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Note: This text is only as a guide and may be incomplete and contain errors. If you find any error, please do let me
know by email.

Navier Stokes Equations

1 Derivation of Navier-Stokes equations

In previous classes we have derived for incompressible flows

∇ · v = 0 (1)

ρa = ρg +∇ · σ (2)

σ = σT. (3)

There are two points which need to be appreciated,

1. First, in the derivation of the above relations we have not utilized any fluid-specific property. In other words, these equations
are equally applicable to all the fluids. But our experience tells us that somewhere we also needs to account for the exact
nature of the fluid, that is, we have to incorporate the information whether the fluid under consdieration is, for example,
water or honey or blood or oil etc.

2. These equations show that we have 9 unknowns (6 stress and 3 velocity components) whereas we have only 4 equations
(1 continuity equations and 3 linear momentum balance equation). This shows that it may not be possible to solve for the
unknowns uniquely with these equations alone. We require something more.

Both of these issues are resolved by the constitutive relations.

Constitutive equations

Constitutive equations are the emperically derived relations which provide information about the stress and deformation/flow of the
material specific material. So, the constitutive equation of one material (say water) is different from another fluids (say honey).
The most popular constitutive description for the fluids is the Newtonian fluid for which we have

σ = −pI + η
(
∇v + (∇v)

T
)

(4)

where p is the fluid pressure and η is its viscosity.
We will come to this topic again in a later class.
Substitution of the Newtonian fluid constitutive relation to the linear momentum balance equation in the absence of any body
force (g = 0) gives

ρ

(
∂v

∂t
+ (∇v) v

)
= −∇p+ η∇2v (5)

This equation along with the mass balance equation are known as the Navier-Stokes equations.

2 Navier-Stokes equations in different coordinate systems

Cartesian coordinates

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 Continuity equation (6)

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

)
= −∂p

∂x
+ η

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
(7)

ρ

(
∂vy
∂t

+ vx
∂vy
∂x

+ vy
∂vy
∂y

+ vz
∂vy
∂z

)
= −∂p

∂y
+ η

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
(8)

ρ

(
∂vz
∂t

+ vx
∂vz
∂x

+ vy
∂vz
∂y

+ vz
∂vz
∂z

)
= −∂p

∂z
+ η

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
(9)
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Cylindrical coordinates

1

r

∂

∂r
(rvr) +

1

r

∂vθ
∂θ

+
∂vz
∂z

= 0 Continuity equation (10)

ρ

(
∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

− v2θ
r

+ vz
∂vr
∂z

)
= −∂p

∂r
+ η

(
∂

∂r

(
1

r

∂

∂r
(rvr)

)
+

1

r2
∂2vr
∂θ2

− 2

r2
∂vθ
∂θ

+
∂2vr
∂z2

)
(11)

ρ

(
∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vθvr
r

+ vz
∂vθ
∂z

)
= −1

r

∂p

∂θ
+ η

(
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+

1

r2
∂2vθ
∂θ2

+
2

r2
∂vr
∂θ

+
∂2vθ
∂z2

)
(12)

ρ

(
∂vz
∂t

+ vr
∂vz
∂r

+
vθ
r

∂vz
∂θ

+ vz
∂vz
∂z

)
= −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

)
(13)

3 Non-dimensionalization

The purpose of the non-dimensionalization of any equation (say N-S in present conetxt) is two fold. First, appropriate choice of
the characteristic quantities results in the reduction of independet system paramters, and second, it also provides an idea about
the relative size of the different terms in the equation. The knowledge of the relative size/importance of different terms can help
in reducing the equation to a simplified form. We will see both of these advantages in the following.

Reynolds number

Navier-Stokes equation in the absence of any body forces is given by

ρ

(
∂v

∂t
+ (∇v) v

)
= −∇p+ η∇2v (14)

We can use following characteristic quantities to non-dimensionalize the N-S equation

• Length: L

• Velocity: U

• Time: L/U

• Pressure: ηU/L (for viscous flows) or ρU2 (for inertial flows), these result in

•
∂

∂t
=

U

L

∂

∂t̃

• ∇ =
1

L
∇̃

as

ρ

(
U2

L

∂ṽ

∂t̃
+

U2

L

(
∇̃ṽ
)
ṽ

)
= − 1

L

ηU

L
∇̃p̃+ η

U

L2
∇̃2ṽ

⇒ ρUL

η

(
∂ṽ

∂t̃
+
(
∇̃ṽ
)
ṽ

)
= −∇̃p̃+ ∇̃2ṽ

⇒ Re

(
∂ṽ

∂t̃
+
(
∇̃ṽ
)
ṽ

)
= −∇̃p̃+ ∇̃2ṽ (15)

or

ρ

(
U2

L

∂ṽ

∂t̃
+

U2

L

(
∇̃ṽ
)
ṽ

)
= −ρU2

L
∇̃p̃+ η

U

L2
∇̃2ṽ

⇒ ρUL

η

(
∂ṽ

∂t̃
+
(
∇̃ṽ
)
ṽ

)
= −ρUL

η
∇̃p̃+ ∇̃2ṽ

⇒ ∂ṽ

∂t̃
+
(
∇̃ṽ
)
ṽ = −∇̃p̃+

1

Re
∇̃2ṽ (16)

where

Re =
ρUL

η
(17)

2



is the Reynolds number expressing the ratio of the inertial and viscous forces. It can be seen that the two system parameters ρ
and η in the dimensional N-S equation can be replaced by single parameter Re in its non-dimensional form.

How does this help?: This reduction of the system parameters implies that for a thorough understanding of a particualr system
we do not have to study it for all parameter values. If we study it for a wide range of Re it will provide us with the whole picture
which can be utilized to predict the system response for different parameter values. As an example, We can study the N-S equation
for any particular setup using analytical or numerical techniques for a range of Re and the results we will obtain from such an ex-
ercise can be utilized to study the flow of different fluids, say water or honey or any other Newtonian fluid as long as the Re is same.

Moreover, it can also be seen that for large values of Re (as shown by equation (16)) the N-S equation can be simplified to

∂ṽ

∂t̃
+
(
∇̃ṽ
)
ṽ = −∇̃p̃ (18)

and, as a result, the flow does not depend on the fluid viscosity. This type of flow is known as the Euler flow and is a widely
studied model for fluid flows at high velocities.

On the other hand, for small values of Re the N-S equation is simplified to (see equation (15)) the following Stoke’s flow
equation

∇̃p̃ = ∇̃2ṽ (19)

which is a linear equation in velocity and pressure.

4 Some example flows

Plane Couette flow

Figure 1:

It is a steady (
∂v

∂t
= 0), unidirectional (vy = vz = 0) flow of an incompressible (∇ · v) viscous (η ̸= 0) fluid between two plates

in the absence of any body force (g = 0) and pressure gradient (∇p = 0) where one of the two plates is fixed and other plate is
moving with a velocity v0. The linear momentum balance in the x-direction results in

ρ

(
�
��∂vx
∂t

+
�
�
��

vx
∂vx
∂x

+
�
�
�

vy
∂vx
∂y

+
�

�
�

vz
∂vx
∂z

)
= −

�
��∂p

∂x
+ η

(
�
��

∂2vx
∂x2

+
∂2vx
∂y2

+
�

��
∂2vx
∂z2

)

⇒ ∂2vx
∂y2

= 0

⇒ vx = c2y + c1 (20)

Applying boundary conditions at y = 0 and y = h gives

vx = v0
y

h
. (21)

Flow between rotating cylinders

As the name suggests, this is an example of an incompressible fluid flow between two concentric cylinders of radii a and b (a < b)
due to the rotation of the two cylinders. From the geometric setup of the problem it becomes apparent that it will be convenient
to study this example in cylinderical coordinate system. We assume
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• Incompressible flow ∇ · v = 0,

• steady flow,

• vz = 0,

• Axisymmetric flow
∂v

∂θ
= 0,

•
∂v

∂z
= 0,

• v(r = a) = aωaêθ and v(r = b) = bωbêθ.

From incompressibility condition

∇ · v = 0

⇒ 1

r

∂

∂r
(rvr) +

1

r

∂

∂θ
vθ +

∂

∂z
vz = 0

⇒ 1

r

∂

∂r
(rvr) = 0

⇒ ∂

∂r
(rvr) = 0

⇒ vr =
c1
r

(22)

Applying the boundary conditions give c1 = 0, implying vr = 0. From momentum balance equation, we get

ρ

(
�
��∂vθ
∂t

+
�
�
�

vr
∂vθ
∂r

+
�
�
��vθ

r

∂vθ
∂θ

+
�
��

vθvr
r

+
�
�
�

vz
∂vθ
∂z

)
= −

�
��1

r

∂p

∂θ
+ η

(
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+
�

�
��1

r2
∂2vθ
∂θ2

+
�

�
��2

r2
∂vr
∂θ

+
�
��∂2vθ

∂z2

)

⇒ ∂

∂r

(
1

r

∂

∂r
(rvθ)

)
= 0

⇒ 1

r

∂

∂r
(rvθ) = c1

⇒ ∂

∂r
(rvθ) = c1r

⇒ rvθ = c1
r2

2
+ c2

⇒ vθ = c1
r

2
+ c2

1

r
(23)

and

ρ

(
�
��∂vr
∂t

+
�
�
�

vr
∂vr
∂r

+
�
�
��vθ

r

∂vr
∂θ

− v2θ
r

+
�
�
�

vz
∂vr
∂z

)
= −∂p

∂r
+ η

(
��������∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
�

�
��1

r2
∂2vr
∂θ2

−
�

�
��2

r2
∂vθ
∂θ

+
�
��∂2vr

∂z2

)

⇒ ∂p

∂r
=

v2θ
r

(24)

(25)

and

ρ

(
�
��∂vz
∂t

+
�
�
�

vr
∂vz
∂r

+
�
�
��vθ

r

∂vz
∂θ

+
�
�
�

vz
∂vz
∂z

)
= −

�
��∂p

∂z
+ η

(
��

���
��

1

r

∂

∂r

(
r
∂vz
∂r

)
+
�

�
��1

r2
∂2vz
∂θ2

+
�

��∂2vz
∂z2

)
(26)

⇒ This equation is automatically satisfied.

We can obtain the values of constants c1 and c2 by applying the boundary conditions at r = a and r = b as

c1
a

2
+ c2

1

a
= ωaa (27)

c1
b

2
+ c2

1

b
= ωbb. (28)
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This gives

c1 =
2
(
b2ωb − a2ωa

)
b2 − a2

(29)

c2 =
(ωa − ωb) a

2b2

b2 − a2
. (30)

Shear stress is given by

σrθ = η

(
r
∂

∂r

(vθ
r

)
+
�

�
�1

r

∂vr
∂θ

)

⇒ σrθ = η

(
r
∂

∂r

(c1
2

+
c2
r2

))
⇒ σrθ = η

(
r
(
−2

c2
r3

))
⇒ σrθ = −2η

c2
r2

= −2η

r2

(
(ωa − ωb) a

2b2

b2 − a2

)
(31)

Viscometer application: This analysis is used in the cylinderical viscometer for estimation of the viscoisty of any fluid. In a
cylinderical viscometer the inner cylinder is rotated with a constant angular veolcity while keeping the outer cylinder fixed. The
fluid is filled in the space between the two cylinders and the torque on the inner cylinder is measured. For this case, the torque is
given by (setting ωb = 0)

Ta =

h∫
0

2π∫
0

aσrθadθdh = −
(
4πhηωaa

2b2

b2 − a2

)
. (32)

This gives the fluid viscosity as

η =
|Ta|
ωa

(
b2 − a2

4πha2b2

)
. (33)

Flow in a cylindrical channel

This is an example of pressue driven incompressible flow in a cylindrical channel of radius R. It is assumed that flow is steady and
fully developed. For simplicity it is assumed that the velocity is only along the channel axis. Similar to previous case, it is apparent
that it is more convenient to consider this example in cylindrical coordinates. The assumptions are

• Incompressible flow ∇ · v = 0,

• steady (
∂v

∂t
= 0) and fully developed (

∂v

∂z
= 0) flow,

• vz ̸= 0, vr = vθ = 0

• Axisymmetric flow
∂v

∂θ
= v,

• no body forces.

It can be seen that with these assumptions the incompressibility condition is already satisfied.
The momentum balance equations give

ρ

(
�
��∂vθ
∂t

+
�
�
�

vr
∂vθ
∂r

+
�
�
��vθ

r

∂vθ
∂θ

+
�
��

vθvr
r

+
�
�
�

vz
∂vθ
∂z

)
= −1

r

∂p

∂θ
+ η

(
��������∂

∂r

(
1

r

∂

∂r
(rvθ)

)
+
�

�
��1

r2
∂2vθ
∂θ2

+
�

�
��2

r2
∂vr
∂θ

+
�
��∂2vθ

∂z2

)

⇒ ∂p

∂θ
= 0 (34)

and

ρ

(
�
��∂vr
∂t

+
�
�
�

vr
∂vr
∂r

+
�
�
��vθ

r

∂vr
∂θ

−
�
��v
2
θ

r
+
�
�
�

vz
∂vr
∂z

)
= −∂p

∂r
+ η

(
��������∂

∂r

(
1

r

∂

∂r
(rvr)

)
+
�

�
��1

r2
∂2vr
∂θ2

−
�
�

��2

r2
∂vθ
∂θ

+
�

��∂2vr
∂z2

)

⇒ ∂p

∂r
= 0 (35)
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and

ρ

(
�
��∂vz
∂t

+
�
�
�

vr
∂vz
∂r

+
�
�
��vθ

r

∂vz
∂θ

+
�
�
�

vz
∂vz
∂z

)
= −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂vz
∂r

)
+
�
�

��1

r2
∂2vz
∂θ2

+
�
��∂2vz

∂z2

)
(36)

⇒ −∂p

∂z
+ η

(
1

r

∂

∂r

(
r
∂vz
∂r

))
= 0

⇒ ∂

∂r

(
r
∂vz
∂r

)
=

r

η

∂p

∂z

⇒ r
∂vz
∂r

=
r2

2η

(
∂p

∂z

)
+ c1

⇒ ∂vz
∂r

=
r

2η

(
∂p

∂z

)
+

c1
r

⇒ vz =
r2

4η

(
∂p

∂z

)
+ c1 ln r + c2 (37)

In order to keep vz finite at the center (r = 0), we must have c1 = 0. For c2, we apply the no-slip boundary condition at the
channel wall (r = R) to get

R2

4η

(
∂p

∂z

)
+ c2 = 0 ⇒ c2 = −R2

4η

(
∂p

∂z

)
. (38)

This gives

vz = − 1

4η

(
∂p

∂z

)(
R2 − r2

)
. (39)

This gives the total flow rate through the channel as

Q =

R∫
0

2π∫
0

vzrdrdθ

= − 1

4η

(
∂p

∂z

) R∫
0

2π∫
0

(
rR2 − r3

)
drdθ

= −2π

4η

(
∂p

∂z

) R∫
0

(
rR2 − r3

)
dr

= − π

2η

(
∂p

∂z

)(
R4

2
− R4

4

)
= − π

8η

(
∂p

∂z

)
R4. (40)

This shows that if the channel radius is doubled the total flow rate will grow by 16 times. Shear stress at the wall

σrz = η

(
�
��∂vr
∂z

+
∂vz
∂r

)∣∣∣∣
r=R

=
R

2

(
∂p

∂z

)
. (41)

It is interesting that the shear stress at the wall does not depend on η.
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