
DRAFT

i

Computational Complexity: A Modern
Approach

Draft of a book: Dated January 2007
Comments welcome!

Sanjeev Arora and Boaz Barak
Princeton University

complexitybook@gmail.com

Not to be reproduced or distributed without the authors’ permission

This is an Internet draft. Some chapters are more finished than others. References and
attributions are very preliminary and we apologize in advance for any omissions (but hope you

will nevertheless point them out to us).

Please send us bugs, typos, missing references or general comments to
complexitybook@gmail.com — Thank You!!

DRAFT

ii

DRAFT

Chapter 5

The Polynomial Hierarchy and
Alternations

“..synthesizing circuits is exceedingly difficulty. It is even more difficult to show that
a circuit found in this way is the most economical one to realize a function. The
difficulty springs from the large number of essentially different networks available.”
Claude Shannon 1949

This chapter discusses the polynomial hierarchy, a generalization of P, NP and coNP that
tends to crop up in many complexity theoretic investigations (including several chapters of this
book). We will provide three equivalent definitions for the polynomial hierarchy, using quantified
predicates, alternating Turing machines, and oracle TMs (a fourth definition, using uniform families
of circuits, will be given in Chapter 6). We also use the hierarchy to show that solving the SAT
problem requires either linear space or super-linear time.

5.1 The classes Σp
2 and Πp

2

To understand the need for going beyond nondeterminism, let’s recall an NP problem, INDSET,
for which we do have a short certificate of membership:

INDSET = {〈G, k〉 : graph G has an independent set of size ≥ k} .

Consider a slight modification to the above problem, namely, determining the largest indepen-
dent set in a graph (phrased as a decision problem):

EXACT INDSET = {〈G, k〉 : the largest independent set in G has size exactly k} .

Now there seems to be no short certificate for membership: 〈G, k〉 ∈ EXACT INDSET iff there
exists an independent set of size k in G and every other independent set has size at most k.

Similarly, consider the language MIN-DNF, the decision version of a problem in circuit mini-
mization, a topic of interest in electrical engineering (and referred to in Shannon’s paper). We say

Web draft 2007-01-08 22:00
Complexity Theory: A Modern Approach. © 2006 Sanjeev Arora and Boaz Barak. References and attributions are
still incomplete.

p5.1 (91)

DRAFT

p5.2 (92) 5.1. THE CLASSES ΣP
2 AND ΠP

2

that two boolean formulae are equivalent if they have the same set of satisfying assignments.

MIN− DNF = { xϕy : ϕ is a DNF formula not equivalent to any smaller DNF formula} .
= { xϕy : ∀ψ, |ψ| < |ϕ| ,∃ assignment s such that ϕ(s) 6= ψ(s)} .

Again, there is no obvious notion of a certificate of membership. Note that both the above
problems are in PSPACE, but neither is believed to be PSPACE-complete.

It seems that the way to capture such languages is to allow not only an “exists“ quantifier (as in
Definition 2.1 of NP) or only a “for all” quantifier (as Definition 2.22 of coNP) but a combination
of both quantifiers. This motivates the following definition:

Definition 5.1
The class Σp

2 is defined to be the set of all languages L for which there exists a polynomial-time
TM M and a polynomial q such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|)M(x, u, v) = 1

for every x ∈ {0, 1}∗.

Note that Σp
2 contains both the classes NP and coNP.

Example 5.2
The language EXACT INDSET above is in Σp

2, since as we noted above, a pair 〈G, k〉 is in EXACT INDSET
iff

∃ S ∀S′ set S is an independent set of size k in G and
S′ is not a independent set of size ≥ k + 1.

We define the class Πp
2 to be the set

{
L : L ∈ sigp

2

}
. It is easy to see that an equivalent definition

is that L ∈ Πp
2 if there is a polynomial-time TM M and a polynomial q such that

x ∈ L⇔ ∀u ∈ {0, 1}q(|x|) ∃v ∈ {0, 1}q(|x|)M(x, u, v) = 1

for every x ∈ {0, 1}∗.

Example 5.3
The language EXACT INDSET is also in Πp

2 since a pair 〈G, k〉 is in EXACT INDSET if for every S′,
if S′ has size at least k + 1 then it is not an independent set, but there exists an independent set
S of size k in G. (Exercise 8 shows a finer placement of EXACT INDSET.)

The reader can similarly check that MIN− DNF is in Πp
2. It is conjectured to be complete for

Πp
2.

Web draft 2007-01-08 22:00

DRAFT

5.2. THE POLYNOMIAL HIERARCHY. p5.3 (93)

5.2 The polynomial hierarchy.

The polynomial hierarchy generalizes the definitions of NP, coNP,Σp
2,Π

p
2 to consists all the lan-

guages that can be defined via a combination of a polynomial-time computable predicate and a
constant number of ∀/∃ quantifiers:

Definition 5.4 (Polynomial Hierarchy)
For every i ≥ 1, a language L is in Σp

i if there exists a polynomial-time TM M and
a polynomial q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi denotes ∀ or ∃ depending on whether i is even or odd respectively.

We say that L is in Πp
i if there exists a polynomial-time TM M and a polynomial

q such that

x ∈ L⇔ ∀u1 ∈ {0, 1}q(|x|) ∃u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi denotes ∃ or ∀ depending on whether i is even or odd respectively.

The polynomial hierarchy is the set PH = ∪iΣ
p
i .

Remark 5.5
Note that Σp

1 = NP and Πp
2 = coNP. More generally, for evert i ≥ 1, Πp

i = coΣp
i =

{
L : L ∈ Σp

i

}
.

Note also that that Σp
i ⊆ Πp

i+1, and so we can also define the polynomial hierarchy as ∪i>0Π
p
i .

5.2.1 Properties of the polynomial hierarchy.

We believe that P 6= NP and NP 6= coNP. An appealing generalization of these conjectures is
that for every i, Σp

i is strictly contained in Σp
i+1. This is called the conjecture that the polynomial

hierarchy does not collapse, and is used often in complexity theory. If the polynomial hierarchy
does collapse this means that there is some i such that Σp

i = ∪jΣ
p
j = PH. In this case we say that

the polynomial hierarchy has collapsed to the ith level. The smaller i is, the weaker, and hence
more plausible, is the conjecture that PH does not collapse to the ith level.

Theorem 5.6
1. For every i ≥ 1, if Σp

i = Πp
i then PH = Σp

i (i.e., the hierarchy collapses to the ith level).

2. If P = NP then PH = P (i.e., the hierarchy collapses to P).

Proof: We do the second part; the first part is similar and also easy.
Assuming P = NP we prove by induction on i that Σp

i ,Π
p
i ⊆ P. Clearly this is true for i = 1

since under our assumption P = NP = coNP. We assume it is true for i−1 and prove it for i. Let

Web draft 2007-01-08 22:00

DRAFT

p5.4 (94) 5.2. THE POLYNOMIAL HIERARCHY.

L ∈ Σp
i , we will show that L ∈ P. By definition, there is a polynomial-time M and a polynomial q

such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1,

where Qi is ∃/∀ as in Definition 5.4. Define the language L′ as follows:

u ∈ L′ ⇔ ∃∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(u1, u2, . . . , ui) = 1.

Clearly, L′ ∈ Πp
i−1 and so under our assumption is in P. This implies that there is a TM M ′ such

that
x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|)M ′(x, u1) = 1 .

But this means L ∈ NP and hence under our assumption L ∈ P. The same idea shows that if
L ∈ Πp

i then L ∈ P. �

5.2.2 Complete problems for levels of PH

For every i, we say that a language L is Σp
i -complete if L ∈ Σp

i and for every L′ ∈ Σp
i , L

′ ≤p L.
We define Πp

i -completeness and PH-completeness in the same way. In this section we show that
for every i ∈ N, both Σp

i and Πp
i have complete problems. In contrast the polynomial hierarchy

itself is believed not to have a complete problem, as is shown by the following simple claim:

Claim 5.7
Suppose that there exists a language L that is PH-complete, then there exists an i such that

PH = Σp
i (and hence the hierarchy collapses to its ith level.)

Proof sketch: Since L ∈ PH = ∪iΣ
p
i , there exists i such that L ∈ Σp

i . Since L is PH-complete,
we can reduce every language of PH to Σp

i to L, and thus PH ⊆ Σp
i . �

Remark 5.8
It is not hard to see that PH ⊆ PSPACE. A simple corollary of Claim 5.7 is that unless the
polynomial hierarchy collapses, PH 6= PSPACE. Indeed, otherwise the problem TQBF would be
PH-complete.

Example 5.9
The following are some examples for complete problems for individual levels of the hierarchy:

For every i ≥ 1, the class Σp
i has the following complete problem involving quantified boolean

expression with limited number of alternations:

ΣiSAT = ∃u1∀u2∃ · · ·Qiui ϕ(u1, u2, . . . , ui) = 1, (1)

where ϕ is a Boolean formula (not necessarily in CNF form, although this does not make much
difference), each ui is a vector of boolean variables, and Qi is ∀ or∃ depending on whether i is odd
or even. Notice that this is a special case of the TQBF problem defined in Chapter 4. Exercise 1

Web draft 2007-01-08 22:00

DRAFT

5.3. ALTERNATING TURING MACHINES p5.5 (95)

asks you to prove that ΣiSAT is indeed Σp
i -complete. One can similarly define a problem ΠiSAT

that is Πp
i -complete.

In the SUCCINCT SET COVER problem we are given a collection S = {ϕ1, ϕ2, . . . , ϕm} of 3-
DNF formulae on n variables, and an integer k. We need to determine whether there is a subset
S′ ⊆ {1, 2, . . . ,m} of size at most K for which ∨i∈S′ϕi is a tautology (i.e., evaluates to 1 for every
assignment to the variables). Umans showed that SUCCINCT SET COVER is Σp

2-complete [?].

5.3 Alternating Turing machines

Alternating Turing Machines (ATM), are generalizations of nondeterministic Turing machines.
Recall that even though NDTMs are not a realistic computational model, studying them helps us
to focus on a natural computational phenomenon, namely, the apparent difference between guessing
an answer and verifying it. ATMs plays a similar role for certain languages for which there is no
obvious short certificate for membership and hence cannot be characterized using nondeterminism
alone.

Alternating TMs are similar to NDTMs in the sense that they have two transition functions
between which they can choose in each step, but they also have the additional feature that every
internal state except qaccept and qhalt is labeled with either ∃ or ∀. Similar to the NDTM, an ATM
can evolve at every step in two possible ways. Recall that a non-deterministic TM accepts its input
if there exists some sequence of choices that leads it to the state qaccept. In an ATM, the exists
quantifier over each choice is replaced with the appropriate quantifier according to the labels.
Definition 5.10
Let M be an alternating TM. For a function T : N → N, we say that M is an T (n)-time ATM if
for every input x ∈ {0, 1}∗ and for every possible sequence of transition function choices, M will
halt after at most T (|x|) steps.

For every x ∈ {0, 1}∗, we let GM,x be the configuration graph of x, whose vertices are the
configurations of M on input x and there is an edge from configuration C to C ′ if there C ′ can
be obtained from C in one step using one of the two transition functions (see Section 4.1). Recall
that this is a directed acyclic graph. We label some of the nodes in the graph by “ACCEPT” by
repeatedly applying the following rules until they cannot be applied anymore:

• The configuration Caccept where the machine is in qaccept is labeled “ACCEPT”.

• If a configuration C is in a state labeled ∃ and one of the configurations C ′ reachable from it
in one step is labeled “ACCEPT” then we label C “ACCEPT”.

• If a configuration C is in a state labeled ∀ and both the configurations C ′, C ′′ reachable from
it one step is labeled “ACCEPT” then we label C “ACCEPT”.

We say that M accepts x if at the end of this process the starting configuration Cstart is labeled
“ACCEPT”. The language accepted by M is the set of all x’s such that M accepts x. We denote
by ATIME(T (n)) the set of all languages accepted by some T (n)-time ATM.

Web draft 2007-01-08 22:00

DRAFT

p5.6 (96) 5.4. TIME VERSUS ALTERNATIONS: TIME-SPACE TRADEOFFS FOR SAT.

For every i ∈ N, we define ΣiTIME(T (n)) (resp. ΠiTIME(T (n)) to be the set of languages
accepted by a T (n)-time ATM M whose initial state is labeled “∃” (resp. “∀”) and on which every
input and sequence of choices leads M to change at most i− 1 times from states with one label to
states with the other label.

The following claim is left as an easy exercise (see Exercise 2):

Claim 5.11
For every i ∈ N,

Σp
i = ∪cΣiTIME(nc)

Πp
i = ∪cΠiTIME(nc)

5.3.1 Unlimited number of alternations?

What if we consider polynomial-time alternating Turing machines with no a priori bound on the
number of quantifiers? We define the class AP to be ∪cATIME(nc). We have the following
theorem:
Theorem 5.12
AP = PSPACE.

Proof: PSPACE ⊆ AP follows since TQBF is trivially in AP (just “guess” values for each
existentially quantified variable using an ∃ state and for universally quantified variables using a ∀
state) and every PSPACE language reduces to TQBF.

AP ⊆ PSPACE follows using a recursive procedure similar to the one used to show that
TQBF ∈ PSPACE. �

Similarly, one can consider alternating Turing machines that run in polynomial space. The class
of languages accepted by such machines is called APSPACE, and Exercise 6 asks you to prove
that APSPACE = EXP. One can similarly consider alternating logspace machines; the set of
languages accepted by them is exactly P.

5.4 Time versus alternations: time-space tradeoffs for SAT.

Despite the fact that SAT is widely believed to require exponential (or at least super-polynomial)
time to solve, and to require linear (or at least super-logarithmic) space, we currently have no way
to prove these conjectures. In fact, as far as we know, SAT may have both a linear time algorithm
and a logarithmic space one. Nevertheless, we can prove that SAT does not have an algorithm
that runs simultaneously in linear time and logarithmic space. In fact, we can prove the following
stronger theorem:

Theorem 5.13 (??)
For every two functions S, T : N → N, define TISP(T (n), S(n)) to be the set of languages decided
by a TM M that on every input x takes at most O(T (|x|)) steps and uses at most O(S(|x|)) cells
of its read/write tapes. Then, SAT 6∈ TISP(n1.1, n0.1).

Web draft 2007-01-08 22:00

DRAFT

5.4. TIME VERSUS ALTERNATIONS: TIME-SPACE TRADEOFFS FOR SAT. p5.7 (97)

Remark 5.14
The class TISP(T (n), S(n)) is typically defined with respect to TM’s with RAM memory (i.e.,
TM’s that have random access to their tapes; such machines can be defined in a similar way to the
definition of oracle TM’s in Section 3.5). Theorem 5.13 and its proof carries over for that model
as well. We also note that a stronger result is known for both models: for every c < (

√
5 + 1)/2,

there exists d > 0 such that SAT 6∈ TISP(nc, nd) and furthermore, d approaches 1 from below as
c approaches 1 from above.

Proof: We will show that
NTIME(n) * TISP(n1.2, n0.2) . (2)

This implies the result for SAT by following the ideas of the proof of the Cook-Levin Theorem
(Theorem 2.10). A careful analysis of that proof yields a reduction from the task of deciding mem-
bership in an NTIME(T (n))-language to the task deciding whether an O(T (n) log T (n))-sized
formula is satisfiable, such that every output bit of this reduction can be computed in polyloga-
rithmic time and space. (See also the proof of Theorem 6.7 for a similar analysis.) Hence, if
SAT ∈ TISP(n1.1, n0.1) then NTIME(n) ⊆ TISP(n1.1polylog(n), n0.1polylog(n)). Our main step
in proving (2) is the following claim, showing how to replace time with alternations:

Claim 5.14.1
TISP(n12, n2) ⊆ Σ2TIME(n8).

Proof: The proof is similar to the proofs of Savitch’s Theorem and the PSPACE-completeness
of TQBF (Theorems 4.12 and 4.11). Suppose that L is decided by a machine M using n12 time
and n2 space. For every x ∈ {0, 1}∗, consider the configuration graph GM,x of M on input x. Each
configuration in this graph can be described by a string of length O(n2) and x is in L if and only
if there is a path of length n12 in this graph from the starting configuration Cstart to an accepting
configuration. There is such a path if and only if there exist n6 configurations C1, . . . , Cn6 (requiring
O(n8) to specify) such that if we let C0 = Cstart then Cn6 is accepting and for every i ∈ [n6] the
configuration Ci is computed from Ci−1 within n6 steps. Because this condition can be verified in
n6 time, we can we get an O(n8)-time σ2-TM for deciding membership in L. �

Our next step will show that, under the assumption that (2) does not hold (and hence NTIME(n) ⊆
TISP(n1.2, n0.2)), we can replace alternations with time:

Claim 5.14.2
Suppose that NTIME(n) ⊆ DTIME(n1.2). Then Σ2TIME(n8) ⊆ NTIME(n9.6).

Proof: Using the characterization of the polynomial hierarchy by alternating machines, L is in
Σ2TIME(n8) if and only if there is an O(n8)-time TM M such that

x ∈ L⇔ ∃u ∈ {0, 1}c|x|8 ∀v ∈ {0, 1}d|x|8 M(x, u, v) = 1 .

for some constants c, d. Yet if NTIME(n) ⊆ DTIME(n1.2) then by a simple padding argument (a
la the proof of Theorem 2.25) we have a deterministic algorithm D that on inputs x, u with |x| = n

Web draft 2007-01-08 22:00

DRAFT

p5.8 (98) 5.5. DEFINING THE HIERARCHY VIA ORACLE MACHINES.

and |u| = cn8 runs in time O((n8)1.2) = O(n9.6)-time and returns 1 if and only if there exists some
v ∈ {0, 1}dn8

such that M(x, u, v) = 0. Thus,

x ∈ L⇔ ∃u ∈ {0, 1}c|x|8 D(x, u) = 0 .

implying that L ∈ NTIME(n9.6). �

Claims 5.14.1 and 5.14.2 show that the assumption that NTIME(n) ⊆ TISP(n1.2, n0.2) leads
to contradiction: by simple padding it implies that NTIME(n10) ⊆ TISP(n12, n2) which by
Claim 5.14.1 implies that NTIME(n10) ⊆ Σ2TIME(n8). But together with Claim 5.14.2 this
implies that NTIME(n10) ⊆ NTIME(n9.6), contradicting the non-deterministic time hierarchy
theorem (Theorem 3.3). �

5.5 Defining the hierarchy via oracle machines.

Recall the definition of oracle machines from Section 3.5. These are machines that are executed
with access to a special tape they can use to make queries of the form “is q ∈ O” for some language
O. For every O ⊆ {0, 1}∗, oracle TM M and input x, we denote by MO(x) the output of M on x
with access to O as an oracle. We have the following characterization of the polynomial hierarchy:

Theorem 5.15
For every i ≥ 2, Σp

i = NPΣi−1SAT, where the latter class denotes the set of languages decided by
polynomial-time NDTMs with access to the oracle Σi−1SAT.

Proof: We showcase the idea by proving that Σp
2 = NPSAT. Suppose that L ∈ Σp

2. Then, there
is a polynomial-time TM M and a polynomial q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|) ∀u2 ∈ {0, 1}q(|x|)M(x, u1, u2) = 1

yet for every fixed u1 and x, the statement “for every u2, M(x, u1, u2) = 1” is the negation of an
NP-statement and hence its truth can be determined using an oracle for SAT. We get that there is
a simple NDTM N that given oracle access for SAT can decide L: on input x, non-deterministically
guess u1 and use the oracle to decide if ∀u2M(x, u1, u2) = 1. We see that x ∈ L iff there exists a
choice u1 that makes N accept.

On the other hand, suppose that L is decidable by a polynomial-time NDTM N with oracle
access to SAT. Then, x is in L if and only if there exists a sequence of non-deterministic choices and
correct oracle answers that makes N accept x. That is, there is a sequence of choices c1, . . . , cm ∈
{0, 1} and answers to oracle queries a1, . . . , ak ∈ {0, 1} such that on input x, if the machine N
uses the choices c1, . . . , cm in its execution and receives ai as the answer to its ith query, then
(1) M reaches the accepting state qaccept and (2) all the answers are correct. Let ϕi denote the
ith query that M makes to its oracle when executing on x using choices c1, . . . , xm and receiving
answers a1, . . . , ak. Then, the condition (2) can be phrased as follows: if ai = 1 then there exists
an assignment ui such that ϕi(ui) = 1 and if ai = 0 then for every assignment vi, ϕi(vi) = 0. Thus,

Web draft 2007-01-08 22:00

DRAFT

5.5. DEFINING THE HIERARCHY VIA ORACLE MACHINES. p5.9 (99)

we have that

x ∈ L⇔∃c1, . . . , cm, a1, . . . , ak, u1, . . . , uk∀v1, . . . , vk such that
N accepts x using choices c1, . . . , cm and answers a1, . . . , ak AND
∀i ∈ [k] if ai = 1 then ϕi(ui) = 1 AND
∀i ∈ [k] if ai = 0 then ϕi(vi) = 0

implying that L ∈ Σp
2. �

Remark 5.16
Because having oracle access to a complete language for a class allows to solve every language in
that class, some texts use the class name instead of the complete language in the notation for the
oracle. Thus, some texts denote the class Σp

2 = NPSAT by NPNP, the class Σp
3 by NPNPNP

and
etc.

What have we learned?

• The polynomial hierarchy is the set of languages that can be defined via a
constant number of alternating quantifiers. It also has equivalent definitions
via alternating TMs and oracle TMs. It contains several natural problems
that are not known (or believed) to be in NP.

• We conjecture that the hierarchy does not collapse in the sense that each of
its levels is distinct from the previous ones.

• We can use the concept of alternations to prove that SAT cannot be solved
simultaneously in linear time and sublinear space.

Chapter notes and history

The polynomial hierarchy was formally defined by Stockmeyer [?], though the concept appears
in the literature even earlier. For instance, Karp [?] notes that “a polynomial-bounded version of
Kleene’s Arithmetic Hierarchy (Rogers 1967) becomes trivial if P = NP.”

The class DP was defined by Papadimitriou and Yannakakis [?], who used it to characterize
the complexity of identifying the facets of a polytope.

The class of complete problems for various levels of PH is not as rich as it is for NP, but it does
contain several interesting ones. See Schaeffer and Umans [?, ?] for a recent list. The SUCCINCT
SET-COVER problem is from Umans [?], where it is also shown that the following optimization
version of MIN-DNF is Σp

2-complete:{
〈ϕ, k〉 : ∃ DNFϕ′ of size at most k, that is equivalent to DNF ϕ

}
.

Web draft 2007-01-08 22:00

DRAFT

p5.10 (100) 5.5. DEFINING THE HIERARCHY VIA ORACLE MACHINES.

Exercises

§1 Show that the language ΣiSAT of (1) is complete for Σp
i under polynomial time reductions.

Hint::UsetheNP-completenessofSAT.

§2 Prove Claim 5.11.

§3 Show that if 3SAT is polynomial-time reducible to 3SAT then PH = NP.

§4 Show that PH has a complete language iff it collapses to some finite level Σp
i .

§5 Show that the definition of PH using ATMs coincides with our other definitions.

§6 Show that APSPACE = EXP.

Hint:ThenontrivialdirectionEXP⊆APSPACEusesideas
similartothoseintheproofofTheorem5.13.

§7 Show that Σp
2 = NPSAT. Generalize your proof to give a characterization of PH in terms of

oracle Turing machines.

§8 The class DP is defined as the set of languages L for which there are two languages L1 ∈
NP, L2 ∈ coNP such that L = L1 ∩ L2. (Do not confuse DP with NP ∩ coNP, which may
seem superficially similar.) Show that

(a) EXACT INDSET ∈ DP.

(b) Every language in DP is polynomial-time reducible to EXACT INDSET.

§9 Suppose A is some language such that PA = NPA. Then show that PHA ⊆ PA (in other
words, the proof of Theorem ?? relativizes).

§10 Show that SUCCINCT SET-COVER ∈ Σp
2.

§11 (Suggested by C. Umans) This problem studies VC-dimension, a concept important in ma-
chine learning theory. If S = {S1, S2, . . . , Sm} is a collection of subsets of a finite set U , the
VC dimension of S, denoted V C(S), is the size of the largest set X ⊆ U such that for every
X ′ ⊆ X, there is an i for which Si ∩X = X ′. (We say that X is shattered by S.)

A boolean circuit C succinctly represents collection S if Si consists of exactly those elements
x ∈ U for which C(i, x) = 1. Finally,

VC-DIMENSION = {〈C, k〉 : C represents a collection S s.t. V C(S) ≥ k} .

(a) Show that VC-DIMENSION ∈ Σp
3.

(b) Show that VC-DIMENSION is Σp
3-complete.

Hint:ReducefromΣ3-3SAT.Also,thecollectionSproducedby
yourreductioncanusethesamesetmultipletimes.

Web draft 2007-01-08 22:00

	The Polynomial Hierarchy and Alternations
	The classes 2p and 2p
	The polynomial hierarchy.
	Properties of the polynomial hierarchy.
	Complete problems for levels of PH

	Alternating Turing machines
	Unlimited number of alternations?

	Time versus alternations: time-space tradeoffs for SAT.
	Defining the hierarchy via oracle machines.
	Chapter notes and history
	Exercises

