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Reductions are extremely interesting and useful, as we have seen in class already. We only proved
one undecidability result directly; that of ATM. For all of the other undecidable problems, we used
reductions – from ATM or other languages that we have proved to be undecidable already – to prove
the undecidability. Let us define the notion formally.

Definition 1 (Computable Function). A function f : Σ∗ −→ Σ∗ is a computable function if some
Turing machine M , on every input w, halts with just f(w) on its tape.

Definition 2 (Reducibility). Language A is reducible or mapping reducible to language B, denoted
A ≤m B if and only if there is a computable function f , such that for every w, we have

w ∈ A⇐⇒ f(w) ∈ B

The function f is called the reduction of A to B.

What does a reduction really mean? What does it mean to reduce a problem A to problem B?
Why the word “reduce”? The idea is that if A is reducible to B, we are converting an instance of
a problem A to one of problem B. So if we know to how test membership in B, we can use that,
with the reduction function, to test membership in A. How?

To check if w ∈ A,

1. We use the reduction machine to compute to compute f(w)

2. Using the algorithm for B, check if f(w) ∈ B

3. If f(w) ∈ B, we have w ∈ A

4. If f(w) 6∈ B, we have w 6∈ A

Let us get to the important points here :

• The machine used for reduction should have reasonably bounded computation
power. In the Turing machine case, we need the reductions to be Turing computable. Note
that it does not make sense to have a reduction which uses more power than the machines
which solve B. Eventually we are looking for a Turing machine algorithm to solve A, so if the
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reduction uses a more powerful machine, then we don’t have a Turing machine algorithm to
solve A. Step 1 of the above algorithm would not be doable by a Turing machine. We will see
more of this in the complexity theory part, when we talk about polynomial time reductions.

• The reduction need not be both ways. Just because A ≤m B, we need not have B ≤m A.
Nor is it required to have B ≤m A. There might be languages that are reducible to each
other (we will see lots of examples in the complexity part), but in general reductions are only
in one direction.

• We need f to satisfy both arrows of w ∈ A⇐⇒ f(w) ∈ B. This is easy to be confused
with the above bullet. But both directions of the correspondence are needed. Why? When
we check if f(w) ∈ B we should be able to conclude if w ∈ A.

– Suppose f(w) ∈ B. Then we are using the “to the left” direction of the arrow. That is,
we are using that w ∈ A⇐= f(w) ∈ B to conclude that w ∈ A.

– Suppose f(w) 6∈ B. Then we are using the “to the right” direction of the arrow. That
is, we are using that w ∈ A =⇒ f(w) ∈ B. By contrapositive of this, we have f(w) 6∈
B =⇒ w 6∈ A to conclude that w 6∈ A.

So both directions of the arrow are crucial to our reduction. Like the silly example we
saw in class: If we didn’t require the left direction of the arrow, all we are looking for is
w ∈ A =⇒ f(w) ∈ B. We could blindly set f(w) to be an arbitrary string in B, which does
not depend on w at all. When w ∈ A, we have the right direction fine, we have f(w) ∈ B.
But the problem is that even when w 6∈ A, we have f(w) ∈ B. So when we get an answer
that f(w) ∈ B, we cannot conclude anything about the membership of w ∈ A. The string w
might be or might not be in A. Similarly for the other direction of the arrow.
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