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ABSTRACT. Let A be a complex commutative Banach algebra with unit
land 6 > 0. A linear map ¢ : A — C is said to be d-almost multiplicative
if

|#(ab) —¢p(a)p(b)| < o lal |[b]|  forall a,be A.
Let 0 < € < 1. The e-condition spectrum of an element a in A is defined by

%my:{Aecwm—ﬂHm—wluzi}

In this note, we prove following results connecting these two notions
for commutative Banach algebras.
(1) If (1) = 1 and ¢ is 6-almost multiplicative, then ¢(a) € o5(a) for
allain A.
(2) If ¢ is linear and ¢(a) € oc(a) for all a in A, then ¢ is J-almost
multiplicative for some .
The first result is analogous to the Gelfand theory and the last result is
analogous to the classical Gleason-Kahane-Zelazko theorem.

1. INTRODUCTION

Let A be a complex commutative Banach algebra with unit 1. The clas-
sical Gelfand theory implies that the usual spectrum of an element a in A,
denoted by o (a), consists of the values ¢(a) where ¢ is a non-zero multi-
plicative linear functional (a character) on A. The set of all characters of
A, denoted by Car(A), is called the carrier space of A. In this note, we
study a possible similar relation between the condition spectrum o¢(a)
and almost multiplicative linear functionals. Let Inv(A) and Sing(A)
denote respectively the set of all invertible and singular elements of A.

Definition 1 (Almost multiplicative function). Let 6 > 0. A linear map
¢ : A — C is said to be d-almost multiplicative, if

|p(ab) — p(a)p(b)| < & la||[|b]|  forall a,be A
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The study of almost multiplicative linear functions originated with the
study of deformation theory of Banach algebras. The multiplicative func-
tions and almost multiplicative functions on certain algebras have in-
teresting properties and applications. There is an almost multiplicative
functional near to every multiplicative functional. The investigation of
the converse part leads to the study of a class of Banach algebras, known
as AMNM algebras (See [2, 3, 6, 5]).

One of the other notion used to prove the main theorem of this article
is condition spectrum. Condition spectrum is a generalization of the spec-
trum (similar to pseudospectrum), recently studied by the authors in [4].
Though it can be defined in a wider context, we define it here for Banach
algebras.

Definition 2 (Condition spectrum). Let A be a Banach algebra. For 0 < € <
1, the e-condition spectrum of an element a in A is defined by,

0e(a) = {/\ cC: A - > é}

with the convention that ||A — al| || (A — a) || = oo when A — a is not invert-
ible.

Since the condition spectrum is a special case of the spectrum defined
by Ransford [7] it shares some of the properties of the usual spectrum
like, non-emptiness, compactness etc.,. On the other hand, it has some
properties that are different from those of the usual spectrum, such as:
having no isolated points and having a finite number of connected com-
ponents.

The following two simple properties, mentioned without proof, are
necessary to establish the results that follow. The proofs are given in [4].

(1) For every a € A and for every € > 0, 0(a) C oc(a). The two sets
coincide if and only if a is a scalar multiple of the identity. Hence,
to avoid trivial situations, from now on, in all following results,
by a we mean an element which is not a scalar multiple of the
identity.

) If A € 0c(a) then [A| < ifi

]

2. MAIN RESULTS

It is known that, for every multiplicative functional ¢, the value of ¢, at
any element of A, belongs to the spectrum of the corresponding element.
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Similarly, the value of an almost multiplicative functional at an element
belongs to the condition spectrum of the corresponding element.

Theorem 3. Let A be complex Banach algebra with unit 1 and let ¢ be a J-
almost multiplicative linear functional on A and ¢(1) = 1. Then ¢(a) € o5(a)
for every element a in A.

Proof. Leta € A and ¢(a) = A. If A — a is not invertible, then A € o(a) C
05(a). Thus the conclusion follows from property (1).
Next assume that A — a is invertible. Then

1= lp(0)] = (1) ¢ —a)gp((A—a) )| < dlIA—all |1 —a)7|.
That is,

IA-alx - > 5,
which implies A( = ¢(a)) € o5(a). O

The following lemma gives a sufficient condition for a linear function
to be almost multiplicative from its behaviour on the unit sphere. The
main idea of the proof can be found in [3].

Lemma 4. Let A be a commutative Banach algebra and ¢ : A — C be a linear
map. If
1p(a®) — (¢p(a))?| < & forall a € A with |ja]| =1

then ¢ is 261-almost multiplicative.

Proof. Noting that the inequality holds trivially if 2 = 0 and replacing
non-zero a by a/||a||, we obtain

|9(a?) — (p(a))?| < 61]ja||?, foralla € A.

Next note that for all a,b € A, we have
4(¢p(ab) — p(a)p(b)) = P((a+b)*) = (¢(a+Db))* — p((a—b)*) + (¢p(a—D))?
Hence for all a,b € A with ||a]| = 1 = ||b]|, we get
|(¢(ab) — @p(a)p(D))| < }fh(Ha + b1+ [la—b]1%)
< }151(4 +4) =25
Hence for arbitrary a,b € A, we get

|(¢(ab) — ¢(a)¢p(b))| < 25 lal/[|b].
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The following theorem that connects condition spectrum and almost
multiplicative linear functionals can be considered as an approximate
version of the Gleason-Kahane-Zelazko Theorem. This proof is similar
to the proof of Theorem 8.7 in [3].

Theorem 5. Let A be a complex commutative Banach algebra with unit 1,0 <
€ <1/3and ¢ : A — C be a linear function. If p(a) € oc(a) for every a in A,
then ¢ is 6-almost multiplicative, where

Proof. Note that, since 0.(1) = {1}, we have ¢(1) = 1. Also, it follows
from the property (2), that ¢ is continuous and

1+e€

< .

ol < 126
Next, let a € A with ||a|| = 1. Define f : C — C by
(1) f(z) := ¢p(exp(za)), VzeC.

Then f is an entire function. Also, since for all z € C

1 1
7)) < gl exp(za)| < 1 exp([zlllal) < 1

exp([z]),

the function f is entire and of the exponential type of order less than or
equal to one.
From equation (1), by linearity and continuity of ¢, f also has the form,

o nyn
@ fla)= 3 2O
Letaj,j =1,2,... denote the zeros of f arranged in such a way that
laq| < ap] < ...
Claim.
© P(a*) = (p(a))* = — ]Z%
]

The right hand side above becomes a finite sum if the number of zeros of f is
finite and reduces to O if f has no zero.

By Hadamard’s theorem [1], the genus of f is zero or one as the order
is one.
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Case 1: Genus of f(z) is 1. By the Hadamard factorization theorem [1],
there exists a polynomial g of degree less then or equal to 1, such that,

z z
4) f(z) =exp(g(2)) 1:[ (1 - oc_]> exp (a—]) , VzeC.
Since f(0) = ¢(1) = 1, we have g(0) = 0. Hence we may assume g(z) =
Bz for some B € C. Next, each term in the product can be written as:

2 2
(s (6)= (i) (i3 e) =i
] ] ] j DC]- (X].
Thus,
(5) f(z) = 1+5z+1/32z2+ I 1_lf+
- 2 DY j 2a2 DY .

Comparing coefficients of z and z? in two expressions, (1) and (5), of f(z),

we get
1 1 11
¢(a) = B, 54’(“2) = Eﬁz —5 ;a—]z
Thus,
©) p(a?) — (p(a)2 = Y .
i

Case 2: Genus of f(z) is 0. By the Hadamard factorization theorem [1],
there exists a polynomial g of degree zero, such that,

7) £z) = exp (302D [T (1 - —J) , vzec.
J

Since f(0) = ¢(1) = 1, we have ¢ = 0. Thus,

(8) f&)sz(L—%).
J

Comparing coefficients of z and z? in two expressions, (2) and (8), of f(z),

we get
B 1 1 5 1
¢(a) = _;a_j' 5 (a%) = ;M
Thus,
1
©) $(a*) = (¢(a))* = =} ..
|

Thus we end up with the same expression as (6) and that proves the
claim.
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To get the bound for the right hand side of (3), we estimate |a;| in two
ways. First, since 0 = f(a;) = ¢(exp(aja)), we have 0 € o (exp(aja)).
Hence

o=

< || exp(aja)||| exp(—aja)|| < exp(2|a;l[a])-

Since ||a|| = 1, we obtain

1 1
|aj > Eh’l (E)

The second estimate is obtained from Jensen’s formula [8]. For this, let
r > 0, n(r) denote the number of zeros of f in the closed disc with the
centre at the origin and radius r and

M(r) :=sup{|f(rexp(if))| : 0 <0 <27} < 1t§exp(1’).

Then by Jensen’s formula,

n(r)In(2) < In(M(2r)) < In G + e) Lo,

Putting r = |a;| in the above inequality, we get

. 1+e€
]ln(2)§1n<1 >+2] ol

Suppose € is such that In(1€) < 1in(1/€). (This is satisfied if 0 < € <
1/3.) Then by using |a;| > % n(1/e), we get jIn(2) < 3|« | thatis |a;| >
In(2) ;

3 /-

Lety:=1In(1/€) and 1 := @ Then |;| > 7 as well as |a;j| > 7] for
all j. Consider k = [], the integral part of . Then k < ¢ < k + 1. Recall,

$) — (p(@) =~ L .
I

To estimate |¢(a?) — (¢(a))?|,
parts and use the first inequality for 1 < j < k and the second inequality
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for j > k. Hence
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We have proved that
|p(a®) — (¢(a))?| <6, foralla € Awith |ja]| = 1.

where 61 := % (1 + %

2 2 4 2
= =5 (1) = iy (1 e

Using Theorem 5, we can deduce the the classical Gleason-Kahane-

Thus the conclusion follows from Lemma 4 with

O]

Zelazko Theorem for commutative Banach algebras.

Corollary 6 (GKZ Theorem). Let A be a complex commutative unital Banach
algebra and ¢ : A — C be a linear function. If ¢(a) € o(a) for every a in A,
then ¢ is multiplicative.

Proof. Since o(a) C oc(a) for every 0 < € < 1 (by property (1)),
¢(a) € oc(a), Vae A, 0<e<1/3.

Applying Theorem 5, we get that ¢ is d-almost multiplicative. Note that
5 — 0" ase — 0T. Hence ¢ is multiplicative. O
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