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Applications:
Control

1. Influence maximization



Influence maximization

® .
Can we find the most , B
influential group of users "

Why this goal?

Why Word Of Mouth Marketing Is The Most
Important Social Media



ldea adoption representation (Lecture 2)

We represent an idea adoptions using
terminating temporal point processes:

oMo ~ Idea adoption:
A N0 1 ) (u;, mi, t;)
01 | UserK Icta \Time
N4(t)T
Ns(t)T
I
|
|
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ldea adoption intensity (Lecture 2)

Sources OO |

(given) ~ Nz(t)T
GN3(t)T |
Follow-ups N NL(H)
(modeled) R
Ns(t)T
T Memory
>

‘ Y | ve m] / € ) ' J
Adopt idea only Previous

once Influence frommessages by user v 6

user v on user u .
[Gomez-Rodriguez et al., ICML



Influence of a set of sources

Influence of a set of source nodes A:

o(A;T) =EN(A;T) = ) P(tn < T|A)
\ ' J n:l‘ '

Average number of nodes Probability that a

who follow-up by time T node n follows up

t
It depends on the
nodes intensity

*

ta=0 I Source Au(t)

ta=0 (previous slide)
B Noden

n




Influence estimation: exact vs. approx.

N
oc(A;T) =EN(A;T) Z (tn < T|A)

\ J J

Approximate Exact
Influence Follow:gp
Estimation

Can be exponential in
network size, not

scalable!

Key idea 8
Ngighborhood



How good are approximate methods?
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Not only theoretical guarantees, but they also
work well in practice.

9

[Du et al., NIPS 2013



Maximizing the influence

Once we have defined influence, what
about finding the set of source nodes that
maximizes influence?

A" = argmaxo(A;T)
|A|<E

models, the influence maximization
problem is NP-hard.

Theorem. For a wide variety of influen e::

10

[Du et al., NIPS 2013



NP-hardness of influence maximization

maximization can be

reduced to a Set Cover
problem

Set Cover is a well-known
NP-hard problem

11

[Du et al., NIPS 2013



Submodularity of influence maximization

The influence functioo(A; T) satisfies a
natural diminishing property: submodularity!

- ~
7’ N

In practice, the greedy
solution is often (very close
to) the optimal solution

Consequenc Greedy algorithm with
e: 63% provable 1
guarantee [Du et al., NIPS 2013



Applications:
Control

2. Activity shaping
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Activity shaping

Can we steer users’ activity in a
social network in general?

Why this goal?

TI ME Twitter Stock Tumbles After Drop in User

Engagement

HUFF 7 Ways to Increase Your Social
PO ST Media Engagement

14



Activity shaping vs influence maximization

Influence Maximization Problem

Activity shaping Is a generalization
of influence maximization

Inﬂu.en. . incentve same piece of maximizing
Maximization information adoption
ACtiVit)’ Variable Multiple times Many different
Shaping incentive multiple activity 15
pieces, shaping tasks

raciirrant!



Event representation (Lecture 2)

We represent messages using
nonterminating temporal point processes:

ONMO1 Recurrent event
ANt > (s, t;)
N1 _ . R UserK \Time
Ny(t) 1
N5(t) 1
|

77 M PRIGINLLTY |

I t
t =0

t="1T
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[Zarezade et al., Allerton 2017



Multidimensional Hawkes process

For each user u, actions as ‘,?—\,;, D .
a counting process N (t) - = =
Intensities or rates  yser influence Non-negative kernel
(Actions per time unit) matrix » (memory)
Vv ¥ .t LN
J 0
|_'_l \ Y )
Exogenous Endogenous actions
actions
|
o 11T
. Vv
- T ”~'-¢[\T\|\ L 17
L [Zarezade et al., Allerton 2017



Steering endogenous actions

o | T 7 7 L Qusanic
+

| |

Directly

' ! : incentivized !

l : LT e,
S Rl NN
@ | ) L

t t
A (t) = po + A/ k(t —s)dN(s) + A/ k(t —s)dM/(s)
0 0

i Sirisirintats .
I Intensities of directly ; Directly

| incentivized actions EldM (t)|H(t)] = u(t)dt : h : incentivized :

actions

[Zarezade et al., Allerton 2017



Cost to go & Bellman’s principle of optimalit

tr o
Optimization | minimize En ar)o,¢;] |:(-"(A(ff)) ‘ / C(N(t), u(t)) dt
t

problem B o
subject to w;(t) >0, Vt € (to,tfl,i=1,..., n

Dynamics
defined by dX\(t) = [wpe — wA(t)|dt + AdN (t) + AdM (t)
Jump SDEs

To solve the problem, we first define the
corresponding optimal cost-to-go:

Ly
TA®).1) = min By a ey [«»(Auf>>+ / (A (s), u(s)) ds
w WL f Jt



Hamilton-Jacobi-Bellman (HJB)

equation

Lemma. The optimal cost-to-go satisfies
Bellman’s Principle of Optimality

J(A(t),t) = (Itl]fij_ldt] {]E('N.M)(t.t-'rdt] [J(A(t+dt), t +dt)] + £(A(L), u(t)) dt}

‘ dJ(N(t).t) = JN(t +dt). t +dt) — J(A(t). 1)

0= min VE (v M)t ,e4de) [AT(A(E), 0)] + L(A(2), u(t)) di }

‘ dX\(t) = [wpe — wA(t)|dt + AdN(t) + AdM ()

Hamilton-Jacobi-Bellman } Partial differential
equation in
(HJB.) (with respect to A and t)
equation [Zarezade et al., Allerton 2017



Solving the HJB equation

Consider a quadratic loss

1 1
EA(), u(t) = =5 AT (1) Q A(t) + Su’ (1) Su(t)
| - ' J] |\ Y )
Rewards organic Penalizes directly
actions incentivizes
actions

We propose J(\(t), 1) and then show that the
optimal intensity is:

u*(t) = —S 1A g(t)+ ATH(t)A(t) + %dmg(ATH(f)A)]

? ~_

Computed Closed form solution to a Solution to a matrix 21
offline first order ODE Riccati differential
once! equatipiiezade et al., Allerton 2017



The Cheshire algorithm

Intuition
Steering actions means sampling action user &
times from u*(t)

More in detail

Since the intensity function u*(t) is stochastic,
we sample from it using:

s Superposition principle i
> Standard T
thmnmg ------------ | Easy to 4 o @i
' It only requires : implemen it
: 1T N (t)Ng ! t
from : = b’

|
I, .
-inhomesg .- Peissent - - - - ]

[Zarezade et al., Allerton 2017



Experiments on real data

Experiments on five Twitter datasets (users)
where actions are tweets and retweets

dA(t) = [wpo — wA(t)| dt + AdN(t)
A A

exogeneous rate influence matrix

AX(1) = [wpo — wA(t)|dt + AdN(t) + AdM (t)
A

directly incentivized
tweets

chodémdrgdeathlmétéroeh 2017

23



Performance vs. # of incentivized tweets

e GHE e \1SC OPL . PRK s DEG s [ JNC

l30K

oK 50K 50K 10K 50K
M(ty)
Series, M(t;) = 5k

10K 15K 20K
M(ty)
Sports, M(t;) = 5k

Cheshire (in red) reaches 30K tweets 20-50% faster
than the second best performer y

[Zarezade et al., Allerton 2017
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Applications:
Control

3. When to post



Social media as a broadcasting platform

Everybody can build, reach and
broadcast information to
their own audience

(. m

. ‘J b |
(ghStﬂg'lﬂM.
- o —
*

Audience
reaction

a5 ARCADE FIRE
content

26



Attention is scarce

Social media users follow many

- broadcasters . ®
V«"
o
- HG_) :
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What are the best times to post?

THE HUFFINGTON POST

The Best Times to Post on Social Media

Here Arethe Be
So Your Picture

Can we design an algorithm VTN
that tell us when to post to  sTePest On

achieve high visibility?
HubSEAE & 4

The Best Tin
Twitter, LinkedIn & Other Social

Media Sites [Infographic] FOl'beS

For Brands And PR: When Is The Best Time To Post On
Social Media? 73



Representation of broadcasters and feeds

Broadcasters’ posts as
a counting process N(t)

NG
3D |= i
o — —>
{
Nz(t)T
d® |z
e |
e —>
t
N,(t)
/g’\g, /Dj i |
o |
o —>

meff

Users’ feeds as sum of
counting processes M(t)

M(t) = AT N(t)

» M)

29

[Zarezade et al., WSDM 2017]



Broadcasting and feeds intensities

=
=%
.-
ES
|
Iy

\ ) = p(t)dt By  E[dM ()| H(t)]=~(t) dt
/ w / |
Broadcaster < {0, 1} AT u(t)

intensity function Feed intensity functio
(tweets / hour) (tweets / hour)

M\’(f) — ‘\TN(f) — ‘1,;\,(/)

Yini(t) = v (t) — pa(t)
Feed due to other 30
broadcast@tse et al., WSDM 2017]

Given a broadcaster i
and her followers




Definition of visibility function

Visibility of broadcaster i at follower j

M(t)A | . Position of the highest ranked tweet by
| broadcaster i in follower j’s wall

(t’

4(t) =0 ry(t”) =0

o of ofe I
< In general, the visibility 1
= . ]
roon | depends on the feed ranking | ==
rankin O - . —
: 5 mechanism! —
go) I
9 N
e o= N N N
(22 s N I N
-~ N N I
. R R —
: IPost by broadcaster u

31
IEPRost by other broadcasters

[Zarezade et al., WSDM 2017]



Optimal control of temporal point processes

Formulate the when-to-post problem as a

novel stochastic optimal control problem

(of independent
interest)

Visibility and feed Optimizing .
dynamics » visibility » xperiments

U

System of stochastic Optimal control of
equations with jumps jumps

U

U

Twitter

32
[Zarezade et al., WSDM 2017]



Visibility dynamics in a FIFO feed ()

New tweets
A . Reverse l
M(t) ' chronological order '
B
o
>
I',',‘(f + ([f) — ('I','J'(f.) + 1)(“\[,,(?‘)(1 - (11’\",'(?‘))—{— () + l,](f)(l - (]4\[],“))(1 - ([j\'ri(f))
\+'_l L Y J 1 | Y ]
Rank at t+dt Other broadcasters Broadcaster i Nobody posts
post a story and posts a story and a story
broadcaster i doesother broadcasters
not post do not post l

33

Follower’s wall




Visibility dynamics in a FIFO feed (ll)

"i./(f 4 ([f’) = ('I‘,J(f;) -1+ l)(l‘\[, ,(f)(l — (l:\'v,'(f))—{'- () -+- ‘l',‘_]' (f)(l - (I\[,,(f))(l f— (l\v,(f))

‘ Zero-one law dN; ()dM;. () =

i) = Q0 + My ) |1 Stochastic
‘\ ° °
i (1 +(1f)/ (t) Broadcaster iOther broadcasters| dlffgrentlal
Figt posts a story  posts a story equation (SDE)
__________________________________________________________________________________________ -~ Wwith jumps
'OUR GOAL:

Optlmlze r;(t) over time, so that it is small, by
controllmg dN .(t) through the intensity p.(t)

[Zarezade et al., WSDM 2017]



Feed dynamics

We consider a
general intensity:

(e.g. Hawkes,
inhomogeneous Poisson)

Jump stochastic
differential equation
(SDE)

ol

A*(8) = Ao(t) + / g(t — 5)dN(s)

J ()

\_'_! | ' ]
Deterministic Stochastic
arbitrary intensity self-

excitation

\ 4

-[ dN*(t) = [Ag(t) + wAo(t) — wA*(t)] dt + adN;(t)

[Zarezade et al., WSDM 2017]



The when-to-post problem

Terminal penalty Nondecreasing loss

Vv
A 1

't
Optimization l“i;}i“,li']ﬂ“ E(N;, M) (to,t ] [0(7’(/_/')) i / U(r(T),u(T))dr
problem 0.t ,

subject to wu(t) >0 Vt € (to,ty],

Dynamics
defined by dr(t) = —r(t)dN(t) + dM(t) y

Jump SDEs dA(t) = [Ag(t) + wAo(t) — wA(t)] dt + c z‘ér\e[g()e et al., WSDM 2017]



Bellman’s Principle of Optimality

Lemma. The optimal cost-to-go satisfies
Bellman’s Principle of Optimality

J(r(t),A(t),t) = min E[J(r(t+dt),\(t+dt),t +dt)] + £(r(t),u(t)) dt

w(t, t+dt]

. N ' ./ ’ . / ' \

, -+ _"“ ’ T 1 | ’ \‘ . \“II,I{‘ .\l"
I)- ‘\ (!) I- \ f \ /

Il (, !{‘ /\\!

0= min E|[dJ(r(t),A(t),t)] + £(r(t),u(t)) dt

w(t,t+dt|
(VAN (1) + dMLE) 4
dr(t) r(t) 4N o) dE A adM(t)
' (s ! '.',\1«“"l W
d\t) Aolt) '

Hamilton-Jacobi-Bellman } Partial differential
equation in
(HJB.) (with respect tor, A and’t)
equatlon [Zarezade et al., WSDM 2017]




Solving the HJB equation

Consider a quadratic loss

. 1 ‘) ]. ")
6(r(t),u(t)) = 5s(t) r=(t) + squ”(¢)
2 A ‘A
Favors some periods of times Trade-offs visibility and
(e.g., times in which the follower is number
online) of broadcasted posts

We propose J(r(t), \(t),t) and then show that
the optimal intensity 1s:

w*(t) = ¢~ [T(r(t), \(t),t) — J(0,A(2), 1)

:‘“e : b'\\“-\J \ 38



The RedQueen algorithm

Consider s(t) = —s u*(t) = (s/q)"/2
> r(t)
How do we sample the next time?

r(t) A
uperP sitiof
Spﬂnc‘p\e
>
t, G & ty ‘
v ¥ v o3

A ~ exp( (s/q)'2) t, + A, t, + A, t; + A, t,+4A, min t +A

It only requires sampling M(t;)
times!

39

[Zarezade et al., WSDM 2017]



When-to-post for multiple followers

Consider n followers and a quadratic loss:

((r(t),u(t),0) = Y 500 + 5021

We can easlly adapt the

efficient sampling algorithm to
multiple followers!

It only depends on
the 40

° ° ) ° [ '
current visibilities! [Zarezade et al., WSDM 2017]



Novelty in the problem formulation

The problem formulation is unique in two
key technical aspects:

|. The control signal is a conditional
intensity
Previous work: time-varying real vector

ll. The jumps are doubly stochastic
Previous work: memory-less jumps

41

[Zarezade et al., WSDM 2017]



Case study: one broadcaster

Broadcaster’s Average position

posts \ over time
, 3000
1 50N 1500
() 0
0106 15/06 31106
True posts

l() t)dt = 698.04

40% lower!

A

400
300
200
100

Significance:
followers’ retweets
per weekday

0
M T WTh F Sa Su

01/06

15/06 31/06
REDQUEEN
/(, t)dt = 425.25 +

[Zarezade et al., WSDM 2017]



Evaluation metrics

Time at the

A
T T
Jo r(t)dt [T I(r(t)<1)dt
IPost by broadcaster [Rost by other broadcasters
w )= 0 r(ty) =1 r(t;) =0 r(ty) = 1 r(ts) =2 r(ty) =0
R 1 1 1 - -
3 % [ I [ I I [
o3 [ [ I [ I [
e [ [ [ I I [
L I [ [ [ I I

Ox(t; -t 1X(t; - t) Ox(t, - t3) 1x(t5 -t 2x(t, - ts)

Time at the top (t,-t,) + 0 + (t,-ty)+ 0 + 0

43

[Zarezade et al., WSDM 2017]



Position over time

broadcasters’ 1 O i

true posts

average across
users

0.9 1 / \

0.0

Better

v

REDQUEEN Karimi

It achieves (i) 0.28x lower average position, in
average, than the broadcasters’ true posts and (ii)
lower average position for 100% of the users.

44
[Zarezade et al., WSDM 2017]



Time at the top

average across

/ users \
A3
g
g
2
broadcasters’ > 1
true posts _ ]
REDQUEEN Karimi

It achieves (i) 3.5x higher time at the top, in
average, than the broadcasters’ true posts and (ii)
higher time at the top for 99.1% of the users.

45

[Zarezade et al., WSDM 2017]



Applications:
Control

4. When to fact check

46



Opinionated, inaccurate, fake news

enctucker

a North Carolina For Donald Trumg o Like Page

Pope endorses Trump ‘ An[i-TfUlnp protestors in Austin IO(’&)’ are
SIS not as organic as they seem. Here are the
busses they came in. 6

O

-

& AThPersnience O

Speaks Volumes: Republicans have
denounced racists & democrats refuse 10
denounce Antifa.

/

Pope Francis Shocks W
for President, Releases
WATICAN CITY « Nows ouiets &

PO0e Francs has mads the rpn

The Hate He Dares Not Speak

Text “Hillary™ to 59925
and we Imake Netery together

47



Solution: Resort to fact-checks by 3rd

parties

Send information to ‘ —c 5
trusted third parties
(e.g., Snopes)

for faCt'Cb?rll'i Nna ! Was an antifa member photographed beating up a

police officer?

¢ snopes.com O

l;!"N:‘llH(;':' m‘h‘(\i o o o
The Hate He Dares Not Speak
| e Fact Check: Antifa Member Photographed Beating Police
s . Officer?
-
= > Full Report: snopes.com/antifa-member

1. Fact-checking is costly
2. Which content to fact-check?
3. What to do after fact-checking?

[Kim et al., WSDM 2018]



Detect & prevent = flags by crowd + fact check

Major social networking sites are testing the
following mechanism

Srr-le—a>ns < es Shares & re-shares
D follows S w\ Christine I

Bob 3.00pm

P ®

L,

3.27pm




Challenges

Previous procedure faces several

challenges:

Uncertainty on the

number of exposures » |

+ Flags can be
(i manipulated

@)\ Fact-checking
is

PEYorf

between
flags &

A WA A B 4 4B B B BA 4B S

This talk

Probabilistic |
,exposure modelsI

=N Robust
flag aggregation
____ _ Thistalk
L m) Optimal |

fact-checking |

[Kim et al., WSDM 2018]



Procedure representation & modeling

Intensities or rates
Sharegone counting process per story) (Shares/exposures per time
p . M TinifA
:T ! e E[dNP(t)|H(t)] = AP (t)dt

v

(one counting process per story) I I
|

I
: P _ T W | E[ANC()[H(t)] = (t]dt
| | - ——
] V|[rs(7) ~ 7
R,e shares fo(7) ~ f§ — > It is unknown '
| T . It depends on whether .
! j a

story is
misinformation

—0
—@ <
—@ <
|
|
|
|
|
|
|

[ Survival rates
fact-checks per time unit)

Fact-check l‘
: MO EdM(1)[H(t)] = u(t) © (1 — M(t))dt

S
L I rd

[Kim et al., WSDM 2018]



Rate of misinformation

tone counting process per story)

M

~J

Flags

fs(T) ~ fs

I 0 Nf(t) : t v

- I L N(1) = / Fo(T)dN® (7)
J)

Average number of users exposed
to misinformation by time t: Estimated from

historical data

J'V":.” (t) = Pm|s,f=1 ‘\*\](t) T ]»)nl|~.f:()(*'\r.:(f) - ‘\?\f(t))

dN!(t) = fo(t)dNZ(t)
Rate of f.INf, N¢ ~ Beta (a + N/ (t), 8+ Ne(t) — N1 (1))

misinformation: _ Conditionall
/\:”(IL)(H — E[(Ili\?:“(f)n'[(f)] ondairtionat:

Allows for posteriors!
[Kim et al., WSDM 2018]




When to fact-check?

[ (Survival) rates
I(Fact-checks per time unit)

Fact-check l,
; 0 L E[dM (t)|H(t)] = u(t) ® (1 — M(t))dt

This is a stochastic optimal control

problem for jump SDEs

SUD JeC | | sUfls Trade-o
isinformation
...given the dynamics of ires,

shares, reshares & flags
[Kim et al., WSDM 2018]



Solving the optimal control problem

We define the optimal cost-to-go J(...):

.. ty .
J(M(t), N¢(£). N7 (t). NP(t). \¢(t).t) = min E [0( A" (tr)) + / (N (). H(T))(/T]
Jt

ll(t.t.f]

‘ Bellman’s Principle of Optimality
0= min ,{1:-«: [dJ(M(t), N(t), N (t), NP(t), \(t), 1)] 4 1(;\"'(/).11(;))(/;}
w(t,t+dt| ) )

Dynamics
dM(t), dN(t), dNf(t), dNP(t), dAe(t)

(HJB) EqUatiOn equation in J

Hamilton-Jacobi-Bellman Partial differential
rt M: N, Nf, Np, Ae, and

[Kim et al., WSDM 2018]



Optimal solution for fact-checking

Fact-check

; 0 ' E[dM (1)|H(t)] = w(t) © (1 — M(t))dt
I >

For a general family of shares and exposure intensities

Given an additive quadratic loss, the
optimal fact intensity for each story is

given by S R
_— 2
Ug (t) — (s )\5' (t) n
! y gepe®® °
Parameter that trades-off \¢ on he £
fact-checks vs £ rate O \
misinformation C uﬂ-e"\ a’t.\o“
m,‘s-‘“ of 55



72 The Curs algorithm

Intuition
Adaptive planning of the time to fact
check The function f(..) uses:
| a0 L1 L1 ' > Superposition
Flags > BEiMRHE thinning
: ! ! , : > o
Re-chares It only requires
! 0 ! sampling O(Ne(t;))
| : o times! S —
A o M) ) =
AT ()4 B
Easy to _
S :
A A A A " lmplimen
to o~ ftA (1) t, ~ A1) )

ty ~ f(tAm(t) ) [Kim et al., WSDM 2018]



Performance vs # of fact checks (Twitter)

Precision
© o o o
—_ N w AN

O
o

_k - QOracle 1 O |
—— Curb
—4— Flag Ratio 08
-4-- Flag Sum g
. EXpOSure = 06 |
O
| >
204
tﬂ P S <« Z
:, '*..* ,,,,,, O 2
i 0.0

0 20 40 0 20 40

# Fact checks # Fact checks

CurB and the oracle achieve optimal
tradeoff between precision & 57
misinformation reduction [Kim et al., WSDM 2018]



Misinformation reduction over time (Twitter)

40000 { —— Total
30000 -&- Flag Ratio
- - = Flag Sum
@
8 20000 4+ Exposure
tt -&- Curb
10000 1 -4+ Oracle
0 p——& &
Flag ratio
Flag sum
Exposure
Curb
Oracle
15000 BN Total
] Flag Ratio
&£ B Flag Sum ,
@ 10000 Flag Sumn
2, . ] Exposure
-
3+ - B Curb . | . I‘
5000 %) Oracle II I IIl I ‘
.'_ |
‘ d \ l
D - - —_—— - l. ll, ] lfl l;
200 600 1000

Time (days)

Both CuRB and the oracle prevent the

spread |
Af micinfarmatinn hafara 1+ haAlRsRe VoPp.2§18]
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Thanks!

Interested?
Internships/PhDs/postdoc positions at
learning.mpi-sws.org



