Further Properties

So for we have proved that $ K(H)$ is closed subspace and closed ideal of $ B(H)$.

Exercise 2   If $ F\in B(H)$ is a finite rank operator then
  1. there exists $ \phi_1, \dots \phi_n$ and $ \psi_1, \dots \psi_n$ in $ H$ such that $ Fh=\sum_{k=1}^{n}\langle h,\phi_k\rangle \psi_k$
  2. $ F^*$ also a finite rank operator.

Theorem 5.1   If $ T\in K(H)$, then $ \overline{R(T)}$ is separable.

Theorem 5.2   If $ T\in K(H)$, then there exists a sequence of finite rank operators $ F_n$ such that $ \Vert F_n-T\Vert\rightarrow 0$. In fact $ F_n=P_nT$

Theorem 5.3   Let $ T\in B(H)$. $ T$ is compact $ \Leftrightarrow$ $ T^*$ is compact

Theorem 5.4   Let $ T\in B(H)$.

$\displaystyle T\in K(H)\Leftrightarrow T^*\in K(H)\Leftrightarrow T^*T\in K(H)\Leftrightarrow TT^*$

Exercise 3   Let $ e_n$ be a ONB of a separable Hilbert space $ H$. Let $ \{\lambda_n\}_{n\in \mathbb{N}}$ be a bounded sequence. Defeine $ A: H\rightarrow H$ as

$\displaystyle Ah=\sum_{n=1}^{\infty}\lambda_n\langle h,e_n\rangle e_n$    and $\displaystyle A_Nh=\sum_{n=1}^{N}\lambda_n\langle h,e_n\rangle e_n$

Then

$\displaystyle \Vert(A-A_N)h\Vert^2\leq \sup_{n>N} \vert\lambda_n\vert^2\Vert h\Vert^2=\limsup_{n\rightarrow \infty} \vert\lambda_n\vert^2$

Definition 4 (eigenvalue, eigen vector, point spectrum $ \sigma_p(T)$)  

Theorem 5.5   If $ T\in K(H)$ and $ \lambda \in \sigma_p(T)$ and $ \lambda\neq 0$ then $ N(T-\lambda I)$ is finite dimensional.

Definition 5   $ T\in B(H)$ is said to be bounded below if there exists $ m>0$ such that $ \Vert Th\Vert\geq m \Vert h\Vert$.

Note that if $ T$ is bounded below then $ T$ is one-one. In special case if $ T-\lambda$ is bounded below then $ T-\lambda$ is one-one. Converse is not true in general but when $ T$ is compact and $ \lambda\neq 0$ then the converse holds.

Exercise 4   If $ T\in B(H)$ is bounded below then $ R(T)$ is closed. (Hint: Cauchy sequence)

Theorem 5.6   Let $ T\in K(H)$ and $ \lambda\neq 0$. If $ \inf_{\Vert h\Vert=1}\Vert Th-\lambda h\Vert=0$ then $ \lambda \in \sigma_p(T)$.

Corollary 1   Let $ T\in K(H)$ and $ 0 \neq \lambda \notin \sigma_p(T)$ then $ \inf_{\Vert h\Vert=1}\Vert Th-\lambda h\Vert>0$. That is $ T-\lambda$ is bounded below.

Corollary 2   Suppose $ T\in K(H)$ and $ 0 \neq \lambda \notin \sigma_p(T)$ and $ \overline{\lambda}\notin \sigma_p(T^*)$ , then $ T-\lambda$ is a bijection and $ (T-\lambda I)^{-1}$ is a bounded operator.

Theorem 5.7   If $ T\in K(H)$ and $ T=T^*$ then either $ \Vert T\Vert$ or $ -\Vert T\Vert$ is an eigen value of $ T$.

Theorem 5.8 (Spectral Theorem- Compact Self-Adjoint)   Let $ T\in K(H)$ and $ T=T^*$ then it has only countable number of eigen value $ \{\lambda_n\}$ and ONB $ \{\phi_n\}$ for $ \overline{R(T)}$ such that

$\displaystyle Th=\sum_{n=1}^{\infty}\lambda_n \langle h,\phi_n\rangle \phi_n= \sum_{n=1}^{\infty}\lambda_n P_nh$

  1. $ \vert\lambda_1\vert\geq \vert\lambda_2\vert\geq \dots$ If $ \{\lambda_n\}$ are countably infinite then $ \{\lambda_n\}\rightarrow 0$.
  2. $ \{\phi_n\}$ are eigen vectors corresponding to eigen value $ \{\lambda_n\}$
  3. $ N(T-\lambda_n)$ is finite dimensional for each $ n$.
  4. $ N(T-\lambda_n)\perp N(T-\lambda_m)$ when $ \lambda_n\neq \lambda_m$

Proof.
  1. $ \overline{R(T)}$ seperable.
  2. $ \Vert T\Vert$ or $ -\Vert T\Vert$ is an eigen value of $ T$
  3. The
$ \qedsymbol$

suku 2013-09-27