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ABSTRACT. Let A be a complex commutative Banach algebra with unit
1 and δ > 0. A linear map φ : A→ C is said to be δ-almost multiplicative
if

|φ(ab)− φ(a)φ(b)| ≤ δ ‖a‖ ‖b‖ for all a, b ∈ A.
Let 0 < ε < 1. The ε-condition spectrum of an element a in A is defined by

σε(a) :=
{

λ ∈ C : ‖λ− a‖
∥∥∥(λ− a)−1

∥∥∥ ≥ 1
ε

}
.

In this note, we prove following results connecting these two notions
for commutative Banach algebras.

(1) If φ(1) = 1 and φ is δ-almost multiplicative, then φ(a) ∈ σδ(a) for
all a in A.

(2) If φ is linear and φ(a) ∈ σε(a) for all a in A, then φ is δ-almost
multiplicative for some δ.

The first result is analogous to the Gelfand theory and the last result is
analogous to the classical Gleason-Kahane-Zelazko theorem.

1. INTRODUCTION

Let A be a complex commutative Banach algebra with unit 1. The clas-
sical Gelfand theory implies that the usual spectrum of an element a in A,
denoted by σ(a), consists of the values φ(a) where φ is a non-zero multi-
plicative linear functional (a character) on A. The set of all characters of
A, denoted by Car(A), is called the carrier space of A. In this note, we
study a possible similar relation between the condition spectrum σε(a)
and almost multiplicative linear functionals. Let Inv(A) and Sing(A)
denote respectively the set of all invertible and singular elements of A.

Definition 1 (Almost multiplicative function). Let δ > 0. A linear map
φ : A→ C is said to be δ-almost multiplicative, if

|φ(ab)− φ(a)φ(b)| ≤ δ ‖a‖ ‖b‖ for all a, b ∈ A.
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The study of almost multiplicative linear functions originated with the
study of deformation theory of Banach algebras. The multiplicative func-
tions and almost multiplicative functions on certain algebras have in-
teresting properties and applications. There is an almost multiplicative
functional near to every multiplicative functional. The investigation of
the converse part leads to the study of a class of Banach algebras, known
as AMNM algebras (See [2, 3, 6, 5]).

One of the other notion used to prove the main theorem of this article
is condition spectrum. Condition spectrum is a generalization of the spec-
trum (similar to pseudospectrum), recently studied by the authors in [4].
Though it can be defined in a wider context, we define it here for Banach
algebras.

Definition 2 (Condition spectrum). Let A be a Banach algebra. For 0 < ε <

1, the ε-condition spectrum of an element a in A is defined by,

σε(a) :=
{

λ ∈ C : ‖λ− a‖
∥∥∥(λ− a)−1

∥∥∥ ≥ 1
ε

}
with the convention that ‖λ− a‖

∥∥(λ− a)−1
∥∥ = ∞ when λ− a is not invert-

ible.

Since the condition spectrum is a special case of the spectrum defined
by Ransford [7] it shares some of the properties of the usual spectrum
like, non-emptiness, compactness etc.,. On the other hand, it has some
properties that are different from those of the usual spectrum, such as:
having no isolated points and having a finite number of connected com-
ponents.

The following two simple properties, mentioned without proof, are
necessary to establish the results that follow. The proofs are given in [4].

(1) For every a ∈ A and for every ε > 0, σ(a) ⊆ σε(a). The two sets
coincide if and only if a is a scalar multiple of the identity. Hence,
to avoid trivial situations, from now on, in all following results,
by a we mean an element which is not a scalar multiple of the
identity.

(2) If λ ∈ σε(a) then |λ| ≤ 1 + ε

1− ε
‖a‖.

2. MAIN RESULTS

It is known that, for every multiplicative functional φ, the value of φ, at
any element of A, belongs to the spectrum of the corresponding element.
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Similarly, the value of an almost multiplicative functional at an element
belongs to the condition spectrum of the corresponding element.

Theorem 3. Let A be complex Banach algebra with unit 1 and let φ be a δ-
almost multiplicative linear functional on A and φ(1) = 1. Then φ(a) ∈ σδ(a)
for every element a in A.

Proof. Let a ∈ A and φ(a) = λ. If λ− a is not invertible, then λ ∈ σ(a) ⊆
σδ(a). Thus the conclusion follows from property (1).

Next assume that λ− a is invertible. Then

1 = |φ(1)| =
∣∣∣φ(1)− φ(λ− a)φ

(
(λ− a)−1

)∣∣∣ ≤ δ ‖λ− a‖
∥∥∥(λ− a)−1

∥∥∥ .

That is,

‖λ− a‖
∥∥∥(λ− a)−1

∥∥∥ ≥ 1
δ

,

which implies λ
(

= φ(a)
)
∈ σδ(a). �

The following lemma gives a sufficient condition for a linear function
to be almost multiplicative from its behaviour on the unit sphere. The
main idea of the proof can be found in [3].

Lemma 4. Let A be a commutative Banach algebra and φ : A → C be a linear
map. If

|φ(a2)− (φ(a))2| ≤ δ1 for all a ∈ A with ‖a‖ = 1

then φ is 2δ1-almost multiplicative.

Proof. Noting that the inequality holds trivially if a = 0 and replacing
non-zero a by a/‖a‖, we obtain

|φ(a2)− (φ(a))2| ≤ δ1‖a‖2, for all a ∈ A.

Next note that for all a, b ∈ A, we have

4(φ(ab)−φ(a)φ(b)) = φ((a + b)2)− (φ(a + b))2−φ((a− b)2)+ (φ(a− b))2

Hence for all a, b ∈ A with ‖a‖ = 1 = ‖b‖, we get

|(φ(ab)− φ(a)φ(b))| ≤ 1
4

δ1(‖a + b‖2 + ‖a− b‖2)

≤ 1
4

δ1(4 + 4) = 2δ1

Hence for arbitrary a, b ∈ A, we get

|(φ(ab)− φ(a)φ(b))| ≤ 2δ1‖a‖‖b‖.

�
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The following theorem that connects condition spectrum and almost
multiplicative linear functionals can be considered as an approximate
version of the Gleason-Kahane-Zelazko Theorem. This proof is similar
to the proof of Theorem 8.7 in [3].

Theorem 5. Let A be a complex commutative Banach algebra with unit 1, 0 <

ε < 1/3 and φ : A→ C be a linear function. If φ(a) ∈ σε(a) for every a in A,
then φ is δ-almost multiplicative, where

δ =
4

ln(1
ε )

(
1 +

2
(ln 2/3)2

)
.

Proof. Note that, since σε(1) = {1}, we have φ(1) = 1. Also, it follows
from the property (2), that φ is continuous and

‖φ‖ ≤ 1 + ε

1− ε
.

Next, let a ∈ A with ‖a‖ = 1. Define f : C→ C by

(1) f (z) := φ(exp(za)), ∀z ∈ C.

Then f is an entire function. Also, since for all z ∈ C

| f (z)| ≤ ‖φ‖‖ exp(za)‖ ≤ 1 + ε

1− ε
exp(|z|‖a‖) ≤ 1 + ε

1− ε
exp(|z|),

the function f is entire and of the exponential type of order less than or
equal to one.

From equation (1), by linearity and continuity of φ, f also has the form,

(2) f (z) =
∞

∑
n=0

φ(an)zn

n!
.

Let αj, j = 1, 2, . . . denote the zeros of f arranged in such a way that

|α1| ≤ |α2| ≤ . . . .

Claim.

(3) φ(a2)− (φ(a))2 = −∑
j

1
α2

j

The right hand side above becomes a finite sum if the number of zeros of f is
finite and reduces to 0 if f has no zero.

By Hadamard’s theorem [1], the genus of f is zero or one as the order
is one.
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Case 1: Genus of f(z) is 1. By the Hadamard factorization theorem [1],
there exists a polynomial g of degree less then or equal to 1, such that,

(4) f (z) = exp (g(z)) ∏
j

(
1− z

αj

)
exp

(
z
αj

)
, ∀z ∈ C.

Since f (0) = φ(1) = 1, we have g(0) = 0. Hence we may assume g(z) =
βz for some β ∈ C. Next, each term in the product can be written as:(

1− z
αj

)
exp

(
z
αj

)
=

(
1− z

αj

)(
1 +

z
αj

+
1
2

z2

α2
j
+ . . .

)
= 1− 1

2
z2

α2
j
+ . . .

Thus,

f (z) =
(

1 + βz +
1
2

β2z2 + . . .
)

∏
j

(
1− 1

2
z2

α2
j
+ . . .

)
.(5)

Comparing coefficients of z and z2 in two expressions, (1) and (5), of f (z),
we get

φ(a) = β,
1
2

φ(a2) =
1
2

β2 − 1
2 ∑

j

1
α2

j
.

Thus,

(6) φ(a2)− (φ(a))2 = −∑
j

1
α2

j
.

Case 2: Genus of f(z) is 0. By the Hadamard factorization theorem [1],
there exists a polynomial g of degree zero, such that,

(7) f (z) = exp (g(z)) ∏
j

(
1− z

αj

)
, ∀z ∈ C.

Since f (0) = φ(1) = 1, we have g ≡ 0. Thus,

f (z) = ∏
j

(
1− z

αj

)
.(8)

Comparing coefficients of z and z2 in two expressions, (2) and (8), of f (z),
we get

φ(a) = −∑
j

1
αj

,
1
2

φ(a2) = ∑
i<j

1
αiαj

.

Thus,

(9) φ(a2)− (φ(a))2 = −∑
j

1
α2

j
.

Thus we end up with the same expression as (6) and that proves the
claim.
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To get the bound for the right hand side of (3), we estimate |αj| in two
ways. First, since 0 = f (αj) = φ(exp(αja)), we have 0 ∈ σε(exp(αja)).
Hence

1
ε
≤ ‖ exp(αja)‖‖ exp(−αja)‖ ≤ exp(2|αj|‖a‖).

Since ‖a‖ = 1, we obtain

|αj| ≥
1
2

ln
(

1
ε

)

The second estimate is obtained from Jensen’s formula [8]. For this, let
r > 0, n(r) denote the number of zeros of f in the closed disc with the
centre at the origin and radius r and

M(r) := sup{| f (r exp(iθ))| : 0 ≤ θ < 2π} ≤ 1 + ε

1− ε
exp(r).

Then by Jensen’s formula,

n(r) ln(2) ≤ ln(M(2r)) ≤ ln
(

1 + ε

1− ε

)
+ 2r.

Putting r = |αj| in the above inequality, we get

j ln(2) ≤ ln
(

1 + ε

1− ε

)
+ 2|αj|

Suppose ε is such that ln(1+ε
1−ε ) ≤

1
2 ln(1/ε). (This is satisfied if 0 < ε <

1/3.) Then by using |αj| ≥ 1
2 ln(1/ε), we get j ln(2) ≤ 3|αj| that is |αj| ≥

ln(2)
3 j.
Let γ := 1

2 ln(1/ε) and η := ln(2)
3 . Then |αj| ≥ γ as well as |αj| ≥ η j for

all j. Consider k = [γ], the integral part of γ. Then k ≤ γ ≤ k + 1. Recall,

φ(a2)− (φ(a))2 = −∑
j

1
α2

j
.

To estimate
∣∣φ(a2)− (φ(a))2

∣∣, we split the right hand side sum into two
parts and use the first inequality for 1 ≤ j ≤ k and the second inequality
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for j > k. Hence

|φ(a2)− (φ(a))2| ≤∑
j
| 1
α2

j
|

≤
k

∑
j=1
| 1
α2

j
|+

∞

∑
j=k+1

| 1
α2

j
|

≤ k
γ2 +

1
η2

∞

∑
j=k+1

1
j2

≤ 1
γ

+
1
η2

(
1

(k + 1)2 +
∫ ∞

k+1

1
x2 dx

)
≤ 1

γ
+

1
η2

(
1

(k + 1)2 +
1

k + 1

)
≤ 1

γ
+

1
η2

(
1

γ2 +
1
γ

)
≤ 1

γ

(
1 +

2
η2

)
We have proved that

|φ(a2)− (φ(a))2| ≤ δ1 for all a ∈ A with ‖a‖ = 1.

where δ1 := 1
γ

(
1 + 2

η2

)
. Thus the conclusion follows from Lemma 4 with

δ := 2δ1 =
2
γ

(
1 +

2
η2

)
=

4
ln(1

ε )

(
1 +

2
(ln 2/3)2

)
.

�

Using Theorem 5, we can deduce the the classical Gleason-Kahane-
Zelazko Theorem for commutative Banach algebras.

Corollary 6 (GKZ Theorem). Let A be a complex commutative unital Banach
algebra and φ : A → C be a linear function. If φ(a) ∈ σ(a) for every a in A,
then φ is multiplicative.

Proof. Since σ(a) ⊆ σε(a) for every 0 < ε < 1 (by property (1)),

φ(a) ∈ σε(a), ∀ a ∈ A, 0 < ε < 1/3.

Applying Theorem 5, we get that φ is δ-almost multiplicative. Note that
δ→ 0+ as ε→ 0+. Hence φ is multiplicative. �
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