[41] S. Fortune, J. Hopcroft,]J. Wyllie, The directed subgraph
homeomorphism problem, Theoretical Computer Science 10 (2)
(1980) 111-121.

[42] S. Capkun, L. Buttyan, J.-P. Hubaux, Self-organized public-key
management for mobile ad hoc networks, IEEE Transactions on
Mobile Computing 2 (1) (2003) 52-64.

[43] ns-2: network simulator, <http://www.isi.edu/nsnam/ns/>.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://www.isi.edu/nsnam/ns/
http://dx.doi.org/10.1016/j.comnet.2010.02.013

B.R. Tamma et al./ Computer Networks xxx (2010) xXx—Xxx 21

T. Bheemarjuna Reddy received the B.Tech.

degree in Computer Science and Engineering

from Andhra University, India, in 2000 and

the M.E. degree in Computer Science and

'ﬂ: Engineering from the National Institute of

£ Technology (NIT), Rourkela, India, in 2002. He
was an iNautix doctoral student during 2002-

? 2006 in the Department of Computer Science
and Engineering at the Indian Institute of

/ Technology (IIT) Madras, India, where he
k&“ / focused on QoS provisioning and Multimedia
g, 0 Lt transport in Ad hoc wireless networks. During
January 2007-March 2007, he was a Senior Project Officer at IIT Madras,
India. He is currently a post-doctoral researcher at the University of
California, San Diego, USA. His research interests include Quality of Ser-
vice, Multimedia transport, and Traffic engineering in wireless networks.

B. Anirudh obtained his B.Tech. degree in
Computer Science and Engineering in 2006
from the Indian Institute of Technology (IIT),
Madras, India. He is currently working
towards the Ph.D. degree in the department of
Computer Science at the Princeton University,
New Jersey, USA. His research interests
include Wireless networks, distributed sys-
tems, and Operating systems.

C. Siva Ram Murthy received the B.Tech.
degree in Electronics and Communications
Engineering from Regional Engineering Col-
lege (now National Institute of Technology),
Warangal, India, in 1982, the M.Tech. degree
in Computer Engineering from the Indian
Institute of Technology (IIT), Kharagpur, India,
in 1984, and the Ph.D. degree in Computer
Science from the Indian Institute of Science,
Bangalore, India, in 1988.
PN A He joined the Department of Computer
Science and Engineering at IIT, Madras, as a
Lecturer in September 1988, and became an Assistant Professor in August
1989 and an Associate Professor in May 1995. He has been a Professor

with the same department since September 2000. He has held visiting
positions at the German National Research Centre for Information Tech-
nology (GMD), Bonn, Germany, the University of Stuttgart, Germany, the
University of Freiburg, Germany, the Swiss Federal Institute of Technol-
ogy (EPFL), Switzerland, and the University of Washington, Seattle, USA.

He is the co-author of the textbooks Parallel Computers: Architecture
and Programming (Prentice-Hall of India, New Delhi, India), New Parallel
Algorithms for Direct Solution of Linear Equations (John Wiley & Sons,
Inc., New York, USA), Resource Management in Real-time Systems and
Networks (MIT Press, Cambridge, Massachusetts, USA), WDM Optical
Networks: Concepts, Design, and Algorithms (Prentice-Hall, Upper Saddle
River, New Jersey, USA), and Ad Hoc Wireless Networks: Architectures
and Protocols (Prentice-Hall, Upper Saddle River, New Jersey, USA). His
research interests include parallel and distributed computing, real-time
systems, lightwave networks, and wireless networks. He has published
more than 200 technical papers in these areas.

He is a recipient of the Sheshgiri Kaikini Medal for the Best Ph.D.
Thesis from the Indian Institute of Science, the Indian National Science
Academy (INSA) Medal for Young Scientists, and Dr. Vikram Sarabhai
Research Award for his scientific contributions and achievements in the
fields of Electronics, Informatics, Telematics, and Automation. He is a co-
recipient of Best Paper Awards from the 1st Inter Research Institute
Student Seminar (IRISS) in Computer Science, the 5th IEEE International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), and
the 6th and 11th International Conference on High Performance Com-
puting (HiPC).

Ramesh R. Rao is the Director of University of
California San Diego division of the California
Institute for Telecommunications and Infor-
mation Technology (Calit2). He has been a
faculty member in the Department of Elec-
trical and Computer Engineering, Jacobs
School of Engineering, UC San Diego since
1984. Prior to becoming the Calit2 UCSD
division director in 2001, Professor Rao was
the director of the Center for Wireless Com-
munications (CWC) at UCSD. He is involved on

. a day-to-day basis with a wide variety of
research initiatives at Calit2. He leads several major interdisciplinary and
collaborative projects and has been a PI on dozens of federal-, state-,
foundation- and industry-funded grants. He is also an IEEE fellow and the
QUALCOMM Endowed Chair in Telecommunications and Information
Technologies, UC San Diego.

Netw. (2010), doi:10.1016/j.comnet.2010.02.013

Please cite this article in press as: B.R. Tamma et al., K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks, Comput.

http://dx.doi.org/10.1016/j.comnet.2010.02.013

	K-Tree: A multiple tree video multicast protocol for Ad hoc wireless networks
	Introduction
	Related work
	Graph theoretic approaches
	K-Tree Packing Problem
	Overview of proof
	Construction of a simple KTP instance
	From KTP to EDP
	Hardness of KTP
	KTP for directed graphs

	Online heuristic

	The K-Tree protocol
	Multiple tree initialization phase
	Multiple tree maintenance phase

	Performance results
	Metrics
	Simulation results
	Effect of increasing K
	Saturation of K-Tree protocol
	Comparison of K-Tree (K=2) with ODMRP and MDTMR

	Conclusion and future work
	References

