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Outline of the Seminar

1. Intensity function 
2. Basic building blocks 
3. Superposition 
4. Marks and SDEs with jumps

REPRESENTATION: TEMPORAL POINT 
PROCESSES

APPLICATIONS: MODELS
1. Information propagation 
2. Opinion dynamics  
3. Information reliability 
4. Knowledge acquisition
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APPLICATIONS: 
CONTROL1. Influence maximization  
2. Activity shaping 
3. When to post 
4. When to fact check
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Applications: 
Control

1. Influence maximization  
2. Activity shaping 
3. When to post 

4. When to fact check



Influence maximization
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Why this goal?

Can we find the most 
influential group of users?
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Idea adoption representation (Lecture 2)

Idea adoption:

TimeUser Idea

N1(t)

N2(t)

N3(t)

We represent an idea adoptions using 
terminating temporal point processes:

N4(t)

N5(t)



Idea adoption intensity (Lecture 2) 
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N1(t)

N2(t)

N3(t)

N4(t)

N5(t)

Sources 
(given)

Adopt idea only 
once Influence from  

user v on user u

Previous  
messages by user v

Memory

Follow-ups  
(modeled)

[Gomez-Rodriguez et al., ICML 
2011]
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Influence of a set of sources

Influence of a set of source nodes A:

Probability that a  
node n follows up

Node n

SourcetA = 0
tA = 0

tn

Average number of nodes  
who follow-up by time T

It depends on the 
nodes intensity

(previous slide)
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Influence estimation: exact vs. approx.

Node n

Source

tA = 0
tA = 0

tn

Approximate  
Influence 
Estimation

Exact  
Follow-up 
Probability

Can be exponential in 
network size, not 

scalable!

Key idea  
Neighborhood 

Estimation
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How good are approximate methods?

Not only theoretical guarantees, but they also  
work well in practice. 

[Du et al., NIPS 2013]
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Maximizing the influence

Theorem. For a wide variety of influence 
models, the influence maximization  
problem is NP-hard. 

Once we have defined influence, what 
about finding the set of source nodes that 
maximizes influence?

[Du et al., NIPS 2013]
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NP-hardness of influence maximization

The influence 
maximization can be 
reduced to a Set Cover 
problem

Set Cover is a well-known 
NP-hard problem

[Du et al., NIPS 2013]
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Submodularity of influence maximization

The influence function                  satisfies a 
natural diminishing property: submodularity!

F(A)
F(B)

Consequenc
e:

Greedy algorithm with  
63% provable 
guarantee

s s
In practice, the greedy 

solution is often (very close 
to) the optimal solution

[Du et al., NIPS 2013]
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Applications: 
Control

1. Influence maximization  
2. Activity shaping 
3. When to post 

4. When to fact check
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Activity shaping

Can we steer users’ activity in a 
social network in general?

Why this goal?



Activity shaping vs influence maximization

Related to  
Influence Maximization Problem
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One time the 
same piece of 
information

Fixed 
incentive

It is only about 
maximizing 

adoption
Influence  
Maximization

Activity  
Shaping

Variable 
incentive

Multiple times 
multiple 
pieces, 

recurrent!

Many different 
activity 

shaping tasks

Activity shaping is a generalization  
of influence maximization
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Event representation (Lecture 2)

We represent messages using 
nonterminating temporal point processes:

Recurrent event:

TimeUser

N1(t)

N2(t)

N3(t)

N4(t)

N5(t)

[Zarezade et al., Allerton 2017]
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Multidimensional Hawkes process

For each user u, actions as  
a counting process Nu(t)

Nu(t)

Intensities or rates  
(Actions per time unit)

Non-negative kernel 
(memory)

User influence 
matrix

Exogenous 
actions

Endogenous actions

[Zarezade et al., Allerton 2017]



Steering endogenous actions

+
Directly 

incentivized 
actions

Organic  
actions

Directly 
incentivized 

actions
18

Intensities of directly  
incentivized actions

[Zarezade et al., Allerton 2017]
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Cost to go & Bellman’s principle of optimality 

Optimization  
problem

Dynamics 
defined by 
Jump SDEs

To solve the problem, we first define the 
corresponding optimal cost-to-go:

The cost-to-go, evaluated at t0, recovers the optimization 
problem!

Loss

[Zarezade et al., Allerton 2017]
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Hamilton-Jacobi-Bellman (HJB) 
equation

Lemma. The optimal cost-to-go satisfies 
Bellman’s Principle of Optimality 

Hamilton-Jacobi-Bellman 
(HJB)  

equation

Partial differential  
equation in J  

(with respect to λ and t)
[Zarezade et al., Allerton 2017]
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Solving the HJB equation

Consider a quadratic loss

We propose                     and then show that the 
optimal intensity is:

Penalizes directly  
incentivizes 

actions

Rewards organic 
actions

Closed form solution to a 
first order ODE

Solution to a matrix 
Riccati differential 

equation

Computed  
offline 
once! [Zarezade et al., Allerton 2017]
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The Cheshire algorithm

22

Intuition  
Steering actions means sampling action user & 
times from u*(t)

Since the intensity function u*(t) is stochastic, 
we sample from it using:

It only requires 
sampling 
               from 
inhomog. Poisson! 

Superposition principle
Standard 
thinning Easy to  

implemen
t

More in detail

22

[Zarezade et al., Allerton 2017]
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Experiments on real data

Experiments on five Twitter datasets (users)  
where actions are tweets and retweets

influence matrix

directly incentivized 
tweets  

chosen by each method

1. Fit model parameters

2. Simulate steering endogenous 
actions

exogeneous rate

[Zarezade et al., Allerton 2017]
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Performance vs. # of incentivized tweets

Cheshire (in red) reaches 30K tweets 20-50% faster 
than the second best performer

Sports, M(tf) ≈ 5k Series, M(tf) ≈ 5k

[Zarezade et al., Allerton 2017]
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Applications: 
Control

1. Influence maximization  
2. Activity shaping 
3. When to post 

4. When to fact check



Social media as a broadcasting platform
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Broadcasted 
content

Audience  
reaction

Everybody can build, reach and 
broadcast information to  
their own audience



Attention is scarce
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Social media users follow many 
broadcasters

In
st

ag
ra

m
 f

ee
d

Tw
it

te
r 

fe
ed

O
ld

er
 p

os
ts

O
ld

er
 p

os
ts
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What are the best times to post?

Can we design an algorithm 
that tell us when to post to 

achieve high visibility? 
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Representation of broadcasters and feeds

Broadcasters’ posts as  
a counting process N(t)

t

N1(t)

t

M1(t)

t

N2(t)

t

Nn(t)

…

Users’ feeds as sum of 
counting processes M(t)

M(t) = AT N(t)

Mn(t)

…

[Zarezade et al., WSDM 2017]
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Broadcasting and feeds intensities

t

N(t)

Broadcaster  
intensity function  

(tweets / hour)

t

M(t)

Feed  intensity function  
(tweets / hour)

Given a broadcaster i 
and her followers

Feed due to other 
broadcasters[Zarezade et al., WSDM 2017]
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Definition of visibility function

rij(t) = 0

Post by broadcaster u

Post by other broadcasters

Ra
nk

ed
 s

to
ri

es

Feed 
ranking

Visibility of broadcaster i at follower j
Position of the highest ranked tweet by 

broadcaster i in follower j’s wall

O
ld

er
 

tw
ee

ts

rij(t’) = 4 rij(t’’) = 0

…. .

t

M(t)

In general, the visibility 
depends on the feed ranking 

mechanism!

[Zarezade et al., WSDM 2017]



Optimal control of temporal point processes

Formulate the when-to-post problem as a 
novel stochastic optimal control problem 
                                                                   (of independent 
interest)

Optimizing 
visibility

ExperimentsVisibility and feed 
dynamics

System of stochastic 
equations with jumps

Optimal control of  
jumps

Twitter

32

[Zarezade et al., WSDM 2017]
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Visibility dynamics in a FIFO feed (I)

Other broadcasters  
post a story and  

broadcaster i does  
not post

rij(t)=2 rij(t+dt) = 3

… …

Fo
llo

w
er

’s
 w

al
l

Rank at t+dt Broadcaster i  
posts a story and 

other broadcasters 
do not post

Nobody posts  
a story

rij(t)=2 rij(t+dt) =0

… …

rij(t)=2

…

rij(t+dt)=2

…
M(t)

Reverse 
chronological order

O
ld

er
 

tw
ee

ts

New tweets

[Zarezade et al., WSDM 2017]
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Visibility dynamics in a FIFO feed (II)

Zero-one law

Other broadcasters 
posts a story

Broadcaster i  
posts a story

Stochastic  
differential 

equation (SDE) 
with jumps

OUR GOAL:
Optimize rij(t) over time, so that it is small, by 
controlling dNi(t) through the intensity µi(t)

[Zarezade et al., WSDM 2017]
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Feed dynamics

We consider a  
general intensity:
(e.g. Hawkes,  
inhomogeneous Poisson)

Deterministic  
arbitrary intensity

Stochastic  
self-

excitation

Jump stochastic  
differential equation 

(SDE) [Zarezade et al., WSDM 2017]
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The when-to-post problem

…

Nondecreasing lossTerminal penalty

Dynamics 
defined by 
Jump SDEs

Optimization  
problem

[Zarezade et al., WSDM 2017]
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Bellman’s Principle of Optimality

Lemma. The optimal cost-to-go satisfies 
Bellman’s Principle of Optimality 

Hamilton-Jacobi-Bellman 
(HJB)  

equation

Partial differential  
equation in J  

(with respect to r, λ and t)
[Zarezade et al., WSDM 2017]
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Solving the HJB equation

Consider a quadratic loss

We propose                            and then show that 
the optimal intensity is:

Trade-offs visibility and 
number  
of broadcasted posts

Favors some periods of times 
(e.g., times in which the follower is 

online)

It only depends on 

the 

current visibility!

[Zarezade et al., WSDM 2017]
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The RedQueen algorithm

Consider s(t) = 
s

t1

u*(t) = (s/q)1/2 
r(t)

r(t)

tt2 t3 t4

t1 + Δ1 t2 + Δ2 t3 + Δ3 t4 + Δ4 mini ti + Δi

How do we sample the next time?

Superposition 

principle

It only requires sampling M(tf) 
times!

Δi     exp( (s/q)1/2 )

[Zarezade et al., WSDM 2017]
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When-to-post for multiple followers

Consider n followers and a quadratic loss:

Then, we can show that the optimal intensity is:

It only depends on 
the 

current visibilities!

Trade-offs visibility and 
number  
of broadcasted posts

Favors some periods of times 
(e.g., times in which the follower is 

online)

We can easily adapt the 
efficient sampling algorithm to 

multiple followers!

[Zarezade et al., WSDM 2017]
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Novelty in the problem formulation

The problem formulation is unique in two 
key technical aspects:

I. The control signal is a conditional 
intensity 
Previous work: time-varying real vector

II. The jumps are doubly stochastic  
Previous work: memory-less jumps

[Zarezade et al., WSDM 2017]
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Case study: one broadcaster

01/06 15/06 31/06

Significance:  
followers’ retweets  

per weekday

Broadcaster’s  
posts

Average position  
over time

True posts REDQUEEN40% lower!

[Zarezade et al., WSDM 2017]



Evaluation metrics

Position over time Time at the 
top

r(t1) = 0 r(t2) = 1 r(t3) = 0 r(t4) = 1 r(t5) = 2 r(t6) = 0

Position over time = 
(t2 – t1) +       0 +    (t4 – t3) +        0 +       0

Fo
llo

w
er

’s
 

w
al

l

Post by broadcaster Post by other broadcasters

… … … … … …

43
Time at the top 

= 

0x(t2 – t1)+ 1x(t3 – t2)+ 0x(t4 – t3)+ 1x(t5 – t4)+  2x(t6 – t5)

[Zarezade et al., WSDM 2017]
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Position over time

It achieves (i) 0.28x lower average position, in 
average, than the broadcasters’ true posts and (ii) 
lower average position for 100% of the users.

REDQUEEN Karimi

broadcasters’  
true posts

Be
tt

er
average across  

users

[Zarezade et al., WSDM 2017]
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Time at the top

REDQUEEN Karimi

It achieves (i) 3.5x higher time at the top, in 
average, than the broadcasters’ true posts and (ii) 
higher time at the top for 99.1% of the users.

Be
tt

er

broadcasters’  
true posts

average across  
users

[Zarezade et al., WSDM 2017]
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Applications: 
Control

1. Influence maximization  
2. Activity shaping 
3. When to post 

4. When to fact check



Opinionated, inaccurate, fake news

47



Solution: Resort to fact-checks by 3rd 
parties

48

Send information to 
trusted third parties 
(e.g., Snopes)  
for fact-checking

1. Fact-checking is costly  
2. Which content to fact-check?  
3. What to do after fact-checking? 

Challenges

[Kim et al., WSDM 2018]
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Detect & prevent = flags by crowd + fact check

Major social networking sites are testing the 
following mechanism

Christine

Bob

Beth

Joe

David

3.00pm

3.27pm

3.25pm

5.15pm

S D
means

D follows S
Shares & re-shares

Exposures

Flags

Fact-check
Chris

4.15pm

5.00pm
5.20pm[Kim et al., WSDM 2018]
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Challenges

Previous procedure faces several 
challenges:

Uncertainty on the  
number of exposures

Flags can be  
manipulated

Fact-checking 
is  
costlyTradeoff 
between  
flags & 
exposures

Probabilistic 
exposure models

Robust  
flag aggregation

Optimal  
fact-checking

This talk

This talk

[Kim et al., WSDM 2018]



Procedure representation & modeling

Shares

Exposures

Flags

Fact-check

Re-shares

Np(t)

(one counting process per story)
Intensities or rates  

(Shares/exposures per time 
unit)

Ne(t)
(one counting process per story)

It is unknown  
It depends on whether 
a  
story is 
misinformation 

!
Survival rates  

(Fact-checks per time unit)

M(t)

[Kim et al., WSDM 2018]



Rate of misinformation

Exposures(one counting process per story)

Flags
Nf(t)

Ne(t)

Average number of users exposed  
to misinformation by time t: Estimated from 

historical data

Rate of 
misinformation:

Conditional! 
Allows for posteriors!
[Kim et al., WSDM 2018]



When to fact-check?

Find survival rates that minimize the 
rate of misinformation over time:

Fact-check

(Survival) rates  
(Fact-checks per time unit)

Survival  
rates

…given the dynamics of exposures, 
shares, reshares & flags

Non-decreasing 
loss

Trade-off  
fact-checks vs 
misinformation

This is a stochastic optimal control 
problem for jump SDEs

[Kim et al., WSDM 2018]



Solving the optimal control problem

We define the optimal cost-to-go J(…):

[Kim et al., WSDM 2018]

Bellman’s Principle of Optimality

Hamilton-Jacobi-Bellman 
(HJB) Equation

Partial differential  
equation in J  

(wrt M, N, Nf, Np, λe, and t)

Dynamics  
dM(t), dN(t), dNf(t), dNp(t), dλe(t)
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Optimal solution for fact-checking

Given an additive quadratic loss, the 
optimal fact intensity for each story is 
given by:

For a general family of shares and exposure intensities

Fact-check

Parameter that trades-off 
fact-checks vs 

misinformation

It only depends on 

the 

current rate of 

misinformation!

[Kim et al., WSDM 2018]
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The CURB algorithm

t

Intuition  
Adaptive planning of the time to fact 
check The function f(..) uses:

It only requires  
sampling O(Ne(tf)) 
times!

t1      f(t0,           )

Exposures

Flags

Superposition 
principleStandard thinning

Re-shares

t2      f(t1,           )

t3      f(t2,           )

t4      f(t3,           )

Easy to  
implemen

t
t0

[Kim et al., WSDM 2018]



Performance vs # of fact checks (Twitter)
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CURB and the oracle achieve optimal 
tradeoff between precision & 
misinformation reduction [Kim et al., WSDM 2018]



Misinformation reduction over time (Twitter)
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Both CURB and the oracle prevent the 
spread  
of misinformation before it becomes viral[Kim et al., WSDM 2018]
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