

BM5063 Systems Medicine

Problem Set 1

Instructions

1. You are not expected to submit answers to these problems

Questions

1. Analyze the following systems, identify FPs, and their stability properties using the phase-plane method and by the method of perturbation

- (a) $\dot{x} = -x$
- (b) $\dot{x} = -x \pm x^2$
- (c) $\dot{x} = -x \pm x^3$
- (d) $\dot{x} = -x + \frac{x}{k+x}$
- (e) $\dot{x} = -x + \frac{k}{k+x}$
- (f) $\dot{x} = -x + \frac{x^2}{k^2+x^2}$

2. Use computer (for example, you can use <https://www.desmos.com/calculator>) to draw phase diagram and identify the nature of stability of the fixed point in the following systems

- (a) $\dot{x} = -x + \frac{x^4}{k^4+x^4}$
- (b) $\dot{x} = -x + \frac{k^4}{k^4+x^4}$

3. For the following problems, sketch the curve marking the fixed points as a function of parameter a .

- (a) $\dot{x} = -ax$ for $a \in [-1, 1]$
- (b) $\dot{x} = -x + \frac{ax^2}{1+x^2}$ for $a \geq 0$
- (c) $\dot{x} = -x + \frac{a}{1+x^2}$ for $a \geq 0$

4. Analyze the following scenarios

- (a) Linear clearance in drug pharmacokinetics

$$\dot{c} = I - kc$$

where I is the fixed drug input rate and the second term is the drug clearance rate.

- (b) Tumor volume growth

$$\dot{v} = av \log\left(\frac{v_c}{v}\right)$$

where a and v_c are two constants. This model is known in *Gompertz growth model*.

5. In a healthy immune response, inflammation (I) is triggered by a pathogen and then resolved by anti-inflammatory mechanisms. In some severe cases (like some viral infections), inflammation can become self-sustaining. It is called a “cytokine storm”. Consider a simplified 1D model where the pathogen load is treated as a constant p , and the immune system has a positive feedback mechanism (self-recruitment of leukocytes)

$$\dot{I} = p - I + \frac{aI^2}{1 + I^2}$$

where a is a parameter.

- In the absence of any pathogen $p = 0$, what is/are the healthy steady states of the system? Which is the healthy steady state?
- As the pathogen stimulus p increases, how does the number of fixed points change?
- What happens to the patient if the stimulus p pushes the system past the unstable fixed point, so that, even if the pathogen is later removed (p returns to 0)? Is the inflammation reversible or irreversible?

ભારતીય નાનોટેકનોલોજી વિજ્ઞાન અનુભૂતિક એક્સ્પો ૨૦૨૪
ભારતીય પ્રોફોન્મિકી સંસ્થાન હૈડરાબાદ
Indian Institute of Technology Hyderabad