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Abstract—In this paper, we present an application of proba-
bilistic graphical models such as Bayesian Networks (BNs) for
capturing the spatio-temporal factors in cognitive networks. We
propose to use a BN that makes use of historical network infor-
mation to learn the network behavior across spatio-temporal-
spectral dimensions and predicts best configuration for each
Access Point (AP) in a Wireless LAN (WLAN) system. We
further present the application of BNs for traffic prediction as
well as channel selection in a cognitive WLAN scenario. Our
results prove that the space and time are critical factors that
can impact the performance of the network configuration. We
noticed improvement in traffic prediction accuracy and channel
selection accuracy, respectively, of 35% and 40%, when using
space and time information.

I. INTRODUCTION

In a Wireless LAN (WLAN), Access points (APs) are
specially configured wireless devices that are connected to a
wired network and act as central transmitters and receivers
of radio signals. Due to the dynamic and shared nature of
wireless medium, parameters controlling access to the wire-
less medium on each AP must be monitored frequently and
modified in a coordinated fashion which is a laborious task if
done manually. To maximize WLAN performance, autonomic
network control which involves automation of the network
reconfiguration process is highly essential. The concept of
cognitive network was described in [1] as a network that can
observe the current network conditions and plan, decide, and
act for future network conditions while maintaining the end-
to-end objectives. The key contribution of this paper is the use
of a probabilistic graphical model, Bayesian Network (BN), to
learn network behavior across spatio-temporal-spectral dimen-
sions and predict best configuration for each AP in a WLAN
system.

II. RELATED WORK

Cognitive networking, a relatively new paradigm, follows
the evolution of the cognitive radio systems. Examples of end-
to-end and system-wide cognitive networking approaches can
be found in [1]. To the best of our knowledge, there exist only
limited works that exploit graphical models in the context of
networking systems [2], [3]. In [2], a BN is used to diagnose
TCP connection failures in Overlay networks. In [3], the
authors looked at the problem of finding most suitable radio
access technology for network reconfiguration in infrastructure
based heterogeneous wireless networks at a very abstract level
by considering only a few parameters.

Compared to the existing work, we focus on designing
cognitive controller system for WLANs which can achieve
an optimal network configuration based on the probabilistic
dependency relationship derived using a variety of network and
environmental parameters such as traffic parameters, channel
errors, space, time, and spectrum. To accomplish our objective,
we take the help of BN models which is briefly reviewed next.

A. Overview of Bayesian Networks

A BN, widely used for statistical inference and machine
learning [4], is a representation of statistical relationships
between random variables through a Directed Acyclic Graph
(DAG). A node of this graph represents a random variable and
the presence of an edge between two nodes represents a direct
probabilistic relation between them. The BN lends itself with
several advantages like encoding dependencies among network
parameters, learning causal relations among parameters and
hence serves as an ideal representation for combining prior
knowledge with historical dataset representing the network
behavior. The main stages in developing and using a BN model
are as follows.

1) Structure Learning: The goal of structure learning is to
learn a DAG that best explains a given dataset using heuristic
approaches like constraint-based and search-and-score tech-
niques. Constraint-based algorithms (e.g., PC algorithm) usu-
ally start with a fully connected graph, and progressively
remove edges connecting the variables if certain conditional
independencies are measured in the historical data. In the
more commonly employed search-and-score approaches (e.g.,
greedy Hill Climbing (HC) [5] and K2 algorithm [6]), the
main task is a search, through the space of possible DAGs,
which is intended to return one or a set of possible sample BN
structures. A structure with maximum score is selected using
popular structure scoring metrics like Bayesian Information
Criterion (BIC) which incorporate a penalty for complexity to
guard against over-fitting of data.

2) Parameter Learning: This involves learning parameters
of conditional probability distributions once the structure is
known. It is carried out using existing algorithms such as
maximum likelihood estimation (MLE) or the principle of
maximum entropy.

3) Inference: Since BNs represent joint probability distri-
butions of the parameters of interest, we could use them to
compute other related probabilities through inference methods
which mainly include belief updating and belief revision (or
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Fig. 1. Cognitive Network Architecture.
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Fig. 2. BN model created by taking (a) 28 weeks of real network data from several CogNet
APs (b) 2 weeks of historical data from an autonomous CogNet AP (c) 6 hours of data from a
field-deployed CogNet AP during the Operation Golden Eagle emergency response drill.

abductive inference). In belief updating, some of the nodes
in the graph are clamped to evidence values, and we wish
to compute posterior distributions of one or more subsets
of other nodes. Abductive inference has two variants: Most
Probable Explanation (MPE) which finds the most probable
configuration of all nodes given evidence nodes and Maximum
A posteriori (MAP) which finds the most probable configura-
tion of a subset of nodes (typically the controllable network
parameters) given evidence nodes.

III. OUR WORK

A. Cognitive Network Architecture

The cognitive network architecture for enterprise/campus
WLAN system is shown in Figure 1. A collection of Cognitive
APs (CogNet APs) forms the basis of our system. To gather
the traffic information from multiple channels, an additional
network interface dedicated for traffic sensing is used. Each
CogNet AP is connected to the central cognitive controller
through a wired link and remits all the traffic related mea-
surement samples to the central cognitive database repository.
Through this historical information, the central controller real-
izes cognitive functionality by constructing Bayesian structure
that represents probabilistic relationships among network pa-
rameters and infers optimal values for controllable parameters
such as operating channel based on current network conditions
with the help of Decision/Inference Engine Module. It is worth
to highlight that central cognitive controller can offload the
decision making tasks to individual CogNet APs for achieving
autonomous functionality at APs.

B. Bayesian Modeling of WLAN System

An example BN structure that we derived from real net-
work parameters collected over a period of 28 weeks in
our academic campus using several CogNet APs is shown
in Figure 2(a). In this example, we have considered seven
parameters: network parameters like Channel (CH), Packet
arrival Rate (PR), Error Rate (ER, number of CRC/PHY
errors reported by the wireless card), Traffic Load (TL, in bps)
and Total Traffic Intensity (TTI, takes into account the fraction
of time in which the channel is occupied due to wireless
transmissions as well as channel bandwidth consumed by
CRC/PHY error packets) and environmental parameters such
as Space (S, location of AP) and Time (T, measurement time).

The edge from CH to PR indicates that the operating Channel
influences the observed Packet Rate. This is true because in
ISM band the orthogonal channels (1, 6, and 11 for IEEE
802.11 b/g WLANs) face more traffic than other channels.
Similarly, the edge from S to PR is justified as traffic pattern
is quite different at different CogNet AP locations.

As mentioned in Section III-A, the CogNet APs can func-
tion autonomously with the centralized cognitive controller
running within the device. To demonstrate this, we consider
the BN structures shown in Figures 2(b) and 2(c) which are
learned by an autonomous CogNet AP in different environ-
ments. The former is derived using network data collected
over a period of 2 weeks at our office building whereas later
is obtained from the Operation Golden Eagle drill conducted
in San Marcos city during May 2010. Time parameters such
as Minute (MT, taken only for the short duration event in
Figure 2(c)), Hour (HR) and binary DayOfWeek (DoW, takes
value 1 for weekend and 2 for weekday) are considered along
with network parameters already defined above. Out of the
network parameters, Channel is the only directly control-
lable parameter. To simplify the structure learning process,
we applied range discretization technique and mapped each
continuous variable PR, ER, TL and TTI in the scale from 1
to 10. CH, MT, HR and DoW take a value in the range: 1
to 11, 1 to 60, 1 to 24, and 1 to 2, respectively. Using the
Bayesian Net Toolbox (BNT) for Matlab [7], we generated
Bayesian graphs for most of the popular structural learning
algorithms. The structures used for this study are obtained
using HC search-and-score technique which is initialized with
a DAG given by K2 algorithm. The scoring method used
is BIC. For parameter learning, we applied the Maximum
Likelihood Estimation (MLE) method.

Several interesting conditional dependencies are revealed
by observing Figures 2(b) and 2(c). For instance, from the
former we find that given PR, the variables HR and TL are
conditionally independent whereas in the later we observe that
the network structure is independent of time. This difference is
because the scenario in Figure 2(c) represents a short duration
event. These results show that our model is quite accurate
in capturing the dependencies between network and spatio-
temporal parameters. Using such relations, we develop our
framework for predicting the traffic and selecting the optimal
channel.
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Fig. 3. For an autonomous Cognet AP: (a) Traffic prediction accuracy for different sizes of learning datasets (b) Traffic prediction accuracy for different
evidence sets (c) Channel selection accuracy for different evidence sets.

IV. PERFORMANCE RESULTS

We now illustrate the real benefits of Bayesian modeling by
employing the BN model learned from our office environment
for the following applications.

A. Traffic Prediction in WLANs

Here we show how the time for learning the structure as well
as evidence of different network parameters affect accuracy
of traffic prediction. We took TTI as our channel resource
consumption metric because it captures the traffic load due
to successful and errored packets. We studied its prediction
accuracy using MAP which can be formulated as [8]:

Tpred(M, e)
def
= arg max

m
Pr(m, e) (1)

where m is an instantiation of the subset of parameters M (for
our case m ∈ {TTI}), e is the instantiation of an evidence
set (here e ∈ {S, C, HR, DoW}, where S is constant for a
given location), Pr(m, e) is the joint probability of m and e
and Tpred is the predicted TTI value. Figure 3(a) shows mean
squared error (MSE) between predicted and real (target) traffic
values of structures learned for the period of 1, 2, and 4 weeks.
From this figure it is observed that the MSE is minimal when
we use historical data for 2 weeks. This makes our strategy
very useful in residential and enterprise environments where
the CogNet APs can quickly reach optimal configuration.
Therefore, we have chosen Figure 2(b) as our ideal structure
for this CogNet AP. Further, for the rest of the results, we use
a history of 2 weeks data.

From Figure 3(b), it can be observed that additional ev-
idence (in this case, Hour and DayOfWeek) to the initial
evidence (Channel) helps in reducing the MSE by 35% for
the parameter under study.

B. Channel Selection Accuracy

For channel selection, if we assume that the optimal channel
is the one that has minimum TTI, we can use the predicted
TTI values obtained for each Channel using Equation 1
to find the estimated best channel which can be given by
Cest(h) = arg min

m
Tpred(m, h) where Cest is the estimated

best channel and h ∈ {S, HR, DoW}. Given Cest, we can
compute accuracy of channel selection using a metric called
Channel Selection Accuracy (CSA) which is the number of

times (expressed as percentage) Cest equals the actual channel
with minimum TTI, Cact, for different evidence sets in the test
dataset. CSA can be expressed as :

CSA =

∑
i∈B

{A(i)}

|B| ×100 ; A(i) =

{
1 : if Cest(i) = Cact(i)
0 : otherwise

where B is the set of evidence sets in the test dataset and
|B| is the number of elements in B. Figure 3(c) shows that
additional evidence increases the CSA by 40% and helps in
better channel selection.

V. SUMMARY

In this work, we presented a Bayesian Network (BN) based
strategy for capturing spatio-temporal factors in a cognitive
wireless network. Further, we extend our BN-based model for
accurate channel selection as a function of space and time. The
use of additional evidences, DayofWeek and Hour, improved
the traffic prediction and channel selection accuracies by
approximately 35% and 40%, respectively.
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