
COM S 6810 Theory of Computing February 3, 2009

Lecture 5: Polynomial Hierarchy

Instructor: Rafael Pass Scribe: Navin Sivakumar

Recall that NP can be thought of as the class of languages consisting of strings for which
there exists an easily verifiable proof. Similarly, the complementary class coNP can be
interpreted as the class of languages consisting of strings for which all proofs fail. In-
tuitively, problems in NP ask whether there exists a string satisfying certain properties,
whereas problems in coNP whether all strings satisfy certain properties. A natural ex-
tension is to consider problems which combine existential and universal quantifiers. The
complexity classes which emerge from this process make up the polynomial hierarchy.

In order to define the complexity classes formally, it is useful to introduce the notion of
a polynomial time relation:

Definition 1 A relation R(x, y1, . . . , yn) is a polynomial time relation if there is a (de-
terministic) Turing machine V and polynomial p such that V decides R(x, y1, . . . , yn) in
time p(|x|).

We then define NP as follows:

Definition 2 A language L is in the class NP if and only if there exists a polynomial
time relation R such that x ∈ L if and only if ∃y such that R(x, y) holds.

We can also define the complementary class coNP:

Definition 3 A language L is in the class coNP if and only if its complement L is in
NP; equivalently, a language L is in coNP if and only if there exists a polynomial time
relation R such that x ∈ L if and only if ∀y, R(x, y) holds.1

The following example uses the languages SAT and coSAT to illustrate the definitions
given above:

Example 1 To see that SAT ∈ NP, we interpret the string x as representing a formula
and the string y as representing an assignment to the variables in the formula; R(x, y)
holds if and only if the assignment given by y satisfies the formula given by x. To see
that coSAT ∈ coNP, we interpret x and y as before and define R(x, y) to hold if and only
if the assignment given by y does not satisfy x.

1To see that the definitions are equivalent, consider the complementary relations R and R such that
R(x, y) holds if and only if R(x, y) does not hold; if R is the relation demonstrating that L is in NP,
then R shows that L is in coNP, and vice versa.

5-1

Defining NP and coNP in this way highlights the role of the existential and universal
quantifiers. The following example demonstrates how we might build more complicated
questions by combining different quantifiers:

Example 2 Consider the problem which gives a formula φ and integer k and asks
whether there exists a formula φ′ which is equivalent to φ such that |φ′| ≤ k. This can be
written in terms of a polynomial-time relation as follows: define relation R((φ, k), φ′, y) to
hold if and only if |φ′| ≤ k and phi(y) = φ′(y), where y is interpreted as an assignment to
the variables in the formulas. Then the problem defines a language which contains (φ, k)
if and only if ∃φ′ such that ∀y, R((φ, k), φ′, y) holds.

Generalizing the pattern allows us to define the classes Σi and Πi of the polynomial
hierarchy:

Definition 4 A language L is in Σi if and only if ∃ a polynomial-time relation R such
that x ∈ L if and only if

∃y1∀y2 · · ·QiyiR(x, y1, y2, . . . , yi),

where Qj = ∀ if j is even and Qj = ∃ if j is odd.

A language L is in Πi if and only if ∃ a polynomial-time relation R such that x ∈ L if
and only if

∀y1∃y2 · · ·QiyiR(x, y1, y2, . . . , yi),

where Qj = ∃ if j is even and Qj = ∀ if j is odd. Equivalently, L is in Πi if and only if
L is in Σi (i.e. Πi = coΣi).

Define the class PH by PH =
⋃

i

Σi.

Note that it follows directly from the definitions that Σ1 = NP and Π1 = coNP. It is also
straightforward to see that for all i, the following hold:

Σi ⊆ Σi+1

Πi ⊆ Πi+1

Σi ⊆ Πi+1

Πi ⊆ Σi+1.

Besides being natural extensions of the NP and coNP, the classes of the polynomial
hierarchy can be interpreted in the context of games. In this setting, languages in Σi can
be thought of asking whether there exists a winning strategy in i

2
rounds for the first

player in a game. To see this, we can interpret the quantifiers by asking whether there

5-2

exists a move y1 such that no matter what response y2 is played, there exists a move
y3, and so on for i

2
rounds, such that player 1 wins. Similarly, languages in Πi can be

interpreted as asking about winning strategies for the second player.

As we have seen with NP and NL, it is often convenient when reasoning about com-
plexity classes to make use of problems which are complete for the class. We can con-
struct Σi-complete problems by generalizing SAT (which is NP-complete and therefore
Σ1-complete):

Definition 5 Define the language Σi-SAT to be the set of formulas φ such that

∃y1∀y2 · · ·Qiyi, φ(y1, . . . , yi),

where Qj = ∃ if j is odd and Qj = ∀ if j is even.

Lemma 1 For each i, the language Σi-SAT is Σi-complete.

Alternatively, we can define the classes Σi (and similarly Πi recursively by

Σi = NP
Σi−1 = NP

Σi−1-SAT,

where NP
Σi−1 denotes the class of languages decidable by a non-deterministic Turing

machine in polynomial time given access to an oracle which decides languages in Σi−1.
This recursive definition can be easier to work with in some cases. The following theorem
establishes that both definitions define the same complexity classes2:

Theorem 2 Define Σi as in Definition 5. Then Σi = NP
Σi−1-SAT.

Proof. We prove the special case Σ2 = NP
SAT. The result follows from an induction

argument where the proof of the induction step is essentially identical to the special case
with some extra notation.

First, we will show that Σ2 ⊆ NP
SAT. Let L be in Σ2. Then there exists a polynomial-time

relation R such that x ∈ L iff ∃y1 such that ∀y2, R(x, y1, y2). Intuitively, the approach is
to non-deterministically guess y1; then we can use the oracle to decide if ∃y2 such that
the complement of R holds on (x, y1, y2) and negate the answer. More formally, consider
the following non-deterministic oracle machine M operating on input x:

• Make a non-deterministic guess y1.

• Use a Karp reduction to write write R(x, y1, y2) as a SAT formula φ(y2) with x and
y1 hard-coded

2Note that the second equality follows directly from the fact that Σi−1-SAT is Σi−1-complete.

5-3

• Feed φ to the oracle and accept if and only if the oracle rejects.

It follows that M(x) accepts if and only if ∃y1 such that ∀y2, y2 does not satisfy φ, or,
equivalently, R(x, y1, y2) holds.

Now we will show that NP
SAT ⊆ Σ2. Let L ∈ NP

SAT. Intuitively, if L can be decided by
a polynomial time non-deterministic oracle machine M , then we can say something like,
“There exist non-deterministic choices y, oracle queries q1, . . . , qk, and oracle answers
a1, . . . , ak such that M accepts x in polynomial time.” However, this intuition suggests
that NP

SAT ⊆ NP; we have seen in an earlier lecture that this would imply NP = coNP,
which would be a remarkable result. The flaw in this reasoning is that we must include
a condition requiring that the oracle answers a1, . . . , ak are valid answers to the queries
q1, . . . , qk, i.e. aj = 1 if and only if qj ∈ SAT. Therefore, we can describe L by observing
that x ∈ L if and only if ∃y, q1, . . . , qk, a1, . . . , ak such that M accepts x and aj = 1 if and
only if qj ∈ SAT. However, deciding the relation “M accepts x and aj = 1 if and only
if qj ∈ SAT” requires deciding SAT, so we would like to rewrite this characterization in
terms of a polynomial time relation. We do this by observing that qj ∈ SAT if and only
if ∃xY

j such that qj(x
Y
j) = 1, and qj /∈ SAT if and only if ∀xN

j , qj(x
N
j) = 0. Thus, we can

rewrite the characterization of L as

x ∈ L iff ∃y, q1, . . . , qk, a1, . . . , ak, x
Y
1 , . . . , xY

k such that ∀xN
1 , . . . , xN

k

• M accepts x

• If aj = 1, then qj(x
Y
j) = 1

• If aj = 0, then qj(x
N
j) = 0

An interesting property of the polynomial hierarchy is that if any two classes in the
hierarchy are equal, then the hierarchy “collapses.” The following theorem makes this
statement precise:

Theorem 3 If Σi = Πi, then PH = Σi.

Proof. We prove the following special case: if NP = coNP, then PH = NP. As for
the proof of theorem 2, the proof of the general case is analogous but involves more
cumbersome notation.

It is trivial that NP ⊆ PH. In order to show that PH ⊆ NP, we will show inductively
that Σi ⊆ NP for all i. For i = 1, Σ1 = NP by definition. Now assume that Σi ⊆ NP.
Recall from theorem 2 that Σi+1 = NP

Σi . By the inductive hypothesis, Sigmai = NP.
Therefore, Σi+1 = NP

NP = NP
SAT. Thus, it is sufficient to show that NP

SAT ⊆ NP

5-4

under the assumption that NP = coNP. Let L be in NP
SAT. Then there exists a non-

deterministic oracle machine M which decides L. As in the proof of theorem 2, L can
be characterized as follows: x ∈ L if and only if there exist non-deterministic choices y,
oracle queries q1, . . . , qk and oracle answers a1, . . . , ak such that M accepts x and aj is
a valid answer to query qj for each j. Again, we must convert the process of checking
the validity of oracle answers into a polynomial-time relation. It is straightforward to
formulate checking “Yes” oracle answers as a problem in NP; under the assumption that
NP = coNP, we can apply a reduction from coSAT to SAT to verify “No” answers from
the oracle. Formally, define the relation R by R(x, y, q1, . . . , qk, a1, . . . , ak, x1, . . . , xk) by
the following procedure:

• Check if M accepts x using the non-deterministic choices y, oracle queries q1, . . . , qk,
and oracle answers a1, . . . , ak; otherwise reject

• If aj = 1, check that qj(xj) = 1; otherwise reject

• If aj = 0, compute the Karp reduction from coSAT to SAT on qj to find a formula
q′j . Check that q′j(xj) = 1; otherwise reject

Clearly the relation is polynomial time checkable. It is easy to check that x ∈ L if and
only if

∃y, q1, . . . , qk, a1, . . . , ak, x1, . . . , xk such that R(x, y, q1, . . . , qk, a1, . . . , ak, x1, . . . , xk).

Therefore, L ∈ NP.

Much like the assumption P 6= NP, results in complexity are sometimes proved under the
assumption that PH does not collapse. Observe that this is a stronger assumption than
P 6= NP, since P 6= NP implies NP = coNP.

We would also like to consider how PH relates to space-complexity classes such as
PSPACE. It is straightforward to verify the following theorem:

Theorem 4 PH ⊆ PSPACE.

It remains an open question whether the containment is proper. The relationship be-
tween PSPACE and PH is illustrated by the PSPACE-complete language of true quantified
boolean formulas, or TQBF:

Definition 6 A formula φ is in TQBF if and only if ∃y1∀y2 · · ·Qnynφ(y1, . . . , yn).

Observe that TQBF has a form very similar to languages in PH; however, the number of
quantifiers is allowed to depend on the input length n. Note also that if PH = PSPACE,
then the polynomial hierarchy collapses, since the complete language TQBF would fall in
Σi for some i.

5-5

