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What is Quality Assessment?
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Why Quality Assessment?

Table 1: Distorted images have same mean squared error (MSE)! Lp norms fail! [12] 1

1Z Wang and A C Bovik. “Mean squared error: Love it or leave it? A new look at signal fidelity measures”. In: IEEE Signal Processing

Magazine 26.1 (2009), pp. 98–117.
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Why Quality Assessment?

Figure 1: Guarantee visual quality. Why? ≈ 6.6 billion smart-phones in 2021!2

Figure 2: Optimal resource usage. Why? More than 1 trillion photos per year in recent years!3

2http://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
3http://www.nytimes.com/2015/07/23/arts/international/photos-photos-everywhere.html
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Background

Human Perceptual Quality
Measured in terms of mean opinion score (MOS) and difference
MOS (DMOS). It forms the ground truth in all QA work.

Multimedia Quality Assessment
An objective method to estimate human perceptual quality or MOS
of test content Mtest either in the presence of pristine content Mref,
its estimate M̂ref or in a stand-alone mode

• Full-reference (FR): Qtest = f(Mref,Mtest; θ)

• Reduced-reference (RR): Qtest = g(M̂ref,Mtest; θ)

• No-reference (NR): Qtest = h(Mtest; θ)
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Performance Measures

• Linear Correlation Coefficient (LCC)
• Spearman Rank Ordered Correlation Coefficient (SROCC)
• Root Mean Squared Error (RMSE)
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Blind Video Quality Assessment

• How do we assess the perceptual quality of natural videos in the
blind (NR) setting?

• Natural videos have rich temporal information
• How do we leverage this rich temporal information?
• Straightness principle: Predictions of future samples can be
formulated as linear operations in the latent
space/representation space4

4Goroshin, Ross, Mathieu, Micḧael, and LeCun, Yann. “Learning to linearize under uncertainty.” NeurIPS 2015.

8



Perceptual Straightening in the Human Visual System

Perceptual Straightening Hypothesis [2] 5

“Many behaviors rely on predictions derived from recent visual
input, but the temporal evolution of those inputs is generally
complex and difficult to extrapolate. We propose that the visual
system transforms these inputs to follow straighter temporal
trajectories.”

Figure 3: Illustration of the perceptual straightening hypothesis

5Olivier J Hénaff, Robbe LT Goris, and Eero P Simoncelli. “Perceptual straightening of
natural videos”. In: Nature Neuroscience 22.6 (2019), p. 984.
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Two Simple Questions

1. What happens to the perceptual straightness of distorted
natural videos?

2. Is the perceptual straightness a function of video quality?
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Empirical Analysis of Q1

Figure 4: Effect of distortion on perceptual domain representation
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Empirical Analysis of Q2

Figure 5: Straightness increases with MOS
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Completely Blind Video Quality Assessment

Temporal Quality Estimation
• The input frame Xt is passed through the LGN model to find the
perceptual domain representation Ft, followed by PCA-based
dimensionality reduction to give a d-dimensional vector ft

• Estimate the feature at current time using a linear model

f̂t = β01+
K∑
i=1

βift−i,

• β0, β1, β2, . . . , βK: scalar model parameters
• 1: d-dimensional vector of ones
• ft: ground truth representation of frame at time t
• f̂t: prediction at time t
• K is a tunable parameter
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Completely Blind Video Quality Assessment

Temporal Quality Estimation
• Frame level error:

Dt = ||ft − f̂t||1

• Temporal quality estimate over an N-frame video:

Qtemporal = log
( 1
N

N∑
t=1

Dt
)
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Completely Blind Video Quality Assessment

Spatial Quality Estimation 6

• Estimate the frame level quality

qt =
t∑

i=t− N
3+1

wt−i+1 · NIQE(Xi),

where NIQE(Xi) is the NIQE score of frame Xi,

wj =
exp(−αj)∑ N
3
i=1 exp(−αi)

, 1 ≤ j ≤ N
3 .

• Spatial quality estimate over an N-frame video:

Qspatial =
1
N

N∑
i=1

qi.

6Z. Tu, C.-J. Chen, L.-H. Chen, N. Birkbeck, B. Adsumilli, and A. C.Bovik, ”A comparative evaluation of temporal pooling methods for blind
video qua- Spatial Quality” arXiv preprint arXiv:2002.10651, 2020
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Completely Blind Video Quality Assessment

STraightness Evaluation Metric (STEM)

Figure 6: Block diagram of the proposed BVQA algorithm STEM.

STEM =
Qtemporal + Qspatial

2
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User Generated Video Quality Assessment Datasets

• KoNViD-1K dataset [3]: 1200 videos, > 960× 540, 8 sec, 24/25/30
fps, various attributes (blur, contrast, colourfulness, etc.), CC
attributed source videos, Crowdsourced, MOS

• VQC dataset [9]: 585 videos, 404× 720, 10 sec, HD, Full HD, 43
mobile devices, Crowdsourced (AMT), MOS

• CVD dataset [7]: 234 videos, QCIF to Full HD, 10-25 sec, 10-31 fps,
78 cameras, Crowdsourced, MOS

• YouTube-UGC dataset [11]: 1380 videos, 360p to 4K, 20 sec,
Gaming, Sports, Music Video etc., Crowdsourced, MOS

• LIVE Qualcomm dataset [1]: 208 videos, Full HD, 8 cameras, 15
sec, 30 fps, Crowdsourced, MOS, artifacts, color, exposure, focus,
sharpness, stabilization
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Performance Evaluation on the KoNViD-1K Dataset [3]

Table 2: Performance evaluation results and comparison with representative supervised (italics)
and unsupervised/completely blind VQA algorithms on the KoNViD-1K dataset [3] (K = 6, d = 10)

Method LCC SROCC RMSE
V-BLIINDS [8] 0.565 0.572 0.526
TL-VQM [4] 0.79 0.80 0.406
VIIDEO [5] -0.015 0.013 0.639
NIQE [6] 0.544 0.542 0.537

NIQE Hysteresis pooling [10] 0.563 0.569 -
Qtemporal 0.444 0.450 0.574
Qspatial 0.547 0.546 0.534
STEM 0.629 0.629 0.497
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Performance on the VQC Dataset [9]

Table 3: Performance evaluation results and comparison with representative supervised (italics)
and unsupervised/completely blind VQA algorithms on the LIVE VQC dataset [9] (K = 6, d = 10).

Method LCC SROCC RMSE
V-BLIINDS [8] 0.718 0.707 11.546
VIIDEO [5] 0.137 0.029 16.882
NIQE [6] 0.610 0.563 13.890

NIQE Percentile pooling [10] 0.630 0.634 -
Qtemporal 0.454 0.466 15.148
Qspatial 0.613 0.594 13.467
STEM 0.670 0.656 12.649
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Performance Evaluation on the CVD Dataset [7]

Table 4: Performance evaluation results and comparison with representative supervised (italics)
and unsupervised/completely blind VQA algorithms on the CVD dataset [7] (K = 6, d = 10).

Method LCC SROCC RMSE
V-BLIINDS [8] 0.71 0.70 15.222
TL-VQM [4] 0.85 0.83 11.33
VIIDEO [5] - -
NIQE [6] 0.61 0.58 17.15
Qtemporal 0.361 0.355 20.507
Qspatial 0.619 0.580 16.834
STEM 0.629 0.593 16.664
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Performance Evaluation on the YouTube-UGC Dataset [11]

Table 5: Performance evaluations results and comparison with supervised (italics) and
unsupervised/completely blind VQA algorithms on the YouTube-UGC dataset [11] (K = 6, d = 10).

Method LCC SROCC RMSE
V-BLIINDS [8] 0.559 0.555 0.535
VIIDEO [5] 0.146 0.130 0.637
NIQE [6] 0.105 0.236 0.640
Qtemporal 0.272 0.321 0.636
Qspatial 0.286 0.239 0.6221
STEM 0.318 0.284 0.623
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Performance Evaluation on the LIVE Qualcomm Dataset [1]

Table 6: LCC performance results on the LIVE Qualcomm dataset [1] (K = 6, d = 10).
Representative supervised VQA algorithms are in italics.

Method artifacts color focus sharpness stabilization exposure all
V-BLIINDS [8] 0.8386 0.664 0.807 0.684 0.713 0.690 0.665
TL-VQM [4] - - - - - - 0.81
VIIDEO [5] 0.288 0.331 0.251 0.3012 0.369 0.207 0.098
Qtemporal 0.566 0.304 0.280 0.475 0.423 0.749 0.339
Qspatial 0.4638 0.4703 0.4523 0.619 0.596 0.526 0.504
STEM 0.725 0.493 0.563 0.638 0.631 0.587 0.537
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Performance Evaluation on the LIVE Qualcomm Dataset [1]

Table 7: SROCC performance results on the LIVE Qualcomm dataset [1] (K = 6, d = 10).
Representative supervised VQA algorithms are in italics.

Method artifacts color focus sharpness stabilization exposure all
V-BLIINDS [8] 0.732 0.607 0.803 0.678 0.660 0.642 0.617
TL-VQM [4] - - - - - - 0.84
VIIDEO [5] -0.178 0.142 0 -0.178 -0.107 -0.071 -0.141
Qtemporal 0.432 0.381 0.428 0.491 0.521 0.446 0.332
Qspatial 0.450 0.341 0.556 0.505 0.338 0.297 0.467
STEM 0.646 0.527 0.549 0.593 0.412 0.555 0.483
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The Contributions of Qtemporal and Qspatial to Performance

(a) LCC values for the UGC-datasets (b) SROCC values for the UGC-datasets

Figure 7: Bar graphs illustrating the ablation study involving the components Qtemporal , Qspatial and
their combination in STEM on the five UGC datasets considered in this work.
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Concluding Remarks

• Explainable approach to NRVQA - inspired by the idea of
perceptual straightening

• STEM is completely blind and it is computationally not very
expensive

• Few parameters in the computational models
• STEM delivers competitive performance on the authentic VQA
datasets
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Tuning of the Parameters K,d

• Performance of the proposed blind VQA algorithm on various UGC datasets different values of the hyperparameter K with d = 10
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Tuning of the Parameters K,d

• Performance of the proposed blind VQA algorithm on various UGC datasets different values of the hyperparameter d with K = 6
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