Post Correspondence Problem (PCP)

INPUT: $\left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$

PROBLEM: Is there i_1, i_2, \dots, i_m such that $t_{i_1} t_{i_2} \dots t_{i_m} = b_{i_1} b_{i_2} \dots b_{i_m}$?

 $t_1, t_2, \dots, t_k, b_1, b_2, \dots, b_k$ are strings over some alphabet Σ .

A solution, if it exists, is called a *match*.

PCP - example

For the collection of dominos below:

$$\left[\frac{ab}{aba}\right], \left[\frac{ba}{abb}\right], \left[\frac{b}{ab}\right], \left[\frac{abb}{b}\right], \left[\frac{a}{bab}\right]$$

here is a match:

$$\left[\frac{ab}{aba}\right]\left[\frac{a}{bab}\right]\left[\frac{ba}{abb}\right]\left[\frac{b}{ab}\right]\left[\frac{abb}{b}\right]\left[\frac{abb}{b}\right]\left[\frac{b}{ab}\right]\left[\frac{abb}{b}\right]$$

For the collection of dominos below:

$$\left[\frac{ab}{aba}\right], \left[\frac{ba}{abb}\right], \left[\frac{b}{ab}\right]$$

there is no match.

Modified Post Correspondence Problem (MPCP)

Require that the match start with the first domino.

INPUT:
$$\left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$

PROBLEM: Is there i_2, \ldots, i_m such that $t_1 t_{i_2} \ldots t_{i_m} = b_1 b_{i_2} \ldots b_{i_m}$?

 $t_1, t_2, \dots, t_k, b_1, b_2, \dots, b_k$ are strings over some alphabet Σ .

Reduction from MPCP to PCP

Let $u = u_1 u_2 \dots u_n$ be a string. Define

$$*u = *u_1 * u_2 * \dots * u_n.$$

$$u * = u_1 * u_2 * \dots * u_n *.$$

$$*u* = *u_1*u_2*\ldots*u_n*.$$

Given the collection of dominos:

$$\left\{ \begin{bmatrix} \frac{t_1}{b_1} \end{bmatrix}, \begin{bmatrix} \frac{t_2}{b_2} \end{bmatrix}, \dots, \begin{bmatrix} \frac{t_k}{b_k} \end{bmatrix} \right\}$$

output the collection of dominos:

$$\left\{ \left[\frac{*t_1}{*b_1*} \right], \left[\frac{*t_1}{b_1*} \right], \left[\frac{*t_2}{b_2*} \right], \dots, \left[\frac{*t_k}{b_k*} \right], \left[\frac{*\diamondsuit}{\diamondsuit} \right] \right\}.$$

Reduction from $A_{\rm TM}$ to MPCP

Given $M = (Q, \Sigma, \Gamma, \delta, q_s, q_{acc}, q_{rej})$ and $w = w_1 w_2 \dots w_n$ a reduction machine constructs dominos as described below:

- 1. $\left[\frac{\#}{\#q_sw_1w_2...w_n\#}\right]$.
- 2. For all $a,b \in \Gamma$, for all $q,r \in Q$ so that $q \neq q_{rej}$:

If
$$\delta(q, a) = (r, b, R)$$
 add dominos $\left[\frac{qa}{br}\right]$.

3. For all $a,b,c \in \Gamma$, for all $q,r \in Q$ so that $q \neq q_{rej}$:

If
$$\delta(q, a) = (r, b, L)$$
 add dominos $\left[\frac{cqa}{rcb}\right]$.

- 4. For all $a \in \Gamma$, add dominos $\left[\frac{a}{a}\right]$.
- 5. Add dominos $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ \sqcup \# \end{bmatrix}$.
- 6. For all $a \in \Gamma$, add dominos $\left[\frac{aq_{acc}}{q_{acc}}\right]$ and $\left[\frac{q_{acc}a}{q_{acc}}\right]$.
- 7. Add domino $\left[\frac{q_{acc}\#\#}{\#}\right]$

Correctness

- Any solution must begin with $\left[\frac{\#}{\#q_sw_1w_2...w_n\#}\right]$.
- \bullet q_{acc} is not in the dominos: bottom string longer than top string.
- Growing the top part makes the bottom part represent the next configuration:

$$\frac{\alpha \#}{\alpha \# x \#} \longrightarrow \frac{\alpha \# x \#}{\alpha \# x \# y \#}$$

(y is the configuration next to x.)

• If M does not accept w, q_{acc} never appears in the bottom.

The lengths are always different and hence no match.