
On Supporting Robust Voice Multicasting over
Ad hoc Wireless Networks

G. Venkat Raju a, T. Bheemarjuna Reddy b, and C. Siva Ram Murthy b

a Yahoo! Software Development India Pvt. Ltd., Bangalore, India 560001
b Department of Computer Science and Engineering, Indian Institute of Technology Madras, India 600036

gvraju@yahoo-inc.com, arjun@cs.iitm.ernet.in, murthy@iitm.ac.in

Abstract— In this paper, we address the problem of voice multi-
casting in ad hoc wireless networks. The unique characteristics of
voice traffic (viz. small packet size, high packet rate, and soft real-
time nature) make conventional multicasting protocols perform
quite poorly, hence warranting application-centric approaches
in order to increase robustness to packet losses and lower the
overhead due to high packet rate. By exploiting the path diversity
and the error resilience properties of Multiple Description Coding
(MDC), we propose a Robust Voice Multicast Routing (RVMR)
protocol. Our protocol uses a novel path based Steiner tree
heuristic to reduce the number of forwarders in each tree, and
constructs two trees in parallel with reduced number of common
nodes among them. Moreover, unlike other on-demand multicast
protocols, RVMR specifically attempts to reduce the periodic (non
on-demand) control traffic. We propose several optimizations for
reducing the overhead while transmitting high packet rate voice
traffic in ad hoc networks. We extensively evaluate RVMR in
the NS-2 simulation framework and show that it out-performs
existing single-tree and two-tree multicasting protocols.

I. INTRODUCTION

Ad hoc wireless networks (AWNs) are formed by a set of
mobile nodes that communicate with each other over a wire-
less channel without the help of any pre-existing infrastructure.
Nodes co-operate to forward packets for effecting communi-
cation between any two nodes that are not directly within the
wireless transmission range of one another. Due to quick and
cost effective way of deployment, these networks are attractive
to numerous potential applications, ranging from emergency
and rescue operations to real-time multimedia communications
for disaster areas. Real-time multimedia applications can toler-
ate packet losses to some extent (up to 5% [1]) but are highly
delay sensitive (typically for interactive voice communication,
the end-to-end delay should be less than 200 ms [2]). In
this paper, we concentrate on voice multicasting as it is a
key application in many group-oriented scenarios. The unique
characteristics of voice traffic, such as small payload size
(20 bytes), high packet rate (40 packets/s to 100 packets/s),
and soft real-time nature make voice multicasting a very
challenging problem in AWNs.

Although there exists some video multicast routing proto-
cols [3][4] besides several general multicast routing protocols
[5] for AWNs, they fail to sustain high packet rate and hence
not suitable for voice multicasting. This warrants development
of application-centric multicasting protocols which increase
the error resiliency (i.e., robustness to packet losses) and
reduce the total data overhead for voice traffic. The recent
advances in Multiple Description Coding (MDC) have made
it highly suitable for multimedia applications in AWNs [6].
MDC offers a way wherein we can split a voice frame into two
independent packets (also called descriptions), such that even

if one of them is received the frame can be recovered although
with degraded quality. This improves both robustness and
continual flow of the voice frames. We can further increase the
error resilience by employing path diversity (existence of two
maximum node-disjoint paths between a source-receiver pair)
and sending each description along an independent path to the
receiver. By making these paths as node-disjoint as possible,
we decrease the correlation of path breaks among them, hence
increasing the probability of at least one description reaching
the receiver.

In our recent work, by exploiting the error resilient prop-
erties of MDC and path diversity, a multiple tree video
multicasting protocol, Robust Demand-driven Video Multicast
Routing (RDVMR) protocol [7] was proposed and was shown
to perform well over both ADMR [8] and MDTMR [3]
protocols with minimum overhead. RDVMR uses a novel
path based Steiner tree heuristic to reduce the number of
forwarders in each tree, and constructs multiple (k) trees in
parallel with reduced number of common nodes (i.e., nodes
that are forwarders for more than one tree) to improve the
robustness due to path breaks and correlated packet losses
and it attempts to reduce the periodic (non on-demand) control
traffic. Therefore, each receiver has k maximally node-disjoint
paths to the source, along which different MDC descriptions
are sent. However, under high packet rates the RDVMR
protocol fails to performs well due to large overhead and
thus limiting its application for voice multicasting. By adding
several key optimizations (as explained in Section II-B) to
RDVMR protocol, we propose RVMR protocol that sustains
high packet rate (voice) traffic in AWNs with minimal over-
head. The rest of the paper is organized as follows. Section II
describes RVMR protocol in detail. In Section III we evaluate
RVMR protocol through simulations, and finally in Section IV
we conclude with possible future work.

II. AN OVERVIEW OF RVMR

In order to make RVMR as demand-driven as possible
(i.e., to minimize the non on-demand control traffic), we
base RVMR on RDVMR protocol. RDVMR is a multi-tree
based video multicasting protocol that exploits path diver-
sity along with the error resilience properties of MDC to
achieve an improved performance over single [8] and multi-
tree protocols [3]. RDVMR is a receiver-initiated multicasting
protocol, and it uses soft-state tree repair. Its salient features
are: 1) There is no periodic control traffic like beaconing,
or link state updates. 2) Most of its control information
is piggybacked on data packets. 3) It is standalone, i.e., it
does not require any underlying unicast routing protocol. Our

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1636

RVMR protocol builds two trees simultaneously, where each
tree has lesser number of forwarders, and it employs several
key optimizations (and thus minimal overhead (data+control))
to sustain high packet rate voice traffic compared to RDVMR
protocol.
A. Data Structures

The following data structures are maintained by each node:
• TreeState(t,groupId) This stores the parent parent (next

hop to the source) for the tree t of the multicasting group
groupId. It also stores the last sequence number lastSeq
heard from the source through parent, and the cost cost
to reach the source through parent. All nodes, including
nodes that are not part of any multicasting tree, keep track
of their parents.

• NodeState(d) This stores the unicast routing information
for the destination d, namely the next hop nxtHop,
the last sequence number heard lastSeq, and the cost
cost to reach node d through nxtHop. It is updated on
hearing any packet originating from node d, similar to
the backward routing protocol [9].

B. Protocol Overview
In this subsection we describe how RVMR builds and

maintains two trees. RVMR is a tree-based receiver initiated
multicasting protocol, where receivers join and leave on-
demand. RVMR adapts each tree to the continuously changing
network topology and to the changing group membership. In
order to maintain two trees, each packet contains the treeId,
identifying the tree it is meant for, in addition to the groupId.
As an optimization, by maintaining the treeId in each packet
as a bit-vector of size two (named as treeList), a single
control packet can be meant for two trees simultaneously. Note
that, when we say that a node gets or sends a packet p along
the tree t, we mean that p.treeList has the tth bit set. Hence
by means of using a treeList in each packet, RVMR is able
to build and maintain two trees in parallel.

The source of the group groupId multicasts data packets
along the tree. It also periodically floods a data packet having
a piggybacked header called SrcJoinAdvt, which eventually
reaches every node in the network. It advertises a route to
the source of groupId to all nodes in the network, and helps
to refresh the multicast tree. Since the SrcJoinAdvt packet
advertises a route to the source along all trees, it has its
treeList set to all ones, whereas the packets multicasted
by the source advertise a route to it only along a particular
tree t. On hearing such a route advertisement to the source
of the group groupId, a node creates (or refreshes) the entry
TreeState(t, groupId). This way every node keeps track of
its upstream node (parent) for the tree t to reach the source.
The source also keeps track of the mean inter-packet time,
ipt, which is piggybacked on every packet it sends. A tree
node (i.e., a node that is a forwarder or a receiver) is said
to be disconnected if it has not received any multicast packet
before the expiry of RepairT imer1. When a receiver wishes
to join the tree t, it unicasts a joinReq packet to its parent for
the tree t and sets a JoinT imer based on ipt advertised by
the source. If it does not have a parent or if the JoinT imer
expires, the receiver floods a MulticastSolicitation packet
for the tree t. When a tree node (i.e., a node that is a forwarder

or a receiver for tree t) gets a MulticastSolicitation, it
unicasts it up the tree through its parent to the source.
On receiving a MulticastSolicitation, the source unicasts
a joinReply packet to the corresponding receiver. A node
forwarding a joinReply packet to the node d for the tree t,
becomes a forwarder for that tree.

If a forwarder for tree t detects a disconnection, it
multicasts a repairNotification packet downstream. A
repairNotification serves to inform the downstream nodes
of the disconnection, and avoids redundant repair attempts
by them when they eventually detect the disconnection. Si-
multaneously the forwarder detecting the break, attempts
to locally repair the tree by flooding a limited time-to-
live (ttl) LocalReconnect for the tree t. Similar to han-
dling a MulticastSolicitation, a tree node unicasts a
LocalReconnect up the multicast tree t to the source. The
source then unicasts a LocalReconnectReply to the node
that originated the local repair. A LocalReconnectReply is
processed exactly like a joinReply, i.e., any node forwarding
it becomes a forwarder for the tree t. In order to avoid
routing loops we only allow the source to respond to flooded
packets like MulticastSolicitation and LocalReconnect. If
a receiver detects a disconnection, it attempts to rejoin the
group after some time by flooding a MulticastSolicitation
in case the repair attempts of its upstream nodes (i.e., nodes
that are ancestors of this node along the multicast tree) fail. It
can be clearly seen that the repair control overhead increases
with mobility because of the increasing link breaks.

RVMR does not have explicit leave messages, instead for-
warders prune themselves away if they detect that they do not
have any downstream children. Each multicasted data packet
carries a field containing the parent of the node that forwarded
it. This field serves to passively acknowledge the parent
of that node to continue forwarding data. However, since
pure receivers (last-hop nodes in the multicast tree) do not
forward data packets, they need to explicitly acknowledge their
parents by periodically unicasting an acknowledgment packet.
This way a forwarder not having any downstream receivers
prunes itself away from the multicasting tree. RVMR has three
routing packets responsible for building and maintaining two
trees. They are MulticastSolicitation, SrcJoinAdvt, and
LocalReconnect packets originated by a receiver, source, or
a forwarder for a particular group, respectively. To reduce
the redundancy due to high packet rate voice traffic, we now
propose a few optimizations.

C. Proposed Optimizations

1) Tackling Premature Timeouts: For high packet rate voice
applications, the ipt value is usually very small (typically
20 ms). This causes a serious problem in both ADMR and
RDVMR protocols and is explained as follows. In reply to
a SrcJoinAdvt packet, a receiver sends back a joinReply
packet and it expects a data packet before the expiry of
JoinT imer1. Since for voice traffic the ipt value is very
small, there are higher chances for the expiry of JoinT imer
before the data actually reaches along multiple hops. If the data

1The JoinT imer and RepairT imer in ADMR are specified in terms of
the number of packets, k, where k is a small value such as 2.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1637

packet sent by source has not reached the receiver before the
expiry of JoinT imer, it falsely assumes that the previously
sent joinReply packet is lost in the network though it is
actually delayed due to multiple hops present between source
and receiver.

The receiver, however repeats the process of sending
joinReply packets two more times, before it finally gives
up and sends MulticastSolicitation message. Eventually,
the source delivers a data packet to the receiver, and this
causes another round of triple joinReply messages followed
by solicitations. Because solicitations are flooded and sent
using broadcast at MAC layer, they cause severe congestion
causing loss of large number of packets in the network.
Since voice packets have delay bound, these packets are
treated as lost packets if they reach the destination after their
playout time (deadline). Note that, RepairT imer also have
the same problem as that of the JoinT imer, resulting in
false disconnections and false initiation of multicast tree repair
mechanisms causing enormous overhead in the network. To
solve this problem, we need to adjust the JoinT imer and
RepairT imer as explained below.

Optimization: We use MaxWaitT ime, so that the cal-
culated time for JoinT imer and RepairT imer can never
be less than this value. By setting the MaxWaitT ime to a
reasonably high time (≈ 1,000 ms), we can ensure that the
timer never fires too soon (this is equivalent to missing of 50
voice packets), but is fast enough to adapt to losses due to
mobility in the network.

2) Tackling ACK Implosion: Another problem that is com-
mon in RVMR, ADMR, and RDVMR protocols is ACK im-
plosion. Since pure receivers do not forward data packets, they
need to explicitly acknowledge their parent nodes (upstream
nodes) by unicasting an ACK packet for each data packet
they received to maintain the forwarding state. This ACK
packet overhead causes increased network traffic thus leading
to collisions and reduction in packet delivery ratio. We propose
the following two optimizations to reduce the ACK packet
overhead to a minimum level.
Optimization I: Our solution to the ACK implosion is that for
maintaining the forwarding state at the source (or forwarder),
it is sufficient that a pure receiver sends one ACK packet
for every k received data packets because ipt is very small
for voice applications. This way the source (or forwarder)
can maintain the forwarding state with minimum overhead.
The source (or forwarder) sets its forwarding state timer to
AckWaitT ime which is equal to k ∗ MaxAckT ime. This
ensures that the source (or forwarder) does not time out its
forwarding state unless it misses k ACKs in a row. This
optimization is very important for high packet rate voice traffic
since it reduces the ACK packet overhead substantially.

Optimization II: Since each ACK is broadcasted, each pure
receiver sets an AckT imer to a random value between zero
and MaxAckT ime. If the timer expires and the receiver has
received voice packet during this interval then it sends an
explicit ACK. However, if the receiver overhears an ACK
sent by another pure receiver in its neighborhood during this
interval, it cancels its timer and does not send ACK packet
(refer Figures 1(a)-(c)). Similarly, if the receiver overhears the

same voice packet sent by a tree node in its neighborhood
during this interval, it cancels its timer and does not send ACK
packet (refer Figures 2(a)-(b)). It then waits for the remainder
of MaxAckT ime before it sets a new ACK timer.

Fig. 1. Tackling ACK implosion problem - Optimization II(a).

Fig. 2. Tackling ACK implosion problem - Optimization II(b).

D. Handling of Routing Packets
This subsection describes the handling of routing

packets in RVMR. RVMR has three routing packets
responsible for building and maintaining two trees.
They are MulticastSolicitation, SrcJoinAdvt, and
LocalReconnect packets originated by a receiver, source, or
a forwarder for a particular group, respectively. Each node
in a multicast tree needs to learn of a loop free route to the
source along that tree. RVMR employs backward routing. In
backward routing, a node S floods a routing advertisement
for itself (i.e., it sets r.advertisedNode to S), and any node
B hearing such an advertisement r from the node A, may
choose A as the next hop to node S. A routing advertisement
packet r contains a field r.cost to store the cost of the path
it has taken so far starting from its source (which is same as
r.advertisedNode) and a field r.prevHop which is set to
the node that forwarded r. This is illustrated in Fig. 3(a).

Fig. 3. Handling of routing (a) Illustration of backward routing and (b) Node
B drops node A’s routing advertisement for S as it does not choose it as the
next hop to the node S.

We can ensure loop free paths if we impose the following
two conditions: 1) The cost in the routing advertisement packet
monotonically increases and 2) A node is allowed to forward
a routing advertisement r, only if it is received from it’s
next hop to the node r.advertisedNode (shown in Fig. 3(b)).
We can easily prove using contradiction that the above two
conditions guarantee loop free paths. Assume that even in

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1638

Next hop to node S

Route Advt for S

D C

BA

S

X

A has to choose X

 as the next hop to S

Fig. 4. Example scenario of a routing loop originating at node A.

the presence of these conditions routing loops can be formed.
Such a scenario is illustrated in Figure 4. Without loss of
generality let us assume that node S originates the routing
advertisement which is further forwarded by nodes X , A, B,
C, and D. Let us assume that a routing loop is formed at
node A. Since node B forwarded the routing advertisement
it obtained through node A, node B must have chosen A
as its next hop to S, similarly node C chooses node B as
its next hop to S and node D chooses node C. As the cost
carried in the routing advertisement monotonically increases,
node A receives a higher cost route to node S from node D
than it received from node X . Hence it should have chosen
node X and not node D as its next hop to node S. Hence we
have proved that it is impossible to form a routing loop if our
routing protocol follows the above two conditions.

In order to adapt to the changing network topology, each
routing packet r, must carry a monotonically increasing
unique sequence number seq, to differentiate between stale
and new routing information. In order to construct Steiner
like trees (i.e., trees with reduced number of forwarders),
the route from the multicast source S to any node A in
the multicast tree should not be the shortest path from S
to A. Therefore RVMR not only needs to differentiate be-
tween stale and new routing advertisements, it must also
make sure that it does not degenerate into finding shortest
path trees. To achieve this, a node A on hearing a routing
advertisement packet r for the node r.advertisedNode, may
choose r.prevHop as the next hop for r.advertisedNode,
iff (r.cost < NodeState(r.advertisedNode).cost) AND
(r.seq >= NodeState(r.advertisedNode).lastSeq). Es-
sentially a node chooses a neighbor to be a next hop for a
destination, only if it has received a routing advertisement for
that destination from that neighbor which has a higher (hence
newer) sequence number and a better cost. The cost field r.cost
is updated by the cost function (refer Algorithm 1).

E. Steiner Tree Heuristic
In this subsection we describe our novel path-based Steiner

tree heuristic, which tries to reduce the number of addi-
tional forwarding nodes required by differentially costing
each node along each tree. The details of the proposed
heuristic are abstracted into a cost function CostOfNode,
by means of which we are able to impose a routing
gradient so as to heuristically reduce the number of for-
warders leading to a decreased NPO. Each node adds
its cost as returned by the function CostOfNode to the
cost fields in the routing packets (namely SrcJoinAdvt,
MulticastSolicitation, and LocalReconnect). The follow-
ing psuedocode describes the function CostOfNode. The

Algorithm 1 CostOfNode

node← Node that is calculating its cost
groupId← Multicast group address
baseCost← NON PART OF TREE COST
treeId← Tree along which cost is being calculated
if node is a receiver for tree treeId of multicast group groupId
then

baseCost = baseCost ∗ α
else if node is a forwarder for tree treeId of multicast group
groupId then

ncr ← numReceiverDescendants(treeId, groupId)
baseCost← (baseCost ∗ β)/ncr

end if
if numTreesPartOf(groupId) > 1 then

disjointedCost←
λ ∗NON PART OF TREE COST
∗(numTreesPartOf(groupId)− 1)
return γ ∗ (disjointedCost) + (1− γ) ∗ baseCost

else
return baseCost

end if

function numTreesPartOf(groupId) returns the number of
trees this node is a forwarder of for the group groupId.
The function numReceiverDescendants(treeId, groupId)
returns the number of receiver descendants in the subtree
rooted at node for the tree treeId of the group groupId.
We keep track of the number of receiver descendants under a
node for a particular tree by piggybacking this information on
join requests and passive acknowledgments for that particular
tree. We set α to be much lower than β, because we want a
receiver to have a much lower cost than a forwarder. Both α
and β are less than one. The parameters γ and λ control the
trade off between the node-disjointedness and the number of
forwarders, as discussed earlier. The cost function is illustrated

100

100

R2

R3

R1

80

40

40

340

100

C

B

R4

R5

A

S

360
R6

183

3

100

40

40

100

100

Source Reciever New receiver

Non−tree node Tree node Tree Edge

Join ReplySrcJoinAdvt

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
�� ��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Fig. 5. An example to illustrate the cost function.

in Fig. 5. In this example, source S floods a join advertisement
having a piggybacked cost. Node R6 is the new receiver. The
join advertisements arrive at node R6 through three paths, of
which the one through A and R5 is chosen as it has the least
cost. In this example NON PART OF TREE COST =
100, α = 0.03, β = 0.8, and γ = 0. The cost of each node
and of the join advertisements received by node R6 along
different paths are shown in the figure.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1639

Fig. 6. Illustration of packet trace for RDVMR and RVMR protocols.

TABLE I

SIMULATION PARAMETERS

Parameter Value Parameter Value
Terrain Area 1200 m x 800 m Tx. Range 250 m
Channel Capacity 11 Mbps # of Nodes 75
Mobility Model Random Way Point Sim. Duration 900 s
Source data rate 50 pkts/s # of Receivers 25
MAC Protocol 802.11 DCF Voice Frame Size 253 bits
Traffic Type CBR ipt 20 ms

III. SIMULATION STUDIES

A. Simulation Framework

We implemented RVMR in the NS-2 simulation frame-
work [10]. We compare its performance with RDVMR and
ADMR. We first compare our protocol for the single tree
case with ADMR and RDVMR for various scenarios, and then
using two trees we compare our performance with RDVMR.
For all experiments we set the parameters α, β, γ, and λ in
RVMR to be 0.03, 0.8, 0.2, and 2, respectively. These values
were observed to give good results in our simulation setup.
We evaluate the performance using the following metrics:
1) Packet Delivery Ratio (the ratio of the number of data
packets received by each receiver over the number of data
packets sent by the source), 2) Normalized Packet Overhead
(the ratio of the total number of packets (control and data)
exchanged over the total number of data packets received by all
the receivers), and 3) Measurement of Perceptual Evaluation
Speech Quality Mean Opinion Score (PESQ-MOS). The
PESQ-MOS is evaluated as follows. At each receiver, the
voice frames are decoded and the wide band version of
ITU perceptual measurement algorithm, PESQ-MOS reference
software tool [11] is used to measure their perceived voice
quality. The PESQ-MOS reference software tool compares
the degraded speech with the reference speech and computes
the objective MOS value in a 5-point score ranging from
-0.5 (worst) to 4.5 (best). With respect to a original raw
voice frame, the voice quality scores of different voice frames
are evaluated using PESQ-MOS reference software tool. The
evaluated voice quality scores of (a) raw voice frame, (b)
decoded AMR-WB voice frame, and (c) decoded bits of AMR-

WB voice frame that corresponds to basic quality are 4.5 (Ideal
Quality), 3.818 (Optimal), and 2.86, respectively. The optimal
quality score (3.818) corresponds to the decoding of AMR-
WB (lossy encoded) voice frame assuming no losses in the
network. We implemented RVMR in the NS-2 version 2.1b8.
The simulation parameters are shown in Table I. The source
sends data throughout the simulation period and 25 of the
total nodes are randomly chosen to be receivers. Each of these
receivers joins at a random time instant, chosen uniformly
from (4, 450) seconds. The receivers do not leave the multicast
session. All the results presented in this paper were averaged
over 30 simulation runs and all the results conform to 95%
confidence levels. Each node moves with some constant speed
(i.e., min speed is equal to max speed) with zero pause
time. The playback deadline is 200 ms, if a packet is not
received within its playback deadline it is considered lost.
We use AMR-WB (Adaptive Multi-Rate Wide Band) speech
codec with 12.65 Kbps bit rate with a sample size of 253 bits.
For each AMR-WB voice frame, we generate two descriptions
MDC-1 and MDC-2 of sizes 136 and 134 bits, respectively
following the procedure given in [6]. In RVMR, the values
of AckWaitTime, MaxAckTime are set to 3.3 s and 66 ms,
respectively. That means, the receiver will send ACK packet
for every 50 pkts (i.e., 1 sec). The JoinTimer and RepairTimer
values were set to 500 ms to avoid premature timeouts. The
packet trace of the above scenario for both RDVMR and
RVMR protocols is shown in Fig. 6. It contains three sections
corresponding to RDVMR original, RVMR with Timers fixed,
and RVMR with both Ack and Timers fixed. X-axis represents
the time duration and Y-axis indicates the traffic at receiver
nodes. Node 1 is the sender for the group. The trace shows
only the first 6 seconds of the network activity; the trends
shown in the figure continue for the remaining duration. We
can observe that when both Timers and Ack are fixed, the
overhead in the network is at minimum.

B. Simulation Results

1) Effect of High Packet Rate: We fix the periodicity of
flooding SrcJoinAdvt to be 30 seconds in all protocols for

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1640

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 20 30 40 50 60 70 80 90

P
D

R
 (%

)

Data rate (in packets/sec)

1200m X 800m, 75 nodes, 25 receivers, 50 pkts/s

RVMR
RDVMR

ADMR

Fig. 7. PDR vs. Data rate.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 20 30 40 50 60 70 80 90

N
P

O

Data rate (in packets/sec)

1200m X 800m, 75 nodes, 25 receivers, 50 pkts/s

RVMR
RDVMR

ADMR

Fig. 8. NPO vs. Data rate.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16 18

W
B

 P
E

S
Q

-M
O

S

Mobility (m/s)

1,200 m X 800 m, 75 nodes, 25 receivers, 100 pkts/s

TwoTree-2DC
SingleTree-2DC

Optimal
Basic

Fig. 9. WB PESQ-MOS vs. mobility.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 2 4 6 8 10 12 14 16 18

N
P

O

Mobility (in m/s)

1200m X 800m, 75 nodes, 25 receivers, 100 pkts/s

TwoTree-2DC
SingleTree-2DC

Fig. 10. NPO vs. Mobility.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 2 4 6 8 10 12 14 16 18

N
P

O

Mobility (in m/s)

1200m X 800m, 75 nodes, 25 receivers, 100 pkts/s

RDVMR
RVMR

Fig. 11. NPO vs. Mobility.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 3 6 9 12 15 18

P
E

S
Q

 M
O

S
 S

co
re

Mobility (in m/s)

1200m X 800m, 75 nodes, 25 receivers, 100 pkts/s

RVMR
Optimal

Basic
RDVMR

Fig. 12. WB PESQ-MOS vs. Mobility.

uniformity sake with a static scenario. Both RVMR and RD-
VMR protocols use single tree for transmitting voice packets.
It can be seen from Fig. 7 that the PDR of both ADMR and
RDVMR protocols decreases rapidly as the data rate increases
beyond 30 pkts/s. Since RVMR controls premature timeouts
and ACK implosion as mentioned earlier, it can cope up with
high packet rate up to 60 pkts/s well. Since RVMR employs
several key mechanisms, it reduces the overall network traffic
causing minimal NPO as observed in Fig. 8.

2) One Tree vs. Two Tree MDC Voice Multicasting: In our
subsequent experiments, we study the advantages and disad-
vantages of using multiple trees for MDC voice multicasting.
In this experiment we compare two schemes carrying two
MDC descriptions: SingleTree-2DC and MultiTree-2DC. The
SingleTree-2DC scheme carries both MDC descriptions on a
single tree with a total rate of 100 pkts/s. The MultiTree-
2DC scheme uses two trees, each description is sent over a
different tree with a per tree rate of 50 pkts/s. Thus in both
cases, the total rate is equal to 100 pkts/s. It can be seen from
Fig. 9 that the PESQ-MOS is significantly high in scheme
MultiTree-2DC compared to scheme SingleTree-2DC though
the NPO is slightly higher as observer in Fig. 10. Hence,
sending each of the two descriptions on different independent
trees is advantageous in AWNs.

3) Comparison of RVMR with RDVMR: We next compare
RVMR’s performance with that of RDVMR. Both RDVMR
and RVMR send two MDC descriptions on two trees (i.e.,
one description per tree). Each description has a data rate of
50 pkts/s. The RDVMR uses a naive two-tree construction,
hence it has a very high overhead at high packet rates which
can be seen in Fig. 11. The measured WB PESQ-MOS at
the destination for varying mobility is shown in Fig. 12.
As observed in the figure, the RVMR protocol outperforms
RDVMR due to its minimal overhead at high packet rates.

IV. CONCLUSION AND FUTURE WORK

In this paper we proposed an effective low overhead, two-
tree based voice multicast routing protocol that exploits path
diversity along with the error resilience properties of MDC
to achieve an improved performance over single and two-tree
protocols. Simulation results showed that RVMR outperformed
RDVMR in terms of PESQ-MOS, PDR, and NPO. For our
future work, we would like to explore novel ways of improving
both PDR and voice quality by sending forward error protected
data along with MDC descriptions.

REFERENCES

[1] N. Jayant and S. W. Christensen, “Effects of Packet Losses in
Waveform Coded Speech and Improvements Due to an Odd-Even
Sample-Interpolation Procedure”, IEEE Transactions on Communica-
tions, vol. 29, no. 2, pp. 101–109, February 1981.

[2] ITU-T Recommendation, G.114: “One Way Transmission Time”,
February 1996.

[3] W. Wei and A. Zakhor, “Multipath Unicast and Multicast Video Com-
munication over Wireless Ad hoc Networks”, in Proc. of BROADNETS
2004, pp. 496–505, October 2004.

[4] Shiwen Mao, Xiaolin Cheng, Y. Thomas Hou, and Hanif D. Sherali,
“Multiple Description Video Multicast in Wireless Ad hoc Networks”,
in Proc. of BROADNETS 2004, pp. 671–680, October 2004.

[5] C. Siva Ram Murthy and B. S. Manoj, Ad Hoc Wireless Networks:
Architectures and Protocols, Prentice Hall, New Jersey, USA, 2004.

[6] G. Venkat Raju, T. Bheemarjuna Reddy, Shyamnath Gollakota, and
C. Siva Ram Murthy, “On Supporting Real-time Speech over Ad hoc
Wireless Networks”, in Proc. of IEEE ICON, pp. 421–426, September
2006.

[7] D. Agrawal, T. Bheemarjuna Reddy, and C. Siva Ram Murthy, “Robust
Demand-Driven Video Multicast over Ad hoc Wireless Networks”, in
Proc. of IEEE BROADNETS, October 2006.

[8] J. G. Jetcheva and D. B. Johnson, “Adaptive Demand-driven Multicast
Routing in Multi-hop Wireless Ad hoc Networks”, in Proc. of ACM
MobiHoc, pp. 33–44, October 2001.

[9] Yogen K. Dalal and Robert M. Metcalfe, “Reverse Path Forwarding of
Broadcast Packets”, ACM Communications, vol. 21, no. 12, pp. 1040–
1048, December 1978.

[10] NS-2: Network Simulator, http://www.isi.edu/nsnam/ns/
[11] Proposed Modification to P.862 to Allow PESQ to be Used for Quality

Assessment of Wideband Speech, ITU-T SG12 Delayed Contribution
COM-D007-E, Feb 2001.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1641

