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Models for the Growth of a Solid Tumor by Diffusion 

By H. p, Greenspan 

A simple mathematical model of tumor growth by diffusion is constructed in 
order to examine and evaluate different hypotheses concerning the evolution of 
asolid carcinoma, A primary objective is to infer the chemical source of growth 
inhibition from the most easily obtained data, namely, the outer radius of the 
nodule as a function of time and a histological examination of the final dormant 
state. In section 6 some of the conclusions of this study relating to a prototype 
experiment and described with as littIe mathematics as possible, 

1. Introduction 

Although the growth of solid tumors in animals always involves some vascular­
ization, the earliest stages of development are apparently regulated by the direct 
diffusion of nutrients and wastes from and to surrounding tissue. Experiments 
on the in vitro growth of nodular carcinomas [4], [8], [10], or those involving 
techniques for the in vivo isolation of tumors [5], [6], [l1J show that growth of 
asolid malignancy by diffusion alone leads asymptotically to a dormant but 
viable steady state, 

When the tumor is very smalI, every cell receives adequate nourishment by 
simple diffusion and the growth rate of the population is exponential. However, 
the consumption of a nutrient means that its concentration must decrease towards 
the center of the nodule. Eventually the concentration there of a vital nutrient 
falls below the criticallevel to sustain cell life and a central necrotic co re develops. 
The growth rate of the tumor then diminishes markedly because it becomes 
increasingly difficult to obtain nourishment and to dispose of wastes solely by 
diffusion, The typical steady state configuration, Figure 1, is a sphere, a few 
millimeters in diameter, which histological examination shows to consist of three 
distinct concentric annular shells. In the thin outermost shell, a layer several cells 
thick, cells are observed to grow and divide as they do in the initial exponential 
phase. In the adjoining shell, cells are alive and viable but exhibit almost no 
mitosis and proliferation. The innermost central co re consists of necrotic debris 
in various stages of disintegration. 

The actual distances and times scales that characterize the evolution of asolid 
tumor strongly depend on the conditions ofthe experiment, i.e., cell strain, nutrient 
levels, ete, The few tumor cells of the original colony increase in number to a final 
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Figure I. Cross-section of a nodular carcinoma showing the central necrotic core, r :0; Ri , the layer of 
viable non-proliferating ceHs, R, :0; r:O; R

" 
and the outer shell where aH mitosis occurs, R, :0; r :0; Ro. 

aggregate of about a million or so, in a growth period that can be several days, or 
several months. The spherical nodule expands from the microscopic to the size 
of a "pin head" whose radius is the order of a millimeter (1,000 Jl. in normal units). 

This range of scales makes it very desirable to formulate any theory in dimension­
less terms for then the data of different experiments can be incorporated within 
one framework simply as specific parameter settings. These dimensionless param­
eters, which are groupings of the rate constants of the various diffusive and 
metabolic processes, are for the most part readily found from observation. This 
is an important point because the rate constants themselves are either unknown 
or very difficult to determine. 

Diffusion in tissues and tissue cultures has been widely studied and the early 
paper by HilI [7] is a common antecedent to both the mathematical and biological 
literature. Analogous problems that concern diffusion and moving boundaries are 
quite common in science and engineering, especially in the subjects of filtration, 
absorption, heat conduction, ablation (melting and freezing), change of state, 
gas-liquid reactions and chemical kinetics (see [2] and [3]). 

The increased resistance of oxygenated cancer cells to x-ray therapy has been 
a major reason for the study of nodular carcinomas. Most of the existing theory 
and much experimental data have been developed in this context and the papers 
ofThomlinson and Gray [11], Burton [1], Sutherland et al. [8], [10] are especially 
noteworthy. 

A new approach to the control of cancer based on the relations hip of tumor 
growth and vascularization has been proposed and examined by J. Folkman [4], 
[5], [6]. Briefty this research shows that cancer cells produce a distinct chemical 
factor, called T AF or Tumor Angiogenesis Factor, which stimulates the rapid 
formation of new capillaries. As the tumor, in vivo, approaches its diffusion 
limited size the local T.A.F. concentration inereases and induees neighboring 
blood vessels to grow towards and into the eolony. The malignaney beeomes 
vaseularized and perfusion then supplants simple diffusion as the dominant 
mechanism for the supply of nutrients and the removal of wastes. Onee the tumor 
conneets with the circulatory system all constraints imposed on it by diffusion 
are eliminated and subsequent growth is almost explosive. Folkman's primary 
objeetive is to prevent this metastasis by blocking the chemical message for 
vaseularization that is sent from the tumor to the surrounding tissue. If this can 
be aecomplished, it may be possible to maintain a tumor indefinitely in its dormant, 
prevaseularized state. Moreover, a blood test for T.A.F. would provide a very 
early indication of cancer, long before it can be discovered by present techniques. 
As a result of this work, the future treatment of many types of cancer may focus 
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on the early detection of asolid malignancy and chemo-therapy to confine it to a 
dormant and harmless state. 

The isolation and analysis of T.A.F., and the discovery of a counter-agent or 
anti-angiogenesis compound, are clearly chemical and biological problems that 
are outside the immediate sphere of mathematics. Although relegated to a secondary 
role, mathematical models can still provide some information and understanding 
that is not now accessible or readily obtained. Problem areas susceptible to 
theoretical analysis are the structure of the tumor at any time and the major 
processes that affect its growth. 

In this paper, a very simple model of growth by diffusion is constructed with 
the goal of evaluating several hypotheses about the evolution of asolid carcinoma. 
In particular, the following question is considered: What can be learned about 
the major internal mechanisms of the developing tumor from the most easily 
obtaineddata-theouter radius ofthe nodule as a function oftimeand a histological 
examination of its steady state? 

2. Assumptions 

Simple mathematical models of solid tumors nourished and sustained solely by 
diffusion have been discussed by Thomlinson and Gray [11] and Burton [1]. 
The basic assumptions ofthese studies, which are also adopted here, are as folio ws : 

(i) The solid tumor is a sphere and complete spherical symmetry prevails at 
all times. Time, t, and radial distance, r, are the only independent variables. 

(ii) Cancer cells die when the concentration of a crucial nutrient, denoted by 
a(r, t), falls below a critical level a,. The most indispensable nutrient is 
thought to be oxygen, whose concentration is usually given as a partial 
pressure. Glucose may be as, or more essential in certain cases. 

(iii) The vital nutrient, say oxygen, is consumed by living cells only; the con­
sumption rate may depend on nutrient concentration and cell proliferation 
as weil as other factors. 

In order to describe the observed characteristics of tumor growth and the 
dormant steady state, several new hypotheses and approximations must be added 
to the preceding list: 

(a) There is an adhesion or surface tension among living cancer cells [10], 
which in a spherical geometry produces an inward pressure that maintains 
a compact solid mass. 

(b) Necrotic cellular debris continually disintegrates into simpler chemical 
compounds that are freely permeable through cell membranes. Tbe mass, 
or equivalently, the cell volume lost this way in necrosis is replaced by cells 
pushed inward by the forces of adhesion and surface tension. 

These assumptions constitute an explanation of why cell proliferation can and 
indeed must continue even when the tumor is in a quiescent steady state. In 
equilibrium, cells produced in the growth layer flow inward exactly compensating 
the loss of cell volume in the necrotic center. Moreover, a tumor grows when the 
rate of cell production exceeds the mass and volume loss due to necrotic dis­
integration. In the reverse situation, the nodule contracts. 
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Supposition (a) above gives a dynamical basis for cell migration whereas (b) 
essentially states the conservation of mass which must apply to such movements. 
Both will be made more precise shortly. 

Although experiments show an inner layer of living, viable cells with a low 
mitotic index (i.e., mitosis is alm ost negligible), there is no conclusive evidence on 
the nature or source of this inhibition. In this regard, a theoretical model can 
provide some useful insight and for this purpose another basic assumption is 
introduced. 

(c) A chemical is produced somewhere within the tumor which inhibits the 
mitosis of cancer cells without causing their death. Its concentration, in 
units per ce, will be denoted by ß(r, t); the criticallevel is ß" 

The source of this inhibitor may be the metabolic wastes from live cells, the 
necrotic debris or simply an inadequate supply of nutrient. Each possibility will 
be considered separately to determine its peculiar, and hopefully recognizable 
effects on tumor growth. The comparison of these results with the observed 
growth rate of a carcinoma and the histological examination of its steady state 
may be sufficient to rule out one possibility, or to focus attention on another. 

(d) The carcinoma is in astate of diffusive equilibrium at all times. 

The diffusion of oxygen or most metabolites over the microscopic distances 
that characterize the tumor's size and structure, is achieved in a time interval 
that is very small compared with the total period of growth. For example, it takes 
about 10 seconds (1,000 seconds) for oxygen to diffuse across a distance of 100 Jl 
(1,000 Jl). Both time intervals are certainly very short compared to a growth 
period measured in days and they may even be regarded as small relative to the 
twelve to eighteen hour period for mitosis (in epithelial cells of a Chinese hamster). 
The approximation of instantaneous diffusive equilibrium is based on these 
disparate time periods. Its general validity enables important simplifications to 
be made and actually renders the theory tractable. 

3. Conservation of mass 
The correct statement ofthe conservation ofmass for an active, multi-component 
chemical system that is a living cell would be far too complicated for use here, 
even if it could be given explicity. As befits the present state of knowledge, a 
simpler approach is adopted the motivation for which is drawn from the flow of 
an incompressible fluid. The loose analogy is to view the tumor as a "fluid" that 
consists of incompressible cells held together by adhesive forces. Mitosis or cell 
proliferation acts like a source of incompressible fluid, necrosis has the role of a 
fluid sink and the fluid domain or tumor size varies in extent to accommodate 
any imbalance in net production. 

The mathematical model incorporates the following approximations: 

(i) All living tumor cells are identical and each is to be considered an incom­
pressible structure of constant volume. 

(ii) Cell division occurs "instantaneously" relative to the growth time of the 
tumor, and each daughter cell occupies the same volume as any other cell 
of the population. 
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(iii) The proliferation rate of cell volume by mitosis is described by a source 
distribution S(a, ß) which is a function only ofthe local nutrient and inhibitor 
concentrations. This function describes the rate at which cell volume is 
produced by mitosis per unit volume of living cells. 

(Although the explicit functional form of S(a, ß) has yet to be given, the assump­
tionsalreadymadeimplythatS(a,ß) = Oforß > ßI,andforconsistency,S(a,ß) == 0 
for a < al' It remains only to approximate S(a, ß) for a > al and ß < ßI') 

The necrotic core is composed of dead cells and cellular material in various 
stages of disintegration and dissolution. This phenomenon is not weil understood, 
but the debris, described as jelly-like, is capable of supporting the pressure exerted 
on it by the outer viable layers. The complex molecules which form the structure 
of a live cell are assumed to degenerate in death to simpler permeable compounds. 
This implies a continuing loss of cell volume that must be compensated by a 
material flow. The information available at present does not permit or justify a 
detailed description ofthe death process and for this reason the simplest approxi­
mations are made to characterize necrosis and its effects in tumour growth. 

(iv) The necrotic co re "loses" cell volume at a rate that at any time is propor­
tional to the core volume. Moreover, this loss occurs at a uniform rate 
throughout the region of necrosis. The proportionality constant is denoted 
by 32 strictly for convenience. (A rapid decrease in cell volume may accom­
pany the death of acelI, like a deflating balloon and this is discussed in the 
Appendix.) 

If the mass density of living ceJls is constant and equal to the density of the 
necrotic debris, the conservation of mass with distributed sources and sinks is 
equivalent to the conservation of volume. In words, the conservation law is as 
foJlows: 

A=B+C-D-E 

with A = the total volume of living cells at any time t; 
B = the initial volume of living cells at time t = 0; 
C = the total volume of cells produced in t ~ 0; 
D = the total volume of necrotic debris at time t; 
E = the total volume lost in the necrotic core in t ~ O. 

In order to convert this statement into a mathematical equation the following 
notation is introduced (see Figure 1): 

Let Ro(t) be the outer radius of the nodule at any time t. Ro(O) is then the 
initial radius of the tumor. 

Let Ri(t) be the radius of the necrotic core. Since death occurs when the 
nutrient level a falls below the critical value al , Ri(t) is defined by the relationship 

a(Ri(t), t) = al 

If a > al everywhere, then Ri(t) == O. 
Let Rg(t) be the radius at which cell proliferation ceases because the concen­

tration of chemical inhibitor in the domain of living cells reaches the critical 
level ßI' By definition 
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For Rit) ~ Rj(t), the critical level ßl lies within the necrotic co re and the 
katabolite has no effect on living cells. If ß < ßl everywhere, then Rg == O. 

Let max(a, b) denote the larger of the two positive numbers a, b. 

The mathematical forms of the various terms in conservation law above are 
then as follows : 

4n 
A = 3(R6(t) - RJ(t)); 

B = 4n R3(O)' 
3 0 ' 

f

t fRQ(!) 
C = 4n dt S(a, ß)r2 dr; 

o max(R,(t).Rg(t» 

4n 
D = -R3(t)· 3 ' , 

4nft E = - 3ARJ(t) dt. 
3 0 

Replacement of the word phrases by their mathematical forms leads, upon 
simplification, to the conservation of volume equation which governs the growth 
of the tumor: 

f
t fRQ(!) ft 

R6(t) = R6(O) + 3 dt S(a, ß)r2 dr - 3ARt(t) dt. 
o max(R,(t),Rg(t» 0 

(3.1 ) 

A more useful form is the time derivative of this equation: 

2 dR o fRQ 2 3 
ROT = S(a, ß)r dr - ARj . 

t max(R"Rg) 
(3.2) 

The conservation ofmass can also be given in terms that refer only to the move­
ment and ftow of live cells: 

The rate at which the volume of live cells increases 

= the rate at which volume of live cells is produced - the 
volume rate at which live cells die to replenish the 
volume loss in the necrotic center. 

Only the second term on the right-hand side requires further explanation. If U 
is the velocity of a cell at the necrotic interface, R;(t) - U is its relative velocity 
with respect to this moving surface, Therefore, - 4nRf(R; - U) represents the 
"dying" rate at which cell volume is forced to ftow out of the viable domain into 
the necrotic co re in order to replenish the volume lost there. The rate equation is 
then 

4n d IRQ 
- -(R6 - RJ) = Sr2 dr - 4nRf(R; - U). 
3 dt max(R,.Rg) 
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The comparison of this with (3.2) shows that 

U = - ARj(t), (3.3) 

is the inward migratory velocity of cells at the necrotic interface. A mass con­
servation law that accounts for a volume contraction of cells upon death is given 
in the Appendix. 

4. Growth retardation due to necrosis 

In the first model, the chemical inhibitor is assumed to be a produce of necrosis. 
Again the simplest approximations are made: 

(i) The chemical inhibitor ß(r, t) is produced in the necrotic core, r ::::; R;(t), 
at a constant rate per unit volume, P. 

(ii) The dilfusivity of any chemical is uniformly constant throughout the tumor 
and the adjacent medium. The dilfusivities of a(r, t) and ß(r, t) are the 
constants k and K, respectively. 

(iii) The nutrient a is consumed by living cells at a constant rate per unit 
volume, A. (Variations in consumption between viable and growing cells 
are considered in the Appendix.) 

(iv) The rate of cell proliferation per unit volume in the growth region is a 
constant, s. In terms of the step function 

H(x) = 1, x:;::: 0; H(x) = 0, x< 0; 

the source distribution for new cells (or new volume) due to mitosis is 
approximated by 

S(a, ß) = sH(a - (1)H(ßl - ß)· (4.1) 

(v) The composition of the ambient medium is held fixed (by mixing, etc.) 
throughout any experiment. The concentrations of nutrient and inhibitor 
at the outer surface ofthe tumor are the constants, a 00 and zero, respectively. 

The data available at present doesn't really warrant much more sophisticated 
and elaborate approximations although these are relatively easy to formulate. At 
present, a theory with as few unspecified constants as possible provides the most 
useful information because the parameters of a simple model can be determined 
from the experiments while those of a complex model cannot. 

With the source function as given in (4.1) the mass conservation law, equation 
(3.2), can be written as 

(4.2) 

The assumption of dilfusive equilibrium implies that the equations für concentra­
tions a, ß are, 

1 a 2 a A 
r2 a/ ar a(r, t) = IH(r - Ri(t))H(Ro(t) - r), (4.3) 

1 a 2 a P 
"2 -a r -a ß(r, t) = --H(Ri(t) - r). 
r r r K 

(4.4) 
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The boundary conditions require a, oa/or, ß, aß/ar to be continuous across every 
interface and in particular a = a 00' ß = 0 at r = Ro(t); all functions are bounded 
at the origin. By definition Rg(t) and R;(t) satisfy 

a(R;, t) = a/, 

if solutions ex ist ; otherwise, Rg == 0, R; == O. 

(4.5) 

Since time derivatives have been neglected in the diffusion equations, the only 
initial condition required is the value of Ro(O). The initial size of the tumor is 
always assumed to be so small that R;(O) = 0, Rg(O) = O. 

The solutions of the differential equations (4.3) and (4.4) are: 

I
A 2 2 ARf (1 1 ) 

a = a oo - 6k(Ro - r ) + 3k ~ - R
o 

' 

R;(t) ~ r ~ Ro(t) 
ß = pRf (~ __ 1 ) ; 

3K r Ro 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where in particular 

(4.10) 

Growth retardation of live cells occurs when Rg(t) ;;:: R,{t); the precise condition 
obtained from (4.5) is 

(4.11) 

In principal, the problem is now solved. The last two formulas relate both Rg(t) 
and R;(t) to the outer radius Ro(t) and their re placement in (4.2) enables the inte­
gration of that equation. The procedure is elementary but the calculation is not 
trivial. At least three stages of development must be examined separately (depend­
ing on the value of max(R;, Rg)) and all special cases, conditions, and constraints 
sorted out. Qualitatively, the period of exponential growth is followed by central 
necrosis and a build-up of inhibitory chemical which, if and when it exceeds the 
critical level, introduces the final phase of growth retardation. A quantitative 
description requires more effort, but since the mathematics involved is straight­
forward only the barest details of analysis are presented here. 

The value of the outer radius at which central necrosis first occurs is 

(4.12) 
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Following Burton [IJ, it is convenient to use this distance in making the problem 
dimensionless and to this end new variables are introduced 

;: = Ro(t) 
.. R' 

e 

r = Rg(t) 
<, R' 

e 

R,{t) 
1]=-. 

Re 
(4.13) 

In this notation, the initial radius of the colony is ~(O) = Ro(O)/ Re' the develop­
me nt of the necrotic core begins when ~ = 1 and continues for all ~ > 1. Growth 
retardation due to the presence of a chemical inhibitor occurs only when, and if, 
( ~ I] and in all circumstances, ~ ~ (, ~ ~ 1]. 

The dimensionalization is completed by replacing time t by 

r = st, 
d d 
-=s-. 
dt dr 

(4.14) 

Since l/s is essentially related to the "doubling" time for pure exponential growth 
of the population, r measures time with respect to this basic unit. 

As a result of substituting these variables in all equations and boundary condi­
tions, two basic dimensionless numbers appear 

The solution then takes the form exemplified by 

Je 
')' =-. 

s 

~ = ~(r, Q, '}') with Ro(t) = Re~(r, Q, '}'), etc. 

(4.15) 

The specification of parameters relates the theory to any particular experimental 
situation, i.e., cell strain, nutrient levels, etc. 

The dimensionless versions of equations (4.2), (4.10) and (4.11) are 

(4.16) 

2 2 3(1 1) 1 = ~ - '1 + 21] ~ - ry , 

Q2 (1 1) - = 11 3 - - - ;: > r > 1 2 (~' .. -<,- , 

~ ~ 1 only; 

(4.17) 

( ~ I] only. 

In order for the inhibitor to retard the growth of living cells, the concentration 
of ß must reach the critical value ß, at the necrotic interface r = Ri(t) at some 
point in the development of the tumor. This occurs when (and if) ( = I] at which 
time the outer radius is ~ = ~* > 1. The physical interpretation is that ß builds 
up and diffuses faster than the necrotic core expands. This second critical radius 
~* is calculated from (4.16) and (4.17). With ( = 1], it folIo ws that 

~* = Q(2x;(l - x*))- 1/2 

where 

(4.18) 
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The tumor does not reach this crucial size when the rate of volume loss in the 
necrotic core is sufficiently large. In this event, the nodule consists of only two 
distinct layers-an inner sphere of cellular debris enveloped by a growth layer of 
active mitosis that contains aB the live cells. A criterion for such a situation, 
derived below, involves the relative magnitudes of the parameters Q and y, that 
characterize competing physical processes. 

The variables 

x = "g, y = U~ (4.19) 

facilitate the mathematical operations and allow the various stages of tumor 
development to be described succinctly. Only a summary of results is given here; 
the analytical details are not difficult to reproduce. 

Phase I: Aperiod of exponential growth of the tumor until the onset of necrosis. 

Range of variables: 

Constraints: 

Growth equation: 

Method: Explicit integration. 

Solution: 

Time period: 

~(O) :::; ~(,) :::; 1. 

11 == 0, (== o. 

,,(,) = ((,) == o. 

o :::; , :::; '1 = - 3 log ~(O). 

(4.20) 

Discussion: The tumor grows at an exponential rate until the first cell at the 
center of the sphere dies from lack of sufficient nutrient. 

Phase I I: Aperiod of growth retardation of the tumor due to the death of cells, 
which lasts from the onset of necrosis until the inhibitor concentration at the 
necrotic interface reaches the criticallevel or the tumor achieves a steady state. 

Range of variables: 

where 

(4.22) 
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and 

e, = F(x,), 

Constraints: For 

2 2 3(1 1) 1 = e - 1] + 211 Z - ry . 

Growth equation: 

with 

x = 0 at < = < I = - 3 log e(O). 

Method: Change ofvariable to x and exact integration to obtain x as an implicit 
function of time. 

Formulation: 

9x dx 
-----:,------,-------.,----=----:-----.-:- - = 1 
(1 + 2x)(1 - x)(1 - (1 + 3y)x3

) d< ' 
(4.23) 

Solution: 

3 2 (l+x, + 4xr) I [(X)2 x IJ - x, 2 3 4 og - + - + 
2 (1 - x, + 3x, + 2x, + 4x, ) x, x, 

3
3

/
2

X I(I- X ,) [_1_1_(2X 1) 
- 2 3 4 tan + 

1 - x, + 3x, + 2x, + 4x, J3 x, 
I 1 J - tan- J3 

_ I log 1 _ _ _ I 10g(1 + 2x) 3x
2 (X) 12x

3 

(1 + x, - 2x?) x, 1 + 8x~ 
3x[ + ---3 10g(I - x) = < - <I. 

I - x, 
(4.24) 

Time period: If x, < x* then the elapsed time, < - <I ,.ranges from zero to 
infinity. However, most of the development is completed when < - < I = O(I/y) 
(and y is smalI). 

If x* < x,, the second stage ends at time< = <* when X = x*. 

Discussion: Tumor growth in the second phase, as described in (4.23) and (4.24), 
is illustrated in Figure 2 for several values of y. The growth either proceeds to a 
final steady state or it terminates at some point with the onset of phase III. The 
cutoff condition depends on the va lues of y and Q. 

(a) If x, < x* then the tumor grows to its steady state given by X oo = X,, ~oo = ~,. 
Since chemical retardation is not a factor iQ this case, the final nodule consists of 
only two distinct regions, a spherical shell of growing cells that surrounds the 
inner necrotic core. Complete cell proliferation is required to balance the volume 
loss in necrosis. The radius of the tumor is finite for all y -# 0 and the approach 
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Figure 2. Phases land 11 in the development of asolid carcinoma with growth retardation due to 
necrotic debris. 

to the dormant state is exponential with the characteristic time scale O(1/y). For the 
special value y = 0, i.e., XI = 1, ~I = 00, the steady state radius is infinite, the layer 
of growing cells is infinitesimally thin and (4.24) reduces to 

X 
log(x2 + X + 1) - 1'log(1 + 2x) - tlog(1 - x) + -- = < - <I. (4.25) 

1 - X 

This is the exact time-dependent solution of an analogous problem considered by 
Burton [1]. (The asymptotic approach to steady state is, in this circumstance, 
algebraic and x ~ </(1 + <), ~ ~ </)3). 

(b) If XI > x*, which in view of experimental information is of greatest interest, 
phase II lasts until the concentration PI is reached at the necrotic interface. This 
occurs when the tumor radius is ~*(Q) as given in (4.18). The cut-off conditions 
depend only on Q and are shown in Figure 3. 

For nodular carcinomas grown in vitro, Q < 1, y < 1 appears to be the relevant 
parameter range and for these values, the second stage is of a fairly short duration. 
The tumor grows almost linearly with time during this interval which has been 
described accordingly as a phase of linear growth. 

Phase I I I: Aperiod of retarded tumor growth due to the death of cells and chemical 
inhibition of mitosis, which begins when P = PI at the necrotic interface and lasts 
until the dormant steady state is achieved. 

Range of variables: ~* ~ ~ ~ ~oo' x* ~ X ~ X oo where ~oo,xoo are the steady 
state values. 

Constraints: 
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Figure 3. Critical values ~ * and x* versus Q at the end of phase 11 and the onset of phase 111. 

Growth equation: 

(4.25) 

with initial cünditiüns e = e*, x = x*, ( = '1 at r = r* = r 2 • 

Method: Change üf variables tü x, y and numerical integratiün tü übtain all 
variables as functiüns üf time. 

Formulation:. 

9x dx = 1 _ y3 _ 3yx3 
(1 + 2x)(1 - x) dr 

(4.26) 

Jr = X3(~ - 1) 2e 2 y 

with x = x* = y, e = e* at r = r* (see (4.21) and (4.24)). 
Solution: The numerical integratiün prüceeds fürward in time until sülutiün 

curves asymptüte tü their final steady state values, X <Xl , Y<Xl' e<Xl which are sülutiüns 
tü the preceding system üf equatiüns with dx/dr = O. 

If y and Q are müderateiy small and 

(4.27) 

then an excellent approximate equatiün für the steady state is 

(4.28) 
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Figure 4 shows the corresponding values of J.l, X CO ' ~co' the thickness of the viable 
layer ~ co - 17 co' and the radius 17 co ofthe neerotic eore. The thickness of the spherieal 
shell of proliferating cells is 
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Figure 4. Steady state values of the outer radius of the tumor ~ 00' the inner radius of the necrotic core 
Tloo' and the thickness of the viable layer, ~ 00 - TI 00 , versus X oo ' Values of Q2/2y corresponding to the 

models of § 4 and § 5 are the curves labelIed /lD and /lL, respectively. 

Some useful asymptotie formulas are: 

for 

for 

J.l » 1, X oo ~ 1 - (3J.l)-1 /2, 

~co - 17co ~ 1 - J.l1 /6, 

Yco ~ 1 - J.l1 /2y ; 

Yco ~ 1 - y. 

Time period: Although an infinite time inter val is required to reach the steady 
state, the third state is essentially completed in a time the order of 1jy. 
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Figure 5. Complete his tory of model tumor growth for Q2/2 = 0.01,0.1,0.5; Y = 0.1 and /l = 0.1, 1.5. 
Phase 11, which begins at r = 0 in relative time, ends with the bifurcation of the curves for y and x. 

Stage 11 is short in each of the three cases and the growth rate is approximately linear. 
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Figure 6. Complete histories of model tumor growth for Q2/2 = 0.02,0.2, 1; Y = 0.1 and /l = 0.1, 1, 5. 
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Discussion: The development ofthe tumor in phase 11 is speeified by the value of 
y and the eorresponding growth eurves are shown in Fig. 2. If x* < XI' the third 
and final stage is marked by the onset of mitotie inhibition, that is Rg = R; or 
Y = X = x*(Q) and ~ = ~*(Q). The point of transition on any partieular phase 11 
growth eurve depends only on the magnitude of Q and may be obtained from Figure 
3. Thereafter, the radius Rg expands quiekly towards its asymptote while the growth 
rates of ~('r), x(r) diminish. These effeets are shown in Figures 5 and 6 whieh are 
eomplete histories ofmodel tumor growth at representative and realistie parameter 
settings. (The finallayer of growing eells, given by (4.29), is known to be thin and 
examination of eross-seetions of nodules in the steady state indieate that A and Q 
are moderately small.) 

The rate ofvolume loss per unit volume in the neerotie eore eontrols the rapidity 
at whieh the steady state is approaehed. In dimensional units, t = O(l/A) eharaeteri­
zes the main period of aetivity in the last phase of growth. 

5. Growth retardation due to wastes from living cells 

The ehemieal inhibitor is now assumed to be a produet solely of the metabolie 
proeesses of living eells and no katabolites are assoeiated with neerosis. Only 
assumption (i) in the model of Seetion 4 is ehanged to read as follows: 

(i) The inhibitor ß(r, t) is produeed by living eells at a eonstant rate P per unit 
volume. 

For spherieal nodules, the inhibitor is produeed in the annular shell of viable 
eelIs, R;(t) ::; r ::; Ro(t). The diffusion equation (4.4) is replaced by 

1 0 20 P 
2 -;-r -;-ß(r, t) = --H(Ro(t) - r)H(r - R;(t)). (5.1) 
r ur ur I( 

All other equations and boundary eonditions remain the same. The solution ofthe 
problem is now 

{ 

A 2 2 AR; ( 1 1 ) 
(J = (J 00 - 6k (R o - r ) + 3k -;: - R

o 
' 

R;(t) ::; r ::; Ro(t) 
P1 22 3 11 

ß = -[-(Ro - r ) - R; (- - -)] ; 
3K 2 r Ro 

(5.2) 

r ::; Rj(t) 
{

(J = (JI' 

ß = ß;(t) 
(5.3) 

It folIo ws from the boundary eonditions that for R; > O. 

P [1 2 2 3 ( 1 1 ) ] ß; = 3K 2(Ro - R; ) - R; R; - R
o 

' (5.4) 

A [1 2 2 R; )] 
(100 - (11 = 3k 2(Ro - R;) - R/Ro - R; , (5.5) 

and if ß > ßI somewhere, the growth radius is given by 

P [1 2 2 3 ( 1 1 ) ] ßI = - -(Ro - R ) - R. - - - . 
3K 2 g 'R. R , g 

(5.6) 
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Onee again let Re denote the outer radius when (J = (J, at the center ofthe nodule 
and necrosis due to nutritional defieieney begins. The problem is made dimension­
less as before so that (5.5) and (5.6) beeome 

for ~ ~ 1, (5.7) 

for ( > 17. (5.8) 

The growth equation is still 

(5.9) 

aIthough the eonditions relating the radii Ro, Rg, R i are modified. It remains to 
deseribe the different stages of tumor development. 

In this model, the metabolie wastes of viable eells is the souree of katabolite 
within the tumor. For this reason, growth retardation ean take plaee before eentral 
neerosis. Indeed, if the eore eoneentration of inhibitor does not reach the eritieal 
level ß, by the onset of neerosis, growth retardation neuer oeeurs. To see this, 
suppose that there is retardation and ß = ß, in the spherieal annulus of live cells, 
that is Ri :::::; Rg :::::; Ro or 17 :::::; ( :::::; ~. The resuIt of subtracting (5.8) from (5.7) is, 
upon rearrangement, 

which shows that Q2 :::::; 1 is a necessary condition for growth inhibition. For va lues 
Q2 > 1, the level ß = ß, is never attained; if Q2 = 1,17 = ( :::::; ~ and Ri(t) == Rg(t) 
for all time. 

There are three phases of development in tumors which exhibit growth retarda­
tion. The first is aperiod of exponential growth whieh lasts until the concentration 
ofinhibitor at the center ofthe nodule reaehes the eritieallevel ßI' This is followed 
by aperiod of retarded growth, during whieh the tumor consists of an outer 
mantle of dividing eells and an inner viable core. In the third stage, marked by the 
onset of eentral necrosis, the tumor evolves into its final steady state. 

Growth inhibition eaused by nutrient deficiency has exaetIy the same effects on 
the tumor as that of a katabolite from metabolie wastes. As a matter of fact, let 
(J > (Jg be a necessary condition on nu trient coneentration for the growth of eells, 
then the identifications 

ß = (Joo - (J, A = -P, k=K 

transform the model under discussion to one with retardation due to nutrient 
deficiency. 

The resuIts of analysis for each phase of development are summarized next. 

Phase I: Aperiod of exponential growth of the tumor until the inhibitor eoncentra­
tion at r = 0 reaches the criticallevel for retardation. 
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Range of variables: 

Constraints: 

Growth equation: 

M ethod: Explicit integration. 
Solution: 

Time period: 

H. P. Greenspan 

'1 == 0, ,== O. 

'7 == 0 == (. 

o ::; r ::; 310g(Q/~(0» = r l' 

Discussion: The tumor develops at an exponential rate until growth retardation 
occurs at the center of the spherical nodule (which happens before the onset of 
central nectrosis, i.e., ~ ::; 1). 

Phase I I: Aperiod of retarded growth due to the accumulation of wastes from the 
living cells in excess of critical concentration, which lasts until a necrotic core 
forms. 

Range of variables: 

Q ::; ~ ::; 1, 

Constraints: 

x == 0, Q ::; 1, 

Growth equation: 

(5.10) 

M ethod: Change of variable to y and exact integration to obtain y as an implicit 
function of time. 

Formulation: 

with 

Solution: 

~ _ 310g(1 - y2) + 210g(1 _ y3) 
1 - y 

4 [ - 12y + 1 - 1 1 ] ) - j3 tan j3 - tan fi = 4( r - r 1 . 

(5.11) 

(5.12) 
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Time period: This phase ends at time r 2 when y = (I - Q2)1/2. For small Q, 
r 2 - r l ~ I/Q2. 

Discussion: For Q < I, the effect ofthe inhibitor is to change the initial exponen­
tial growth rate to one that is approximately linear in time. This phase begins at 
r = r I and ~ = Q and ends when ~ = I, r = r 2' with the death ofthe first cell from 
nutrient deficiency. Typical growth curves in this phase are shown in Figure 7. 

1.0 

10 11 12 13 14 15 
r-T 1 

2.0 , 

Figure 7. Phase 11 in the development of a tumor with retardation due to the metabolie wastes of live 
eells. This stage begins when ~ = Q (the eutoff for the exponential growth period) and ends at ~ = 1 

and the onset of eentral neerosis. 

The thickness of the layer of dividing cells, measured by 1 - y, decreases very 
rapidly and can be characterized as "thin" after an elapsed time of only one or two 
units. The duration ofthe second phase approaches zero as Q nears one. For Q ::::: 1, 
there is no such period of retardation due to the action of a katabolite because the 
concentration of inhibitor never reaches the critical level. In this situation, the 
exponential phase ends with the onset of central necrosis which marks the next and 
final stage of development. 

Phase II I: Aperiod of retarded growth due to chemical inhibition of mitosis and 
the death of cells which begins when (J = (J, at the center of the nodule and lasts 
until the steady state is achieved. 

Range oj variables: 

Constraints: 
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Growth equation: 

3~2 ~~ = ~3 _ (3 _ 3yrf3. 

Method: Change of variables to ~, y, x and numerical integration to obtain all 
variables as functions of time. 

Formulation: 
9x dx 3 3 ------ - = 1 - y - 3yx , 

(1 + 2x)(1 - x) dr 

~: = 1 _ y2 _ 2X3( 1 ~ y), 

withx = Oatr = r2(andy = (1- Q2)1/2,~ = 1). 

(5.13) 

(5.14) 

Solution: The numerical integration proceeds forward in time until the solution 
curves asymptote to their steady state values x cxp Yoo' ~oo' which are solutions of 
the preceding system of equations with dx/dr = O. For y and Q moderately smalI, 
and /1 = Q2/(2y) an excellent approximation to the steady state is 

/1(1 - x oo )(l + 2xoo ) = x~(1 + X oo + x~) (5.15) 

Figure 4 shows the corresponding values of /1, x oo , ~ 00' the thickness of the viable 
layer ~ 00 - IJ 00 and the radius rf 00 of the necrotic core. U seful asymptotic formulas 
may be derived from the approximations X oo :::; /11 / 3 for /1 small and X oo :::; 1 - 1//1 
for /1large. 

Time period: Although an infinite time interval is required to reach the steady 
state, the final stage of development is essentially completed when r = O(l/y). 

Discussion: The rate ofvolume loss per unit volume in the necrotic core controls 
the rapidity at which the steady state is approached in phase In. In dimensional 
units the characteristic time interval of major activity is r = O(l/y). Complete 
histories ofmodel tumor growth are shown in Figure 8 for experimental parameter 
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Figure 8. Complete histories of two model tumors eorresponding to Q2/2y = 1 and y = 0.1, Y = 0.2. 
Growth retardation is due to the metabolie wastes of live eells. The three growth phases are separated 

by large dots. 
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settings. Stage III, which begins with ~ = 1, exhibits a very rapid increase in the 
size ofthe necrotic core. However, the layer ofproliferating cells is thin at the outset 
and remains so during the entire evolution. For Q > 1, the approach to the steady 
state is the same as for Q = 1, (i.e., y = x). In this case, (5.13) becomes 

(1 + 2~~1 _ x) : = 1 - (;J 3 

where x, = (1 + 3y)-1/3 and the initial condition is x = 0 at ° = 01(=02)' This 
problem was solved in the last section, see equation (4.22) and (4.23). 

6. Conclusion 
By way of conclusion, we illustrate the use of theoretical models in the analysis of a 
prototype experiment. The objective is to infer the major interna I processes 
affecting tumor growth from the most easily obtained data which are assumed to be 

(i) measurements of the outer radius of the nodule as a function of time, i.e., 
Ro(t) ; 

(ii) a cross section of the final dormant state which provides the final values of 
R o, Rg and R j (tumor radius, growth radius, and radius ofthe necroticcore as 
shown in Figure 1). 

From the steady state structure ofthe nodule, that is the radii Ro( (0), Ri (0) and 
R j ( (0), two dimensionless values are obtained 

The values of y and ~oo, which are the same for both models considered, are then 
determined from the relationships 

y~ = 1 - 3yx~. 

However, the value of Q does depend on the model employed, and is calculated 
from either (4.28) or (5.15). 

The outer radius Re at which central necrosis first occurs can be computed from 
the scaling rule Re = R o( 00 )/~ 00' Direct measurements of Re by histological 
examinations of nodules in their early phase of growth should confirm this theoreti­
cal prediction whatever particular cell strain is used in the experiment. 

Since all parameters have now been specified, the growth of a tumor as described 
by each ofthe theoretical models may be determined and the curves Ro(t) and ~(t), 
graphed. Although the final steady state is the same, the evolutions can be markedly 
different, depending on the respeetive values of Q, and a typical example is shown in 
Figure 9. The eomparison of theoretieal and experimental growth eurves to the 
same dormant state may be deeisive evidenee in answering the question ofwhether 
retardation is due primarily to metabolie wastes or necrosis. (The theory can be 
readily modified ifit turned out that both sources contribute to growth inhibition. 
Indeed other more eomplex possibilities are formulated in the Appendix.) 

Examination ofthe nodule at the onset ofnecrosis should be the best method to 
deeide between the alternative hypotheses of retardation. If growth retardation is 
observed before central neerosis develops, then the implied source of inhibition is 
the metabolie wastes of live cells. On the other hand, the observation of growth 
retardation after the formation of a neerotic co re implies that inhibition is a 
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Figure 9. Models of tumor growth to a eommon steady state. The outer radius is ~D' when retardation 
is due to neerotie debris, and ~L when the souree of inhibition is metabolie wastes. Time is measured 
from the point of bifureation. Values are y", = 0·95, x'" = 0·6, Y = 0·2201; Q2j2 = 0·0323 for ~D and 

Q2j2 = 0·1062 for ~L. 

consequence of necrosis. However, these may be difficult measurements to make 
with the exactness required because the interfaces that separate proliferating from 
merely viable cells, or live cells from dead cells, are probably not sharply defined 
initially when the radii Rg, and R; are smalI. The surface Rg(t) is after all an idealiza-
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Figure 10. Models of tumor growth for the same parametrie values; ~D' ~L are the outer radü when 
inhibition is due to dead material or the metabolie wastes of live eells. The three growth phases are 

separated by large dots. (Phase III for ~L in the upper graph begins at time "[ = 25.3.) 
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tion of a thin transition zone, of a certain thickness L « Ro( C1), wherein the mitotic 
index declines rapidly. The position ofthe interface is hard to define when Rit) = 
O(L). For this reason, and others, the complete growth history may prove surer 
and more informative about growth retardation than observations made within a 
very short definite interval oftime. However, Sutherland et al. [10J describe inhibi­
tion "shortly after" necrosis. 

Ifthe parameters Q and y are determined apriori (say by directly measuring the 
rate constants involved) the two models discussed here predict different steady 
states for the solid tumor. Moreover the characteristic time scales of the transient 
evolutions can differ by an order of magnitude as illustrated in Figure 10. 

Many mathematical models can be constructed by modifying any one of the 
assumptions or approximations made thus far. A few possibilities will suffice: 
diffusion constants need not be uniform or for that matter constant; cell prolifera­
tion can vary continuously with nu trient and inhibitor concentrations; a cell may 
collapse upon dying; disintegration and volume loss in the core can depend on 
position or the elapsed time since death ofthe cello Clearly, a greater fund of experi­
mental da ta is required to select new and perhaps more relevant assumptions as the 
basis for further theoretical study. 

Appendix 

The mathematical models examined can be adapted to include processes that are 
probably important but about which there is as yet little quantitative data. Some of 
these are as folio ws : 

Let the mass density of necrotic debris, Pd' be greater than the corresponding 
density P, ofliving cells, i.e., c = Pd/ P > 1. Since it then takes c cubic centimeters of 
living cells to make up one cubic centimeter of debris in the necrotic core, the death 
process involves a volume reduction (analogous to squashing tin cans). The 
generalization of the conservation of mass la w (3.2) to account for such a contrac­
tion (all other factors remaining the same) is 

R~R~ = fRO S(a, ß)r2 dr - (c - I)Rr R; - dRl. 
max(R;,R.> 

The velocity at which cells flow across the necrotic interface and die is then 

u = -(c - l)R; - dR i 

Cell proliferation and the dependence of mitosis on nutrient and inhibitor 
concentrations can be described by the source distribution 

( 
a a )n(ß ß)m S(a, ß) = s -, ~ß- H(a - a,)H(ß, - ß), 

a oo - a, I 

where n, and m are positive constants (to be determined). 
Dividing cells must consume more nutrient than those that are viable but dor­

mant. Let A be the rate of nutrient cünsumption per unit volume that is necessary 
für sustenence, and IXS(a, ß) represent the additional rate consumptiün for growth. 
The diffusion law for nutrient ais then 

Ga 8i - V· kVa = -(A + aS)H(r - RJH(Ro - r) 
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where for completeness the time derivative is included and k is not assumed to be 
constant. Likewise, let the production rates of inhibitor in the necrotic core and by 
live cells be Pd and P respectively. The diffusion law for the katabolite becomes 

aß 
- - V· KVß = PH(r - Rj)H(Ro - r) - PdH(Rj - r). at 

The boundary conditions require tha t Kßr , kar, ß, aare all continuous across the 
surfaces r = Ro, and r = Rg • The possibility of an instantaneous and massive 
release of chemical inhibitor when cells die upon crossing the necrotic interface can 
be expressed by the condition 

KßrJ :': = - v(R;(t) - U)H(R;(t) - U), 

where v is an appropriate rate constant. (The quantities kar' a, ß are continuous at 
this surface.) 

All functions are bounded at the origin, and initial conditions must be prescribed. 
If the time derivatives al' ßt are neglected, the general problem is easily solved. 
However, the effort would be justified, in terms of what is learned, only with more 
hard data. 
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