Machine learning for Dynamic Social Network Analysis

Manuel Gomez Rodriguez Max Planck Institute for software Systems

IIT HYDERABAD, DECEMBER 2017

Interconnected World

Many discrete events in continuous time

Qmee, 2013

Variety of processes behind these events

Example I: Idea adoption/viral marketing

They can have an impact in the off-line world

Click and elect: how fake news helped 5 Donald Trump win a real election

Example II: Information creation & curation

Example III: Learning trajectories

Detailed event traces

Warren is in the house.

Manuel Gomez Rodriguez updated his cover photo. April 17 at 1:14pm · G

Pique-Longue, French Pyrenees Easter 2017

The availability of event traces boosts a new generation of data-driven models and algorithms

t Like	Comment	A Share	
O Mehrdad Farajtabar, Lili Yavis-Hound and 24 others			
Rob Like	er Tab Pu 😂wow! • Reply • April 17 at	1:32pm	

Previously: discrete-time models & algorithms

Outline of the Seminar

REPRESENTATION: TEMPORAL POINT

PROCESSE\$. Intensity function

- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

APPLICATIONS: MODELS

- 1. Information propagation
- 2. Opinion dynamics
- 3. Information reliability
- 4. Knowledge acquisition

APPLICATIONS:

- GOMTR@hce maximization
- 2. Activity shaping
- 3. When to post
- 4. When to fact check

This lecture

Representation: Temporal Point Processes

Intensity function Basic building blocks Superposition Marks and SDEs with jumps

Temporal point processes

Model time as a random variable

Likelihood of a $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$ timeline:

13

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- 1. Densities need to integrate to 1 (i.e., partition function)
- 2. Difficult to combine timelines

Problems of density parametrization (II)

Difficult to combine timelines:

15

Intensity function

•

Observation $\lambda^*(t)$ It is a rate = # of events / unit of time

Advantages of intensity parametrization (I)

Suitable for model design and interpretable: 1. Intensities only need to be nonnegative

2. Easy to combine timelines

Advantages of intensity parametrization (II)

Easy to combine timeline:

18

Relation between f*, F*, S*, λ^*

Representation: Temporal Point Processes

Intensity function
 Basic building blocks

 Superposition
 Marks and SDEs with
 jumps

Poisson process

Intensity of a Poisson process

$$\lambda^*(t) = \mu$$

Observations

•

- 1. Intensity independent of history
- 2. Uniformly random occurrence
- 3. Time interval follows exponential distribution ²¹

Fitting a Poisson from (historical) timeline

22

Sampling from a Poisson process

We would like to sample $t \sim \mu \exp(-\mu(t-t_3))$ We sample using inversion sampling: $F_t(t) = 1 - \exp(-\mu(t-t_3))$ $rightarrow t \sim -\frac{1}{\mu} \log(1-u) + t_3$ $\mathbb{P}(F_t^{-1}(u) \leq t) = \mathbb{P}(u \leq F_t(t)) = F_t(t)$ $F_u(u) = u$

Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

$$\lambda^*(t) = g(t) \ge 0$$

Observations

•

1. Intensity independent of history

Fitting an inhomogeneous Poisson

Nonparametric inhomogeneous Poisson process

Sampling from an inhomogeneous Poisson

Thinning procedure (similar to rejection sampling): 1. Sample t from Poisson process with inte μ ity

$$Uniform(0,1)$$

$$\downarrow$$

$$t \sim -\frac{1}{\mu} \log(1-u) + t_3$$
Inversion sampling
Inversion
Solution
Inversion

Terminating (or survival) process

Intensity of a terminating (or survival) process

$$\lambda^*(t) = g^*(t)(1 - N(t)) \ge 0$$

Observations

•

1. Limited number of occurrences Try sampling and fitting and fitting

Self-exciting (or Hawkes) process

Observations

- 1. Clustered (or bursty) occurrence of events
- 2. Intensity is stochastic and history dependent

Fitting a Hawkes process from a recorded timeline

Sampling from a Hawkes process

Thinning procedure (similar to rejection sampling): 1. Sample t from Poisson process with inte μ_3^i ty

$$Uniform(0,1)$$

$$\downarrow$$

$$t \sim -\frac{1}{\mu_3} \log(1-u) + t_3$$
Inversion sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
Inversion
Sampling
I

Summary

Building blocks to represent different dynamic processes: Poisson processes: $\lambda^*(t) = \lambda$ Inho We know how to fit them and how to sample from them Term IV(t) ι (11)

Self-exciting point processes:

$$\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_\omega(t - t_i)$$

Representation: Temporal Point Processes

Intensity function
 Basic building blocks
 Superposition
 Marks and SDEs with jumps

Superposition of processes

$$t = \min(\tau_{i}, \tau_{1}, \tau_{2}, \tau_{3}) \implies \lambda^{*}(t) = \mu + \alpha \sum_{t_{i} \in \mathcal{H}(t)} \kappa_{\omega}(t - t_{i})$$

Mutually exciting process

Clustered occurrence affected by neighbors

$$\lambda^{*}(t) = \mu + \alpha \sum_{t_{i} \in \mathcal{H}_{b}(t)} \kappa_{\omega}(t - t_{i}) + \beta \sum_{t_{i} \in \mathcal{H}_{c}(t)} \kappa_{\omega}(t - t_{i})$$

$$(35)$$

Mutually exciting terminating process

Clustered occurrence affected by neighbors

$$\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i) \right)$$

Representation: Temporal Point Processes

Intensity function
 Basic building blocks
 Superposition

4. Marks and SDEs with jumps

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of discrete marked events localized in time

38

Independent identically distributed marks

Distribution for the marks:

 $x^*(t_i) \sim p(x)$

Observations

•

- 1. Marks independent of the temporal dynamics
- 2. Independent identically distributed (I.I.D.)

Dependent marks: SDEs with jumps

2. Defined for all values of t

Dependent marks: distribution + SDE with jumps

Distribution for the marks:

$$x^{*}(t_{i}) \sim p(x^{*}|x(t)) \Rightarrow dx(t) = f(x(t), t)dt + h(x(t), t)dN(t)$$
Observations
$$f(x(t), t)dt + h(x(t), t)dN(t)$$
Drift Event
$$f(x(t), t)dN(t)$$

2. Distribution represents additional source of uncertainty

Mutually exciting + marks

Marks affected by neighbors

$$dx(t) = f(x(t), t)dt + g(x(t), t)dM(t)$$

Drift Neighbor

42

REPRESENTATION: TEMPORAL POINT

PROCESSE\$. Intensity function

- 2. Basic building blocks
- 3. Superposition
- 4. Marks and SDEs with jumps

APPLICATIONS: MODELS

- 1. Information propagation
- 2. Opinion dynamics
- 3. Information reliability
- 4. Knowledge acquisition

APPLICATIONS:

GOMTR@hce maximization

- 2. Activity shaping
- 3. When to post
- 4. When to fact check

This lecture

Next lecture