BANACH ALGEBRAS

1. Banach Algebras

The aim of this notes is to make familiarity with the basic concepts of Banach algebras.

Definition 1.1 (Algebra). Let \mathcal{A} be a non-empty set. Then \mathcal{A} is called an algebra if

- (1) (A, +, .) is a vector space over a field \mathbb{F}
- (2) $(A, +, \circ)$ is a ring and
- (3) $(\alpha(a))b = \alpha(ab) = a\alpha b$ for every \mathbb{F} , for every $a, b \in \mathcal{A}$

Usually we write ab instead of $a \circ b$ for the product of a and b.

Definition 1.2. An algebra A is said to be

- (1) **real** or **complex** according to the field $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.
- (2) commutative if $(A, +, \circ)$ is commutative
- (3) unital if $(A, +, \circ)$ has a unit, usually denoted by 1.
- (4) if A is unital and $a \in A$. If there exists a $b \in A$ such that

$$ab = ba = 1$$
,

then b is called an **inverse** of a.

Remark 1.3. The unit element in a Banach algebra is unique. Also if an element has an in inverse, then it is unique.

Definition 1.4 (Invertible Set). Let $G(A) := \{a \in A : a \text{ is invertible in } A\}$.

Note that $1 \in G(\mathcal{A})$ and $0 \neq G(\mathcal{A})$. The set $G(\mathcal{A})$ is a multiplicative group.

Definition 1.5. Let \mathcal{A} be an algebra and $\mathcal{B} \subseteq \mathcal{A}$. Then \mathcal{B} is said to be a subalgebra if \mathcal{B} it self is an algebra with respect to the operations of \mathcal{A} .

Definition 1.6 (normed algebra). If A is an algebra and $\|\cdot\|$ is a norm on A satisfying

$$||ab|| \le ||a|| ||b||$$
, for all $a, b \in \mathcal{A}$,

then $\|\cdot\|$ is called an algebra norm and $(A, \|\cdot\|)$ is called a **normed algebra**. A complete normed algebra is called a **Banach algebra**.

Remark 1.7. We always denote the identity of a unital Banach algebra by 1 and assume that ||1|| = 1. In a normed algebra, the multiplication is both left and right continuous with respect to the algera norm.

Date: February 12, 2013.

- **Example 1.8** (Finite dimensional). (1) Let $\mathcal{A} = \mathbb{C}$. Then with respect to the usual multiplication of complex numbers and the modulus, \mathcal{A} is a Banach algebra.
 - (2) Let $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$, the set of $n \times n$ matrices with matrix addition, matrix multiplication and with Frobenius norm defined by

$$||A||_F = \left(\sum_{i,j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

is a non-commutative unital Banach algebra.

Exercise 1.9. Show that $||A|| = \max_{1 \leq i,j \leq n} |a_{ij}|$ defines a norm on $\mathcal{M}_n(\mathbb{C})$ but it is not an algebra norm.

Example 1.10 (Continuous functions). Observe for all the examples in this list, the addition and multiplication are pointwise and hence they are all commutative.

(1) Let K be a compact Hausdorff space and $\mathcal{A} = C(K)$, the set of all complex valued continuous function defined on K. Then with respect to the point wise multiplication of functions and with the norm

$$||f||_{\infty} = \sup_{t \in K} |f(t)|,$$

is a commutative Banach algebra.

(2) Let Ω be a locally compact Hausdorff space and let

$$\mathcal{A} = C_b(\Omega) := \{ f \in \mathcal{C}(\Omega) : f \text{ is bounded} \}.$$

Then A is a commutative unital Banach algebra.

- (3) Let $\mathcal{A} = \mathcal{C}_0(\Omega) := \{ f \in \mathcal{C}(\Omega) : f \text{ vanishes at } \infty \}$ It can be verified easily that \mathcal{A} is a non unital, normed algebra which is not a Banach algebra.
- (4) Let

$$\mathcal{A} = \mathcal{C}_c(\Omega) := \{ f \in \mathcal{C}(\Omega) : f \text{ has compact support} \}$$
$$= \{ f \in \mathcal{C}(\Omega) : \forall \epsilon > 0, \ \exists \ K_{\epsilon} \ \ni |f(t)| < \epsilon, \ \forall \ t \in K_{\epsilon}^c \}.$$

Then \mathcal{A} is a commutative, non unital, normed algebra which is not a Banach algebra.

(5) Let X = [0,1]. Then $C'[0,1] \subset C[0,1]$ is an algebra and $(C'[0,1], \| \cdot \|_{\infty})$ is not complete. Now define a new norm on C'[0,1] as

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}, \ f \in C'[0,1].$$

Then $(C'[0,1], \|\cdot\|)$ is a Banach algebra.

(6) Let $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Consider

$$\mathcal{A}(\mathbb{D}) := \{ f \in C(\overline{\mathbb{D}}) : f|_{\mathbb{D}} \text{ is analytic} \}.$$

Then $\mathcal{A}(\mathbb{D})$ is a closed subalgebra of $C(\bar{\mathbb{D}})$ and hence a Banach algebra and is known as the **disc algebra**.

(7) Let $S \neq \emptyset$ and $B(S) = \{f : S \to \mathbb{C} : f \text{ is bounded}\}$. For $f, g \in \mathcal{B}(S)$, define

$$(f+g)(s) = f(s) + g(s)$$
$$(fg)(s) = f(s)g(s)$$

$$(\alpha f)(s) = \alpha f(s)$$
, for all $f, g \in B(S)$, $\alpha \in \mathbb{C}$.

Then B(S) is an algebra with unit f(s) = 1 for all $s \in S$. (Note that all the above algebras fits into this framework). With the norm

$$||f||_{\infty} = \sup\{|f(s)| : s \in S\}$$

B(S) is a commutative unital Banach Algebra.

Example 1.11 (Operator Algebras). Observe for all the examples in this list, the addition is pointwise but the multiplication is composition of maps and hence in general all are non-commutative.

(1) Let X and Y are complex Banach spaces and $\mathcal{B}(X,Y)$ is the Banach space of bounded linear maps between X and Y. For $T, S \in \mathcal{B}(X,Y)$ and $X \in X$, addition and multications are differed as

$$(T+S)(x) = Tx + Sx$$
$$(TS)(x) = T(Sx).$$

Then $\mathcal{B}(X,Y)$ is a non-commutative Banacha algebra with respect to the operator norm defined by

$$||T|| := \sup\{||Tx|| : ||x|| < 1\}.$$

When X = Y denote $\mathcal{B}(X, X)$ as $\mathcal{B}(X)$.

- (2) The set of compact operators on X denoted by $\mathcal{K}(X)$ is a closed subalgebra of $\mathcal{B}(X)$. Hence it is a Banach algebra. Note that $\mathcal{K}(X)$ is an ideal in $\mathcal{B}(X)$.
- (3) When the underlying space is a Hilber space H, the space $\mathcal{B}(H)$ and $\mathcal{K}(H)$ also non-commutative Banach algebras.

Definition 1.12. A a non-empty subset I of A is called an **ideal** if

- (i) I is a subspace i. e., if $a, b \in I$ and $\alpha \in \mathbb{F}$, then $\alpha a + b \in I$
- (ii) I is an ideal in the ring i.e., $a \in A$ and $c \in A$ implies that $ac, ca \in I$.

An ideal I is said to be **maximal** if $I \neq A$ and if J is any ideal of A such that $I \subseteq J$, then J = A.

Remark 1.13. Every ideal is a subalgebra but a subalgebra need not be an ideal.

Examples

(1) Let H be a complex Hilbert space, then $\mathcal{K}(H)$ is an ideal of $\mathcal{B}(H)$

4

(2) Let K be a compact, Hausdorff space and F be a closed subset of K. Then

$$I_F := \{ f \in C(K) : f|_F = 0 \}$$

is an ideal. In fact, these are the only ideals in C(K)...

- (3) The set of all $n \times n$ upper/lower triangular matrices is a subalgebra but not an ideal.
- (4) Let $\mathcal{A} = \mathcal{M}_n(\mathbb{C})$ and $\mathcal{D} = \{(a_{ij}) \in \mathcal{A} : a_{ij} = 0, i \neq j\}$. Then \mathcal{D} is a subalgebra but not an ideal.

Exercise 1.14. Show that I_F is maximal if and only if F is a singleton set

Definition 1.15. Let A, B be two algebras, a map $\phi : A \to B$ is said to be a homomorphism if

- (i) ϕ is linear and
- (ii) ϕ is multiplicative i.e., $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathcal{A}$

If ϕ is one-to-one, then ϕ is called an isomorphism.

Exercise 1.16. If $\phi: \mathcal{A} \to \mathcal{B}$ is an homomorphism, then $ker(\phi)$ is an ideal. Suppose \mathcal{A} is an algebra with unit 1 and $\mathcal{B} = \mathbb{C}$, $\phi: \mathcal{A} \to \mathbb{C}$ be a homomorphism. Then

- (i) $\phi(1) = 1$ and
- (ii) ϕ maps invertible elements of A into invertible elements of $\mathbb C$

2. Invertibility

Throughout we assume that \mathcal{A} is a complex unital Banach algebra. Recall that $G(\mathcal{A}) := \{a \in \mathcal{A} : \text{ a is invertible in } \mathcal{A}\}$. In this section we discuss the properties of this set. We have seen that $G(\mathcal{A})$ is a multiplicative group. We know that if $z \in \mathbb{C}$ with |z| < 1, then (1-z) is invertible and

$$(1-z)^{-1} = \sum_{n=0}^{\infty} z^n.$$

This result can be generalized to elements in a Banach algebra.

Lemma 2.1. If $a \in A$ with ||a|| < 1. Then $1 - a \in G(A)$ and

$$(1-a)^{-1} = \sum_{n=0}^{\infty} a^n.$$

Further more, $||(1-a)^{-1}|| \le \frac{1}{1-||a||}$.

Proof. Let $s_n := 1 + a + a^2 + \dots + a^n$. Then $||s_n|| \leq \sum_{j=0}^n ||a||^j$. Since ||a|| < 1, the sequence s_n is convergent. This shows that s_n is absolutely convergent. Since \mathcal{A} is a Banach algebra, the series $\sum_{n=0}^{\infty} a^n$ is convergent. Let $b = \sum_{n=0}^{\infty} a^n$.

Consider $(1-a)b = \lim_{n\to\infty} (1-a)s_n = \lim_{n\to\infty} (1-a^{n+1}) = 1$. Similarly we can show that b(1-a) = 1. Hence $a^{-1} = b$. To get the bound consider

$$||b|| = \lim_{n \to \infty} ||s_n|| \le \lim_{n \to \infty} \sum_{k=0}^n ||a||^k = \sum_{n=0}^\infty ||a||^k = \frac{1}{1 - ||a||}.$$

Corollary 2.2. Let A be a unital Banach algebra and $a \in A$.

- (1) Let $\lambda \in \mathbb{C}$ such that $||a|| < |\lambda|$. Then $(\lambda.1 a)^{-1} \in G(\mathcal{A})$ and $(\lambda.1 a)^{-1} = \sum_{n=0}^{\infty} \frac{a^n}{\lambda^{n+1}}$. Furthermore $||(a \lambda)^{-1}|| \le \frac{1}{|\lambda| ||a||}$
- (2) Let $a \in \mathcal{A}$ be such that ||1 a|| < 1, then $a \in \mathcal{A}$ and

$$a^{-1} = \sum_{n=0}^{\infty} (1-a)^n.$$

Proof. To prove (1), take $a_{\lambda} = \frac{a}{\lambda}$ and apply Lemma 2.1. To prove (2), substitute 1 - a in Lemma 2.1.

Proposition 2.3. The set G(A) is open in A.

Proof. Let $a \in G(\mathcal{A})$. Let $D = \{b \in \mathcal{A} : \|a - b\| < \frac{1}{\|a^{-1}\|}\}$. Note that $a^{-1}(a-b) = 1 - a^{-1}b$. So $\|1 - a^{-1}b\| \le \|a^{-1}\| \|a - b\| < 1$. Hence $a^{-1}b \in G(\mathcal{A})$. So $b = a(a^{-1}b) \in G(\mathcal{A})$. This shows that $D \subset G(\mathcal{A})$.

Proposition 2.4. The map $a \mapsto a^{-1}$ is continuous on G(A).

Let $(a_n) \subseteq G(\mathcal{A})$ be such that $a_n \to a$. Our aim is to show that $a_n^{-1} \to a^{-1}$. For this consider

(1)
$$||a_n^{-1} - a^{-1}|| = ||a^{-1}(a_n - a)a_n^{-1}|| \le ||a^{-1}|| ||a_n - a|| ||a_n^{-1}||.$$

Hence if we can show $||a_n^{-1}||$ is bounded by a fixed constant, we are done. As $a_n \to a$, there exists $n_0 \in \mathbb{N}$ such that $||a_n - a|| < \frac{1}{2 ||a^{-1}||}$ for all $n \ge n_0$.

Thus $||a^{-1}a_n - 1|| < \frac{1}{2}$. Hence by Lemma 2.1, $a^{-1}a_n \in G(\mathcal{A})$ for all $n \geq n_0$.

$$||aa_n^{-1}|| = ||(a^{-1}a_n)^{-1}|| = \sum_{k=0}^{\infty} ||(a^{-1}a_n)^{-1} - 1|^k|| < \sum_{k=0}^{\infty} \frac{1}{2^k} < 2.$$

Therefore $||a_n^{-1}|| \le ||a_n^{-1}a|| \, ||a^{-1}|| < 2 \, ||a^{-1}||$. Now by Equation 1, it follows that $a_n^{-1} \to a^{-1}$.

Example 2.5. (a) Let $\mathcal{A} = \mathbb{C}$. Then Then $G(\mathcal{A}) = \{z \in \mathbb{C} : z \neq 0\}$ (b) Let $\mathcal{A} = C(K)$, where K is compact, Hausdorff space. Then $G(\mathcal{A}) = \{f \in \mathcal{A} : f(t) \neq 0 \text{ for each } t \in K\}.$

- (c) Let $\mathcal{A} = M_n(\mathbb{C})$. Then $G(\mathcal{A}) = \{A \in M_n(\mathbb{C}) : det(A) \neq 0\}$.
- (c) Let $\mathcal{A} = \mathcal{B}(H)$. Then $G(\mathcal{A}) = \{A \in \mathcal{B}(H) : A^{-1} \in \mathcal{B}(H)\}$

Exercise 2.6. In which of the above cases G(A) is dense? What about in general?

3. The spectrum

In this section we define the concept of spectrum of an element in a Banach algebra.

Definition 3.1. Let A be a unital Banach algebra and $a \in A$. The resolvent $\rho_A(a)$ of a with respect to A is defined by

$$\rho_{\mathcal{A}}(a) := \{ \lambda \in \mathbb{C} : a - \lambda 1 \in G(\mathcal{A}) \}.$$

The spectrum $\sigma_{\mathcal{A}}(a)$ of a with respect to \mathcal{A} is defined by $\sigma_{\mathcal{A}}(a) = \mathbb{C} \setminus \rho_{\mathcal{A}}(a)$. That is same as saying

$$\sigma_{\mathcal{A}}(a) := \{ \lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible in } \mathcal{A} \}.$$

If \mathcal{B} is a closed subalgebra of \mathcal{A} such that $1 \in \mathcal{B}$. If $a \in \mathcal{B}$, then once discuss the invertibilty of a in \mathcal{B} and in \mathcal{A} . In such cases we write $\rho_{\mathcal{B}}(a)$ and $\rho_{\mathcal{A}}(a)$. Similar convention hold for the spectrum. But if we want discuss the spectrum in one algebra, then we omit the prefix.

Example 3.2. (1) Let $z \in \mathbb{C}$. Then $\sigma(z) = \{z\}$.

- (2) Let $A \in M_n(\mathbb{C})$. Then $\sigma(A) = \{\lambda \in \mathbb{C} : \lambda \text{ is an eigen value of } A\}$
- (3) Let $f \in C(K)$ for some compact Hausdorff K. Then $\sigma(f) = \operatorname{range}(f)$

First we need to show that the spectrum of an element in a Banach algebra is a non empty compact set.

Theorem 3.3. Let A be a unital Banach algebra and $a \in A$. Then $\sigma(a) \neq \emptyset$.

Proof. If a is not invertible, then $0 \in \sigma(a)$. Assume that a is invertible. Then $0 \notin \sigma(a)$. Assume that $\sigma(a) = \emptyset$. Then $\rho(a) = \mathbb{C}$. Let $\phi \in A^*$. Define $f : \mathbb{C} \to \mathbb{C}$ by $f(\lambda) = \phi((a - \lambda 1)^{-1})$. Let $\lambda_0 \in \mathbb{C}$. Then consider

$$\frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0} = \frac{\phi((a - \lambda_1)^{-1}) - \phi((a - \lambda_0 1)^{-1})}{\lambda - \lambda_0}$$

$$= \frac{\phi((a - \lambda_1)^{-1} - (a - \lambda_0 1)^{-1})}{\lambda - \lambda_0}$$

$$= \frac{\phi((a - \lambda_0 1)^{-1}(\lambda - \lambda_0)(a - \lambda_1)^{-1})}{\lambda - \lambda_0}$$

$$= \phi((a - \lambda_0 1)^{-1}(a - \lambda_1)^{-1}).$$

Hence $\lim_{\lambda \to \lambda_0} \frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0} = \phi(\lambda_0 1 - a)^2$. As λ_0 is arbitrary, f is entire.

Note that $|f(\lambda)| \le ||\phi|| ||(\lambda 1 - a)^{-1}|| \le ||\phi|| \frac{1}{|\lambda| - ||a||}$ for each $|\lambda| > ||a||$.

Hence $|f(\lambda)| \to 0$ as $|\lambda| \to \infty$. Hence f is bounded. By Liouville's theorem, f must be constant. AS $|f(\lambda)| \to 0$, f = 0. That is $\phi(\lambda 1 - a)^{-1} = 0$ for all $\phi \in \mathcal{A}^*$. Hence by Hahn-Banach theorem, $(\lambda 1 - a)^{-1} = 0$, a contradiction. Therefore $\sigma(a)$ is non empty.

Exercise 3.4. What about the case when $|\lambda| \leq ||a||$? in the last proof.

Remark 3.5. (a) We know by Lemma 2.1 that if $\lambda \in \mathbb{C}$ such that $|\lambda| > ||a||$, then $(a - \lambda 1) \in G(A)$. Hence

$$\sigma(a) \subseteq \{z \in \mathbb{C} : |z| \le ||a||\}.$$

Hence $\sigma(a)$ is bounded subset of \mathbb{C} .

Exercise 3.6. Let $\phi \in \mathcal{A}^*$ and $a \in \mathcal{A}$. Define $g : \mathbb{C} \setminus \sigma(a) \to \mathbb{C}$ by $g(\lambda) = \phi((\lambda . 1 - a)^{-1})$. Show that g is analytic in $\mathbb{C} \setminus \sigma(a)$.

Theorem 3.7. $\sigma(a)$ is a compact set.

Proof. Note by Theorem 3.3 and Exercise 3.6, it follows that $\sigma(a)$ is a compact subset of \mathbb{C} .

Theorem 3.8 (Gelfand-Mazur theorem). Every Banach division algebra is isometrically isomorphic to \mathbb{C} .

Proof. Let $a \in \mathcal{A}$. Then $\sigma(a) \neq \emptyset$. Let $\lambda \in \sigma(\mathcal{A})$. Then $a - \lambda 1 \notin G(\mathcal{A})$. As \mathcal{A} is a divison algebra, $a - \lambda 1 = 0$. Hence $a = \lambda \cdot 1$. Now define a map $\eta : \mathbb{C} \to \mathcal{A}$ by $\eta(\lambda) = \lambda \cdot 1$. It can be checked easily that η is an isometric isomorphism.

Proposition 3.9. Let A be a unital Banach algebra and $a, b \in A$. Then

$$1 - ab \in G(\mathcal{A}) \Leftrightarrow 1 - ba \in G(\mathcal{A}).$$

Proof. Assume that $1-ab \in G(A)$. Let $c := b(1-ab)^{-1}a$. It can be checked easily that c(1-ba) = 1 = (1-ba)c.

Corollary 3.10. Let A be a unital Banach algebra and $a, b \in A$. Then $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}$.

Definition 3.11 (Spectral Radius). Let A be a unital Banach algebra and $a \in A$. Then the spectral radius of a is defined by

$$r(a) := \sup \{ |\lambda| : \lambda \in \sigma(a) \}.$$

Note that $0 \le r(a) \le ||a||$.

Example 3.12. (1) Let A = C(K) and $f \in A$. Then

$$r(f) = \sup\{|\lambda| : \lambda \in \operatorname{range}(f)\} = ||f||_{\infty}$$

(2) Let $T \in \mathcal{B}(H)$ be normal. Then $r(T) = \sup \{\lambda \in \sigma(T)\} = ||T||$

(3) Let
$$A = M_n(\mathbb{C})$$
. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Since A is nilpotent, $\sigma(A) = \{0\}$ and hence $r(A) = 0$. But $||A|| = 1$.

Exercise 3.13. Let A be a unital complex Banach algebra and $a \in A$. Show

- (a) if a is invertible, then $\sigma(a^{-1})=\{\lambda^{-1}:\lambda\in\sigma(a)\}$ (b) $\sigma(a+1)=\{\lambda+1:\lambda\in\sigma(a)\}$
- (c) $r(a^n) = r(a)^n$ for all $n \in \mathbb{N}$
- (d) if $b \in \mathcal{A}$, then r(ab) = r(ba)

Theorem 3.14 (Spectral radius formula).

$$r(a) = \lim \|a^n\|^{\frac{1}{n}} = \inf \|a^n\|^{\frac{1}{n}}.$$