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Abstract— Wireless network characterization is an important
task in next generation wireless networks. In order to achieve
efficient wireless network characterization, accurate sampling
strategies are required. The relative performance of different
sampling strategies for assessing various wireless network traffic
metrics is significant due to the complexity and expense involved
in the collection, storage, and analysis of all the traffic generated
in the wireless medium. Since the spectrum used for most wireless
networks, especially those based on IEEE 802.11 standards, is
divided into several channels, the existing count-based sampling
methods demand continuous capture on each channel for select-
ing the desired packets of interest. Continuous capturing makes
the cost of monitoring infrastructure very expensive and hence
count-based sampling methods are not scalable. However, the
time-based sampling methods which were considered inaccurate
in wired network characterization, appear to offer a cost-effective
and scalable solution by reducing the cost of resources necessary
to accurately characterize the wireless medium. For example, the
use of time-based sampling enable us to make use of a single
wireless interface for accurately sampling multiple channels.
However, in order to achieve this, we need to identify the right
set of parameters for time-based sampling. This paper presents a
study of the performance of various time-based sampling methods
in answering questions related to their use in wireless network
traffic characterization. We simulate time-based sampling traces
at a variety of granularities using a complete packet trace
(i.e., parent population) captured in a campus wireless network
environment that aggregates traffic from a large number of nodes.
From our analysis using Chi-Square test, we found that the
Timer-driven Time-based sampling is more accurate than Count-
driven Time-based sampling for both systematic and stratified
sampling schemes.

I. INTRODUCTION

Wireless network characterization, especially in an IEEE
802.11 network, is useful for many applications such as
network traffic characterization, capacity planning, network
management, optimizing deployment of Access Points (APs),
detecting network anomalies, and cognitive networking. Cog-
nitive networks [1], [2] gather, compact, analyze, and repos-
itorize large amounts of spatio-temporally tagged wireless
network data as well as users network experience information
in order to better optimize the network resource management.
With the advent of high-speed 802.11 a/g/n technologies,
the cost of collection, storage, and analysis of all the traffic
generated in the air across various channels becomes too
expensive. As a scalable means to monitor wireless network
traffic, packet sampling has attracted much attention from both
industrial and research communities. Sampling is a form of
passive traffic measurement. In sampling, not all packets are

measured, but only a selected fraction based on the sam-
pling method employed and the sampling parameters chosen.
Hence sampling methods reduce the measurement data. The
data reduction not only reduces the bandwidth consumed in
transmitting the measurement data to the collection point, but
also decreases the cost incurred for analysis and storage of the
data. The deployment of sampling methods aims at estimating
some specific characteristics of the parent population (i.e., the
complete network traffic) at a lower cost than a complete
census would demand. Sampling trades off the opposing goals
of controlling estimation accuracy and measurement costs.
Both the IETF (Internet Engineering Task Force) working
groups, IPFIX (IP Flow Information Export) and PSAMP
(Packet Sampling), have recommended the use of packet
sampling. Count-based systematic sampling method such as
“1 out of N packets” is a popular sampling design employed
in Cisco and Juniper routers.

Sampling methods can be characterized by the sampling
algorithm (which describes the basic process for selection of
packets from each sampling interval) and the trigger type
used for starting the packet capture. Based on the sampling
algorithm, there are three main classes of sampling methods:
systematic sampling, stratified random sampling, and simple
random sampling [3]. For each class, one can use either packet
counts or timers to trigger the selection of packets for inclusion
in a sample. In systematic sampling packets for inclusion in
a sample are selected deterministically from each sampling
interval. Stratified random sampling involves selecting packets
randomly from each sampling interval, whereas in the case of
simple random sampling packets are selected randomly from
the parent population. Based on trigger type used for starting
the packet capture, sampling methods can be broadly classified
into count-based and time-based sampling.

In count-based sampling, packet count triggers the start of
a sampling interval. Length of a sampling interval is called
sampling period or cycle. Here sampling period is defined by
the number of packets. Sampling duration or length is defined
as the number of packets selected for inclusion in the sample
from each sampling interval. An example of systematic count-
based sampling is to select every nth packet in the packet
stream. An example of stratified count-based sampling is to
randomly select a packet in every n packets. For both examples
sampling period or cycle is n packets and sampling duration
or length is one packet.

In time-based sampling, timer triggers the start of a sam-
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TABLE I

TIME-BASED SAMPLING SCHEMES

Sampling Method Sampling Algorithm Trigger Type
SCT Systematic Count-driven Time-based
STT Systematic Timer-driven Time-based

SRCT Stratified Random Count-driven Time-based
SRTT Stratified Random Timer-driven Time-based

pling interval or sampling period. Hence sampling period is
defined by a timer. But sampling duration can either be timer-
driven or count-driven. Hence time-based sampling can be
further classified into Timer-driven time-based sampling and
Count-driven time-based sampling. An example of systematic
timer-driven time-based sampling is to capture all packets ar-
riving in first 1 sec of every 11 sec. An example of systematic
count-driven time-based sampling is to sample a packet every
11 sec. For both examples sampling period or cycle is 11 sec,
but sampling durations or lengths are 1 sec and one packet,
respectively. Various time-based sampling schemes are given
in Table I.

A. Challenges in Wireless Network Characterization

There exist several challenges offered by the wireless net-
work environment. Some of which are discussed here.
Multiple Channels: The traffic in wireless environment,
especially in the ISM band, is spread across a number of
channels where a single monitoring network interface can
typically access only one channel at a time. In order to
characterize the traffic across all the channels, the monitor
node either has to have one interface tuned to operate in each
channel or employ a multi-channel sampling strategy in which
a single monitoring interface need to be switched across the
channels. In the first case, the monitor node is likely to be very
complex or infeasible due to the presence of a large number
of channels in the network. For example, the 802.11 b/g
and 802.11 a-based wireless networks have about 11 and 13
channels, respectively. Hence a multi-interface monitor node
needs to use 24 interfaces to collect the complete traffic from
all channels. Moreover, transmission, storage, and analysis of
captured packets from a large number of simultaneous chan-
nels may be problematic, with each capture node capable of
capturing almost 600 Mbps of traffic (assuming 11 channels at
maximum 802.11 link-layer rates: 54 Mbps). Therefore, such
a multi-interface complete capture can be very expensive and
not scalable for characterizing large scale wireless networks;
therefore, scalable multi-channel traffic sampling strategies
assume an important role in wireless networks.
Traffic characteristics of wireless environment: Unlike wired
networks, the wireless environment has a number of unique
characteristics that would affect the accuracy of the traffic
sampling strategy. Some of these characteristics include: (i)
presence of aggregate traffic, (ii) location dependent con-
tention, (iii) presence of broken or corrupt packets, and (iv)
multi-rate data transmissions. The presence of aggregate traffic
in the local wireless environment makes the traffic modeling
and prediction a very challenging task. This is because the

traffic characteristics do not follow well known statistical
distributions such as poison or exponential. The wireless traffic
behavior is highly location dependent and therefore, the traffic
characterized for a given spatio-temporal coordinates may
not be suitable even for a slight change in the coordinates.
The presence of broken or corrupt packets can contribute
to the consumption of channel resources exactly similar to
a successful packet, however, such packets cannot be easily
received by commercial wireless network interface cards and
hence they may not be included in the traffic trace. Thus
the inability of the monitor node to take into account such
packets can lead to erroneous characterization. Above all,
unlike in wired networks, the wireless environment offers
multiple transmission rates. For example, the IEEE 802.11b
can operate in several transmission rates such as 1 Mbps,
2 Mbps, 5.5 Mbps, and 11 Mbps. Therefore the channel
resources consumed by a 1Mbps packet is several times more
than the channel resources consumed by the same length
packet transmitted at 11 Mbps. Unlike the wired network
traffic characterization, the wireless traffic characterization can
be affected by unknown interference sources as well. For
example, the presence of Bluetooth traffic or microwave traffic
can potentially affect the 802.11 b/g network traffic thereby
making an erroneous traffic characterization.

Not all the above mentioned problems can be solved by
traffic characterization using general purpose wireless network
interfaces. In this paper we study the accuracy of multi-
channel wireless sampling schemes, which come under the
Time-based sampling. Time-based sampling methods are not
studied thoroughly in the literature. Most of the conclusions
derived on accuracy of these methods are based on count-
driven time-based sampling with some fixed sampling period
and sampling duration of one packet. In this paper we would
like to study the accuracy of various Time-based sampling
schemes by varying sampling periods and sampling durations
for traffic characterization in wireless networks.

On the data network traffic characterization, Claffy et al. in
[5] presented a detailed study of the performance of various
data traffic sampling methods for wide area network traffic.
They answered a number of questions on wide area network
traffic characterization including the sampling accuracy of time
and count-based methods for both random and systematic
periods of sampling. However they only studied count-driven
time-based sampling. Their result mainly pointed to the inap-
propriateness of using the count-driven time-based techniques
because they do not perform as well as the count-based ones.
This is due to traffic patterns, i.e., it is well established
that Internet traffic is bursty over a range of time scales.
Consequently there can be inhomogeneous bursts of many
packets with small inter-arrival times. Time-based sampling
methods more easily miss these than a count-based method,
and estimators built on them have higher variance. However,
as mentioned above, implementing a count-based sampling
method is very expensive in a multi-channel wireless network
environment. Since timer-driven time-based sampling is not
studied in the literature, in this paper we would like to study
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the accuracy of time-based sampling schemes for wireless
network traffic characterization.

Desphande et al. [6] proposed two methods for channel-
based sampling in IEEE 802.11 b/g networks. The first method
is a timer-driven time-based sampling with a fixed sampling
duration (1 sec) and fixed sampling period (11 secs). Their
second method adaptively varied the sampling duration as a
function of the packet arrivals seen on each channel. However,
the important information required, the relation between the
sampling duration and the sampling period, is not studied
in their paper. From our experiments, we found that not all
combination of sampling periods and sampling durations can
be used for accurate timer-driven time-based multi-channel
sampling.

II. SAMPLING METHODS AND TRAFFIC METRICS

We can characterize a sampling method with the following
four parameters: sampling algorithm, trigger type, sampling
period, and sampling duration. The values of these parameters
should be chosen based on the accuracy requirements and
the sampling overhead, as well as the characteristics of the
parent population and the traffic metrics being measured. In
this work, we take three traffic metrics and compare the
sampling methods based on how correctly the information can
be extracted from the sampled traces. Metrics of interest are:
packet size distribution, packet inter-arrival time distribution,
and packet data rate distribution. We implemented four time-
based sampling methods (refer Table I) at different granular-
ities by varying sampling duration and sampling period. Our
goal is to study the effect of certain sampling parameters on
the integrity of the resulting samples.

A. Evaluation of Discrepancy

To determine and quantify the performances of various
sampling methods, we need discrepancy measurements to
gauge how close the distributions given by the sampling
methods are, compared to the actual distributions of the parent
populations. Pearson’s chi-square test statistic is a measure of
the discrepancy between the observed and expected counts
within a set of bins which span the range of data. It is defined
as:

X2 =
N∑

i=1

(Oi − Ei)2

Ei
(1)

where N is the number of bins, Oi is the number of obser-
vations found in the ith bin of the sampled data, and Ei is
the number of observations expected in the ith bin based on
the parent population model. The sampling distribution of X2

is approximately the chi-square distribution where the number
of degrees of freedom equals the number of bins minus one.
This approximately improves as the number of counts in each
bin increases, and is generally adequate if each bin has at
least five expected counts. This statistic is the basis for the
chi-square test, which uses the chi-square distribution to test
hypotheses at specified significance level about the goodness
of fit between the parent population model and the sampled

data. Given a sampled data generated from one of the sampling
methods, we test the null hypothesis that the distribution of
sampled data agrees with or “fits” the distribution of parent
population. For this we need to find the values of test statistic,
X2, and the critical value, CV . The CV separates the critical
region (the set of values of the test statistic that cause us to
reject the null hypothesis) from the values of the test statistic
that do not lead to rejection of the null hypothesis. It is
defined as CV = Chi2Inv(1 − α, df), where Chi2Inv is
the inverse chi-square cumulative distribution function, α is
the significance level (the probability that the test statistic will
fall in the critical region when the null hypothesis is actually
true), and df = N − 1 is the degrees of freedom. To test
the null hypothesis the upper tail of chi-square distribution is
used as the critical region. If X2 ≥ CV , we reject the null
hypothesis (i.e., the distribution of sampled data does not fit
the distribution of parent population). Otherwise we fail to
reject the null hypothesis.

III. EXPERIMENTS AND RESULTS

A. Monitoring Infrastructure

All of our wireless traffic monitoring activity take place
within UCSD division of CALIT2, a large six-story building.
Avaya APs provide production wireless service, configured for
802.11 b/g service. Further there exists some experimental
mesh networks on the sixth floor. Between and among pro-
duction APs located on 4th and 6th floors, we have deployed
12 CalNodes (6 on each floor). Each CalNode consists of a
Soekris Engineering net4521 system board with two 100 Mbps
Ethernet interfaces and one Ubiquity 802.11 a/b/g cardbus
wireless interface based on Atheros AR5213 chipset with
external antenna connectors. Each CalNode runs a version of
Voyage Linux with kernel 2.6.x and uses the open source
MadWiFi driver for driving the Atheros-based wireless in-
terfaces. In order to report additional information about the
packet currently being captured, the MadWiFi driver generates
the prism monitoring header of size 144 bytes and adds it
to the packet. The prism monitoring header contains received
signal strength indicator (RSSI), capture device, channel, data
rate, and other signal/noise quality information. Each CalNode
is connected to the campus intranet via one of the Ethernet
interfaces.

Using the capture-to-file functionality of the open source
tcpdump packet sniffer, the CalNodes create capture files and
remit these to a central repository Dell PowerEdge 1900 server
(two Dual Core Intel Xeon processors operating at 2 GHz with
4 GB RAM and 4.2 TB of storage) via FTP. To further reduce
the storage cost, we configured tcpdump to capture only the
first 250 bytes of each sampled packet. This is a reasonable
solution, since TCP header and other protocol headers are
located at or near the start of the packet. At the repository, a
modified version of tcpdump is employed to read the capture
file to extract prism monitoring header fields and header field
values from the MAC through transport layers of the TCP/IP
protocol stack. These values are stored in a MySQL database
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TABLE II

SUMMARY STATISTICS FOR DISTRIBUTION OF PACKET SIZES, DATA RATES, AND INTER-ARRIVAL TIMES FOR THE COMPLETE PACKET TRACE.

Distribution Min 25% Median 75% Mean Max StdDev Skew Kurtosis
Packet sizes (Bytes) 154 214 222 222 220.62 1676 71.66 12.36 205.58
Data Rates (Mbps) 1 2 2 2 2.19 54 2.29 14.38 255.58

Inter-arrival Times (Microsec) 57 1000 1000 16000 13089 626000 22919 2.90 31.62

from which they can be queried using MATLAB for analysis
purposes.

To simply our sample collection process, we configured
a CalNode to do continuous packet capture on one partic-
ular channel for 24 hours. This trace is collected on the
27 September 2007 on channel 11 alone. It has 6,544,722
packets in it and the corresponding MYSQL table is of size
1.28 GiB. We treat this trace as our parent population data
set and generate different sample traces by varying sampling
duration and sampling period for various Time-based sampling
methods. Table II quantifies the parameters of packet arrival
rate, mean packet data rate, and mean packet size distributions
for the population packet trace.

B. Results

We conduct chi-square goodness of fit test for the various
samples generated by SCT, SRCT, STT, and SRTT sampling
schemes by varying sampling parameters like Sampling Dura-
tion (SD) and Sampling Period (SP). In this study our target
distributions are inter-arrival times, packet sizes, and data
rates. For each of the sampling schemes, we generate samples
at different level of granularity. For each of these sampled
data sets, we test the null hypothesis that the distribution of
sampled data agrees with or “fits” the distribution of parent
population.

1) Bin selection and Significance level: Calculation of
chi-square test statistic and the corresponding critical value
requires the selection of bins, or ranges, in which to group the
data sets and the significance level, α, for rejecting the null
hypothesis. But chi-square test is very sensitive to N and α.
According to [8], for large sampled data sets, the number of
bins (N ) should be in the range: 1.88M2/5 < N < 3.76M2/5,
where M is size of the sampled data set. So in our study, we
set N = 2M2/5 and then divided the range of data values
into equal size bins. The significance level of 0.05 is used for
rejecting the null hypothesis in our goodness of fit tests.

2) Distribution of Inter-arrival Times: Figures 1 and 2
show chi-square test scores for various samples obtained
from SCT, SRCT, STT, and SRTT sampling schemes. In this
experiment we kept SP constant at 11 seconds and varied SD to
obtain various samples. For SCT and SRCT sampling schemes
SD is defined as the number of packets to capture for inclusion
in the sample during SP. But for STT and SRTT schemes SD
is a timer; all packets that arrive before expiry of the timer are
included in the sample. Figures also show critical values used
for rejecting the null hypothesis. Figure 1 shows that count-
driven time-based sampling methods (SCT and SRCT) fail
the test for all different values of sampling duration (i.e., null
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Fig. 1. Goodness of fit test scores of SCT and SRCT schemes as a function
of sampling duration for packet inter-arrival time distribution (sampling
period=11s).
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Fig. 2. Goodness of fit test scores of STT and SRTT schemes as a function
of sampling duration for packet inter-arrival time distribution (sampling
period=11s).

hypothesis of distribution of sampled inter-arrival times fits the
distribution of population of inter-arrival times is rejected).

Figure 2 shows the scores of samples obtained from timer-
driven time-based schemes, STT and SRTT. The samples
are collected at exponentially increasing sampling durations.
Unlike count-driven time-based schemes seen above, STT
and SRTT schemes pass the test for almost all sampling
durations ranging from 10 ms to 10240 ms. As shown in
the figure, two samples of SRTT scheme fail the test for
smaller sampling durations. We also plotted the empirical
Cumulative Distribution Function (CDF) of inter-arrival times
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Fig. 4. Zoom-in of Figure 3.

for the full packet trace and various samples obtained from
count-driven time-based and timer-driven time-based schemes
(refer Figures 3 and 4). Since SRCT and SCT samples fail
the test (refer Figure 1), CDF of these samples are not close
to the CDF of full packet trace (refer enlarged Figure 4).
Hence timer-driven time-based sampling schemes are more
accurate than count-driven time-based sampling schemes for
varying sampling granularities for the distribution of packet
inter-arrival times. Between systematic and stratified random,
systematic sampling schemes slightly perform better.

3) Distribution of Packet Sizes: Figures 5 and 6 show chi-
square test scores for various samples obtained from SCT,
SRCT, STT, and SRTT sampling schemes. In this experiment
also we kept SP constant at 11 seconds and varied SD to
obtain various samples. Figure 5 shows that count-driven time-
based sampling methods (SCT and SRCT) fail the test for all
different values of sampling duration. Like for the distribution
of inter-arrival times, all samples generated using SCT and
SRCT sampling schemes completely fail in representing the
characteristics of packet size distribution. Hence as reported in
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Fig. 5. Goodness of fit test scores of SCT and SRCT schemes as a function
of sampling duration for packet size distribution (sampling period=11s).
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Fig. 6. Goodness of fit test scores of STT and SRTT schemes as a function
of sampling duration for packet size distribution (sampling period=11s).

[5] count-driven time-based sampling schemes are uniformly
less accurate for characterizing network traffic. No given
sampling parameters fit for all distributions, the sampling
duration and sampling period should be chosen cautiously
based on the distribution of interest. Figure 6 shows that timer-
driven time-based sampling methods (STT and SRTT) pass the
test for some sampling durations and hence timer-driven time-
based sampling is good for representing the characteristics
of packet size distribution. Interestingly samples of timer-
driven time-based sampling scheme pass the test for both
extremely small values of sampling durations (10ms and 20ms,
refer Figure 7) and extremely large sample sizes (sampling
durations greater than seven seconds). Between systematic and
stratified random, systematic schemes slightly perform better.
Figures 8 and 9 show the CDF of packet sizes for the full
packet trace and various samples obtained from count-driven
time-based and timer-driven time-based schemes. We also
studied the effect of sampling schemes on the distribution of
packet data rates. There also count-driven time-based sampling
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schemes completely fail in representing the characteristics of
data rate distribution. We also conducted similar experiments
by varying channel number for several working days in our

UCSD campus. Results are very similar to what we presented
in this paper. Due to lack of space, we are not including those
results in this paper.

IV. CONCLUSIONS

Wireless network traffic characterization is the main ap-
proach using which we can estimate the network performance
experience. The presence of multiple channels, multiple data
rates, and location dependent contention are some of the issues
that affect the feasibility of wireless network traffic character-
ization strategies. In this paper we studied the performance of
various time-based sampling methods in answering questions
related to their use in wireless network traffic characterization.
From our analysis using Chi-Square goodness of fit test, we
found that the Timer-driven Time-based sampling is more
accurate than Count-driven Time-based sampling for both sys-
tematic and stratified sampling schemes. Between systematic
and stratified random, systematic sampling schemes slightly
perform better. Like for the distribution of inter-arrival times,
count-driven time-based sampling schemes completely fail in
representing the characteristics of packet size and data rate
distributions. No given sampling parameters fit for all distri-
butions, the sampling duration and sampling period should be
chosen cautiously based on the distribution of interest. Finding
the characteristics relation between the CDF of the data and
its relation to the Chi-square test score is an interesting future
work that can throw light on the characteristic features of data
that can be used for sampling decisions.
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