
Linear Time Algorithms for Happy Vertex
Coloring Problems for Trees

N. R. Aravind, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare?

Department of Computer Science and Engineering
Indian Institute of Technology

Hyderabad, India
{aravind,subruk,cs14resch01002}@iith.ac.in

Abstract. Given an undirected graph G = (V,E) with |V | = n and a
vertex coloring, a vertex v is happy if v and all its neighbors have the
same color. An edge is happy if its end vertices have the same color.
Given a partial coloring of the vertices of the graph using k colors, the
Maximum Happy Vertices (also called k-MHV) problem asks to color the
remaining vertices such that the number of happy vertices is maximized.
The Maximum Happy Edges (also called k-MHE) problem asks to color
the remaining vertices such that the number of happy edges is maximized.
For arbitrary graphs, k-MHV and k-MHE are NP-Hard for k ≥ 3. In this
paper we study these problems for trees. For a fixed k we present linear
time algorithms for both the problems. In general, for any k the proposed
algorithms take O(nk log k) and O(nk) time respectively.

Keywords: Happy Vertex, Happy Edge, Graph Coloring, Coloring Trees

1 Introduction

Graph coloring problems are well studied in literature. The traditional vertex
coloring problem asks to color the vertices of the graph using minimum number
of colors such that the adjacent vertices get different colors. There are many
variants of coloring problems. Recently, Zhang and Li [1] studied a coloring
problem in which adjacent vertices are allowed to get same color. The proposed
problems have applications related to homophyly in networks (see Chapter 4
of [2]).

Given an undirected graph G = (V,E) and a vertex coloring, a vertex is
happy if the vertex and all its adjacent vertices have the same color and unhappy
otherwise. An edge is happy if its end vertices have the same color and unhappy
otherwise.

For S ⊆ V , let cp : S → {1, 2, . . . , k} be a partial vertex coloring. A coloring
cf : V → {1, 2, . . . , k} is an extended full coloring for cp, if cf (v) = cp(v),∀v ∈ S.

? Corresponding author. Author is a faculty member of University of Hyderabad. This
work is carried out as part of his PhD program at IIT Hyderabad.

Given an S ⊆ V and a partial coloring cp, Maximum Happy Vertices (MHV)
(respectively, Maximum Happy Edges (MHE)) problem asks to find an extended
full coloring c such that the number of happy vertices (respectively, edges) is
maximized. As k is also an input parameter, the problem is also referred to as
k-MHV (respectively, k-MHE).

Definition 1 Multiway-Cut
(Instance) We are given an undirected graph G = (V,E) and a terminal set

S = {s1, s2, . . . , sk} ⊆ V .
(Goal) Find a set of edges C ⊆ E with minimum cardinality whose removal

disconnects all the terminals from each other.

Definition 2 Multiway-Uncut
(Instance) We are given an undirected graph G = (V,E) and a terminal set

S = {s1, s2, . . . , sk} ⊆ V .
(Goal) Find a partition {V1, V2, . . . , Vk} of V such that each partition con-

tains exactly one terminal and the number of edges not cut by the partition is
maximized.

The k-MHE problem is a generalization of the Multiway Uncut problem [3]
which is the complement of Multiway Cut problem [4, 5]. The Multiway Uncut
problem is a special case of k-MHE problem in which there is exactly one pre-
colored vertex (terminal) for each color.

Both k-MHV and k-MHE problems are NP-Hard [1] for k ≥ 3 for arbitrary

graphs. In [1], O(mn7 log n) and O(min{n 2
3m,m

3
2 }) time algorithms are pre-

sented for 2-MHV and 2-MHE respectively. Towards this end, the authors of [1]
used techniques such as minimizing sub modular functions (2-MHV) [6] and
max-flow algorithms (2-MHE) [7]. Zhang and Li [1] presented approximation
algorithms with approximation ratios max{ 1k , Ω(∆−3)} and 1

2 for k-MHV and
k-MHE respectively. Here, ∆ is the maximum degree of the graph. Later, Zhang
et. al. [8] presented approximation algorithms with approximation ratios 1

∆+1

and (1
2 +

√
2
4 f(k)) ≥ 0.8535 for k-MHV and k-MHE respectively.

1.1 Our Results

Apart from the results in [1] and [8], the MHV and MHE problems does not seem
to be addressed for any class of graphs. In this paper, we study these problems
for trees. We propose dynamic programming based algorithms for both k-MHV
and k-MHE. For an arbitrary k, the proposed algorithms take O(nk log k) and
O(nk) time respectively. When k is fixed, the algorithms run in linear time.
We also extend our algorithms to generate all the optimal colorings of the tree.
Generating each optimal coloring takes linear time.

Using the result from [4] we observe that, for an arbitrary k, the k-MHE
problem is NP-Hard for planar graphs. Using the result from [9] we infer that,
when the number of pre-colored vertices is bounded, the k-MHE problem can
be solved in linear time for graphs with bounded branch width.

The rest of the paper is organized as follows: In Section 2 we discuss the
algorithm for the k-MHV problem, in Section 3 we discuss the algorithm for
the k-MHE problem and the related observations. We conclude with Section 4.
Throughout the paper we assume the input graph is a tree (T). We use integers
from 1 to k to denote the colors.

2 Algorithm for k-MHV problem

We root the tree at an arbitrary vertex. Let Tv denotes the subtree rooted at a
vertex v. Before presenting the algorithm we give a simple reduction rule, which
can be executed in linear time.

Rule 1: If a leaf vertex is uncolored, remove it and count the leaf vertex as
happy.

We can give the color of its parent to the uncolored leaf to make it happy.
Hence, without loss of generality we can assume that all the leaves are colored.

We process the vertices of the rooted tree according to post order traversal.
At each vertex v, we maintain a list of 2k integer values. The maximum value
of these 2k values gives the maximum number of happy vertices in Tv, the sub
tree rooted at v. The maximum value of the 2k values associated with the root
gives us the maximum number of happy vertices of the tree. The corresponding
optimal coloring can also be traced back in reverse direction. The list of 2k values
defined as follows, for 1 ≤ i ≤ k:

– Tv[i,H] : The maximum number of happy vertices in the subtree Tv, when
v is colored i and is happy in Tv. That is, when v and all its children are
colored i. Note that, here we focus on v being happy in the subtree Tv. The
vertex v can become unhappy in the tree T because its parent gets another
color.

– Tv[i, U] : The maximum number of happy vertices in Tv, when v is colored
i and is unhappy in Tv. That is, when one or more children of v are colored
with a color other than i.

Note that, if a vertex or some of its children are already colored, then some
of the 2k values are invalid. We use −1 to denote an invalid value. We keep these
2k values in an array to access any specific item in constant time. The values are
indexed in the order, Tv[1, H], Tv[1, U], Tv[2, H], Tv[2, U], . . . , Tv[k,H], Tv[k, U].

The following expressions are defined to simplify some of the equations:

– Tv[i, ∗] : The maximum number of happy vertices in the subtree Tv, when v
is colored i. v may be happy or unhappy. That is:

Tv[i, ∗] = max{Tv[i,H], Tv[i, U]}. (1)

– Tv[i,−] : The maximum number of happy vertices in Tv excluding v, when
v is colored i.

Tv[i,−] = max{Tv[i,H]− 1, Tv[i, U]}. (2)

– Tv[ı, ∗] : The maximum number of happy vertices in the subtree Tv, when v
is colored with color other than i.

Tv[ı, ∗] = max
r 6=i
{Tv[r, ∗]}. (3)

– Tv[ı,−] : The maximum number of happy vertices in the subtree Tv excluding
v, when v is colored with color other than i.

Tv[ı,−] = max
r 6=i
{Tv[r,−]}. (4)

– Tv[∗, ∗] : The maximum number of happy vertices in Tv. That is:

Tv[∗, ∗] = max{Tv[1, ∗], Tv[2, ∗], . . . , Tv[k, ∗]}. (5)

Now we explain the process to compute these 2k values at each vertex. As
a leaf vertex is pre-colored, it is always happy alone as a subtree with a single
vertex. Only one out of 2k values is valid. Suppose the color of the leaf is i, then
the only valid value is Tv[i,H] = 1.

The following subsections consider the case when v is a non leaf vertex. Let
v1, v2, . . . , vd be the children of v. The values Tv[i,H] and Tv[i, U] are invalid, if
v is pre-colored with a color r 6= i. Otherwise, we compute Tv[i,H] and Tv[i, U]
as follows:

2.1 Computing Tv[i,H]

Computing Tv[i,H] has two cases:

Algorithm 1 Computing Tv[i,H]

1: procedure ComputeTvH(v, i)
2: if ∀vj , Tvj [i, ∗] 6= −1 then
3: return (1 +

∑
vj

Tvj [i, ∗]) . Case 2

4: else
5: return −1 . Case 1
6: end if
7: end procedure

Case 1: For some child vj , Tvj [i, ∗] = −1.
This means that the child vj is pre colored with a color other than i. In this
case, v becomes unhappy when it gets color i. So Tv[i,H] is invalid.
Case 2: For every child vj , Tvj [i, ∗] > −1.
In this case, we use the following equation to compute Tv[i,H].

Tv[i,H] = 1 +
∑
vj

Tvj [i, ∗]. (6)

Algorithm 2 Computing Tv[i, U]

1: procedure ComputeTvU(v, i)
2: if every child vj is pre-colored with color i then
3: return −1 . Case 1
4: else if ∃vj′ child of v such that Tvj′ [∗, ∗] 6= Tvj′ [i, ∗] then
5: return (

∑
vj

max{Tvj [1,−], . . . , Tvj [i, ∗], . . . , Tvj [k,−]}) . Case 2

6: else . Case 3
7: for each child vj do
8: diff(vj , i)← Tvj [i, ∗]− Tvj [ı,−]
9: end for

10: v` ← argminvj
diff(vj , i)

11: q ← argmaxr 6=i Tv` [r,−]
12: return (Tv` [q,−] +

∑
vj 6=v`

Tvj [i, ∗])
13: end if
14: end procedure

2.2 Computing Tv[i, U]

Computing Tv[i, U] has three cases:

Case 1: Every child vj is pre colored with color i.
In this case, we cannot make v unhappy by giving color i to v. Hence Tv[i, U] is
invalid.
Case 2: For some child vj′ , Tvj′ [∗, ∗] 6= Tvj′ [i, ∗].
That is, the child vj′ has color r 6= i in the optimal coloring of Tvj′ . When v is
colored i and vj′ is colored r, irrespective of the colors of the other children, v will
certainly be unhappy. In this case, we use the following expression to compute
Tv[i, U].

Tv[i, U] = Tvj′ [r,−]+
∑

vj child of v,

vj 6=vj′

max{Tvj [1,−], . . . , Tvj [i, ∗], . . . , Tvj [k,−]}

(7)

=
∑

vj child of v

max{Tvj [1,−], . . . , Tvj [i, ∗], . . . , Tvj [k,−]}.

(8)

Case 3: For every child vj , Tvj [∗, ∗] = Tvj [i, ∗].
For each vj , if we pick Tvj [i, ∗], v will become happy, but we need v to be unhappy.
To avoid this situation, for some child we pick a value with color other than i as
follows:

For each vj , we define diff(vj , i) as follows:

diff(vj , i) = Tvj [i, ∗]− Tvj [ı,−]. (9)

We pick the child (say v`) with minimum diff(vj , i) value. Suppose, Tv` [ı,−] =
Tv` [q,−], we replace Tv` [i, ∗] with Tv` [q,−]. The new expression is:

Tv[i, U] = Tv` [q,−] +
∑
vj 6=v`

Tvj [i, ∗]. (10)

Algorithm 3 Algorithm for MHV problem

1: for each v ∈ V in post order do
2: for i = 1 to k do
3: if v is a leaf then
4: if color(v) = i then
5: Tv[i,H]← 1
6: Tv[i, U]← −1
7: else
8: Tv[i,H]← −1
9: Tv[i, U]← −1

10: end if
11: else
12: if v is pre-colored and color(v) 6= i then
13: Tv[i,H]← −1
14: Tv[i, U]← −1
15: else
16: Tv[i,H]← ComputeTvH(v, i)
17: Tv[i, U]← ComputeTvU(v, i)
18: end if
19: end if
20: end for
21: end for

Theorem 1 There is an O(nk log k) time algorithm for the k-MHV problem in
trees.

Proof. We evaluate the time spent at a particular vertex v to compute Tv[i,H]
and Tv[i, U], for 1 ≤ i ≤ k. Let v1, v2, . . . , vd be the children of v.

Computing Tv[i,H]: Tvj [i,H] and Tvj [i, U] values are accessible in constant
time. Time to compute Tv[i,H], ∀1 ≤ i ≤ k is:∑

1≤i≤k

O(d) = O(kd). (11)

Computing Tv[i, U]: We sort the 2k values in descending order. From the orig-
inal array Tvj [i, ∗] is available in constant time. From the sorted array Tvj [∗, ∗]
and Tvj [ı, ∗] are available in constant time. Hence Tv[i, U], ∀1 ≤ i ≤ k can be
computed in:

O(dk log k) +
∑

1≤i≤k

O(d) = O(dk log k). (12)

Hence the total time is:∑
v

dk + dk log k ≤
∑
v

2dk log k = 2k log k
∑
v

d = O(nk log k). (13)

ut

The correctness of the value Tv[∗, ∗] for every vertex v implies the correctness
of the algorithm. The correctness of the value Tv[∗, ∗] follows from the correct-
ness of the 2k values Tv[1, H], Tv[1, U], Tv[2, H], Tv[2, U], . . . , Tv[k,H], Tv[k, U]
associated with v.

Theorem 2 Algorithm 3 correctly computes the values Tv[i,H] and Tv[i, U] for
every v and 1 ≤ i ≤ k.

Proof. We prove the theorem by using induction on the size of the subtrees. For
a leaf vertex v, the algorithm correctly computes the values Tv[i,H] and Tv[i, U]
for 1 ≤ i ≤ k. Since the leaf vertices are pre-colored, each leaf vertex has only
one valid value (this value being 1).

For a non-leaf vertex v, let v1, v2, . . . , vd be the children of v. By induction on
the size of the sub-trees, all the 2k values associated with each child vj of v are
correctly computed. Let x be the value computed by the algorithm for Tv[i,H]
(or Tv[i, U]) for any color i. If x is not the optimal value, it will contradict the
optimality of at least one value of a child of v. Hence the algorithm correctly
computes the values Tv[i,H] and Tv[i, U] for every v and 1 ≤ i ≤ k. ut

2.3 Generating all optimal happy vertex colorings

Our algorithm can also be extended to generate all the optimal happy vertex
colorings of the tree. Among the 2k values associated with a vertex v, there
may be multiple values equal to the optimal value. So, while generating optimal
happy vertex coloring, we can chose any of these values to generate a different
optimal coloring. For example, let Tv[i,H] be an optimal value for the vertex v.
Let vj be a child of v with both Tvj [i,H] and Tvj [i, U] are optimal. So, we can
generate one optimal coloring by picking Tvj [i,H] and another optimal coloring
by picking Tvj [i, U]. There may be exponentially many optimal colorings, but,
generating each optimal coloring takes polynomial time (linear time for fixed k).

3 Algorithm for k-MHE problem

Before presenting the algorithm we give simple reduction rules, which can be
executed in linear time.

Rule 2: Let v be a pre-colored vertex with degree more than 1. Let v1, v2, . . . , vd
be the neighbours of v in T . We can divide T into d edge disjoint subtrees
T1, T2, . . . , Td and all these trees share only the vertex v.

k-MHE(T) = k-MHE(T1) + k-MHE(T2) + · · ·+ k-MHE(Td). (14)

With the application of Rule 2, without loss of generality we can assume that
T does not have a pre-colored vertex with degree more than 1.

Now, we root the tree at an arbitrary vertex with degree more than 1.

Rule 3: (Similar to Rule 1 in Section 2) If a leaf vertex is uncolored, remove it
and count the edge connecting the leaf vertex as happy.

With Rule 2 and Rule 3, without loss of generality, all the leaves of the rooted
tree T are pre-colored and no non-leaf vertex is pre-colored.

Our algorithm for k-MHE problem has two phases. In the first phase, we visit
the vertices according to post order traversal and populate a list of tentative
colors for each vertex. In the second phase we visit the vertices according to
pre-order traversal and assign a color for each vertex.

Algorithm 4 Phase 1 of the algorithm

1: procedure PopulateTentativeColors(T)
2: for each v ∈ V in post order do
3: if v is a leaf then
4: L(v)← color(v)
5: else . Let v1, v2, . . . , vd be the children of v
6: frequency[1..k]← {0}
7: for each child vj of v do
8: for each color c ∈ L(v) do
9: frequency[c]← frequency[c] + 1

10: end for
11: end for
12: max← 0
13: for i = 1 to k do
14: if frequency[i] > max then
15: max← frequency[i]
16: end if
17: end for
18: for i = 1 to k do
19: if frequency[i] = max then
20: L(v)← L(v) ∪ {i}
21: end if
22: end for
23: end if
24: end for
25: end procedure

Phase 1: We visit the vertices according to post order traversal. At each vertex
v, we keep a list of tentative colors to assign to the vertex v in the optimal
solution. The size of this list is at most k. Let L(v) denote the list of tentative
colors associated with the vertex v.

If the vertex v is a leaf, as the leaf vertex is pre-colored, we add that pre-color to
L(v). Otherwise, let v1, v2, . . . , vd be the children of v. The list of tentative colors
L(vj) for each vertex vj are already computed. For each child vj , we traverse the
list L(vj) and compute the frequency of occurrences of each color in the multiset
that is union of the lists. Let frequency(i) denote the frequency of color i. We
add all the colors with maximum frequency to L(v). The process is captured in
Algorithm 4.

Algorithm 5 Phase 2 of the algorithm

1: procedure AttachColors(T,L) . Fixing color to vertices
2: for each v ∈ V in pre order do
3: if |L(v)| = 1 then
4: color(v)← Only element of L(v)
5: else if color(parent(v)) ∈ L(v) then
6: color(v)← color(parent(v))
7: else
8: color(v)← Any element of L(v)
9: end if

10: end for
11: end procedure

Phase 2: We visit the vertices according to pre-order traversal to assign a color
to each vertex. Let v be the vertex in pre-order. If |L(v)| = 1, then we fix the
color of v to the only color in L(v). Otherwise, we check if the color of the
parent of v is present in L(v), and assign it to v if present. Otherwise, we pick
any arbitrary color from L(v) and assign it to v. The process is captured in
Algorithm 5.

Theorem 3 There is an O(nk) time algorithm for the k-MHE problem in trees.

Proof. At each vertex with degree d, we perform O(kd) time in the Phase 1 and
O(k) time in the Phase 2. The time complexity is:∑

v

O(kd) = O(nk). (15)

ut

The correctness of the algorithm can be proved using induction on the size
of the sub-tree similar to Theorem 2.

3.1 Generating all optimal happy edge colorings

Our algorithm can be extended to generate all the optimal happy edge color-
ings. We keep a list of tentative colors at each vertex. At a vertex v, if the
color(parent(v)) is present in L(v), then, we assign color(parent(v)) to v in the

optimal coloring. Otherwise, we can generate a different optimal coloring for
each color in L(v). Here we point out that, this scheme may miss out some opti-
mal colorings when color(parent(v)) is not present in L(v) but present in L′(v),
the set of colors with frequency one less than the maximum frequency. This
situation indicates that, we can assign the color(parent(v)) to v even though
the color(parent(v)) is not present in L(v). A special case of this scenario is
when there is a vertex v with all its children have distinct colors (the maximum
frequency being 1). Even though color(parent(v)) not present in L(v), we can
assign the color(parent(v)) to v as it has zero frequency at v.

There may be exponentially many optimal happy edge colorings. Generating
each optimal coloring takes polynomial time (linear time for fixed k).

3.2 k-MHE for planar graphs and graphs with bounded branch
width

The Multiway-Cut problem is NP-Hard for planar graphs [4] when k, the number
of terminals, is not fixed. This implies the following theorem on hardness of k-
MHE for planar graphs for an arbitrary k.

Theorem 4 For an arbitrary k, the k-MHE problem is NP-Hard for planar
graphs.

In [10], Robertson and Seymour introduced the notions of tree width and
branch width. They showed that these two quantities are always within a con-
stant factor of each other. Many graph problems that are NP-Hard for gen-
eral graphs have been shown to be solvable in polynomial time for graphs with
bounded tree width or equivalently bounded branch width. For more formal
definitions of branch width and tree width we refer the readers to [10].

Definition 3 Multi-Multiway Cut
(Instance) We are given an undirected graph G = (V,E) and c sets of vertices

S1, S2, . . . , Sc.
(Goal) Find a set of edges C ⊆ E with minimum cardinality whose removal

disconnects every pair of vertices in each set Si.

When c = 1, the Multi-Multiway Cut problem is equivalent to Multiway
Cut problem. The k-MHE problem can also be formulated as a Multi-Multiway
Cut problem, by creating vertex sets with every pair of pre-colored vertices with
different colors. In [9], Deng et. al. studied the Multi-Multiway Cut problem
for graphs with bounded branch width and presented an O(b2b+2.22bc.|G|) time
algorithm, where b is the branch width of the graph and c is the number of vertex
sets. The algorithm runs in linear time when the branch width and the number
of vertex sets are fixed.

Theorem 5 When the branch width of the graph and the number of pre-colored
vertices are bounded, there is a linear time algorithm for the k-MHE problem.

Proof. Let the number of pre-colored vertices be p and the branch width be b.
For this instance of k-MHE, we can formulate a Multi-Multiway Cut problem
with at most p2 vertex sets. Hence, the k-MHE problem can be solved in time
O(b2b+2.22bp

2

.|G|). Hence, when both the number of pre-colored vertices and the
branch width are constants, the k-MHE problem can be solved in linear time.

ut

4 Conclusions

In this paper, we study the Maximum Happy Vertices (k-MHV) and Maximum
Happy Edges (k-MHE) problems for trees. We have presented O(nk log k) and
O(nk) time algorithms for k-MHV and k-MHE problems respectively. Our al-
gorithms run in linear time when k is fixed. Our algorithms can be extended to
generate all optimal colorings of the tree.

As a future direction, it is interesting to study the k-MHV problem for planar
graphs. Finding a linear time algorithm for graphs with bounded tree width
(branch width) without the constraint on the number of pre-colored vertices is
another direction.

References

1. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theoretical
Computer Science 593 (2015) 117–131

2. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press (2010)

3. Langberg, M., Rabani, Y., Swamy, C.: Approximation algorithms for graph ho-
momorphism problems. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques

4. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis,
M.: The complexity of multiway cuts (extended abstract). In: Proceedings of
the Twenty-fourth Annual ACM Symposium on Theory of Computing. STOC ’92
(1992) 241–251

5. Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21(1) (1991)
51–89

6. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions. Journal of ACM 48(4) (2001) 761–777

7. Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM Journal
of Computing 4(4) (1975) 507–518

8. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: Computing and Combinatorics (LNCS).
Volume 9198. (2015) 159–170

9. Deng, X., Lin, B., Zhang, C.: Multi-multiway cut problem on graphs of bounded
branch width. In: Frontiers in Algorithmics and Algorithmic Aspects in Informa-
tion and Management. (2013) 315–324

10. Robertson, N., Seymour, P.: Graph minors. x. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B 52(2) (1991) 153–190

