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Many discrete events in continuous time

Google Spotify
(11 Tube| <

Qmee, 2013



Variety of processes behind these events

Events are (noisy) observations of a
variety of complex dynamic

processes...
Product 4
News spread reviews an A user gains
in Twitter sales in Am recognition in
Quora
Video .
becomes viral Article
in Youtube .\X/ icr{eatlon
FAS Wikipedia .

...in a wide range of temporal .

cralac



Example I: Idea adoption/viral marketing

SnE?ns Christine
D follows S

Bob

3.25p
Beth A
3.27pm A3
David
4.15pm
| |
777 r o o
i i Friggeri et al.,
I 1 { 2014
They can have an theguardian
m PaCt Click and elect: how fake news helped >

in the off-line world Donald Trump win a real election



Example Il: Information creation &

curation

e s 03:21, 20 September 2016 g
‘ \., ' '"f.w,f' Ba_rack Obama: Revision history_ IS a ;(‘enyan politician
WIKIPEDIA ZTUTTIIEET 0035 5 everer 218 O 0k ot . B0 by 48 l possible vandalism by MLM2016

iIs an American politician

@ Addition
"’ /N @Refutation

I |
i -
| | /
e Upvote 150
What are the pros and cons of living in Australia? S - Y}
7 Answer Requost v —— e dv M Sharma, Lived in Australa as Migrant, Student, Worker,

vness Owner & Family Man
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Example lll: Learning trajectories
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« st year computer science

| S\M&B&q to programming

Discrete math StaC/\'o

| Project presentation
7/ Powerpoint
VS. Keynote
or/do-while 7 Export
loops Geomé ptx to pdf

F it
Logi} PP
templates

Graph T
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Detailed event traces

DETAILED TRACES OF ACTIVITY

1
|
g Warren Buffett i -’ Manuel Gomez Rodriguez
i | m
1
| Pique-Longue, French Pyrenees
Warren is in the house. ,  Easter2017

The availability of event traces boosts a

J new generation of

data-driven models and algorithms




Previously: discrete-time models & algorithms
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Jdta is very heterogeneous.

date events within an

—e

—p

: N
X
—3%

'-_——-ib
—e
—o

2

fhat if no event within an epoch?

4. Time is treated as index or conditioning variable, not easy
to deal with time-related queries. ?



Outline of the Seminar

REPRESENTATION: TEMPORAL POINT

PROCESSES. Intensity function This
2. Basic building blocks
3. Superposition lecture
4. Marks and SDEs with jumps

APPLICATIONS: MODELS

1. Information propagation
2. Opinion dynamics

3. Information reliability
4. Knowledge acquisition

APPLICATIONS:

GOMFR@hce maximization
2. Activity shaping
3. When to post

4. When to fact check
10



Representation:
Temporal Point
Processes

1. Intensity function

11



Temporal point processes

Temporal point process:
A random process whose realization
consists of

discrete eslesgrtéstéocalized in time

|

- i ® ® = N(t)e{0}U /5 i
Py | |, time
’ ty  t3 t t=T
| J
. |
History, 7{(t) dN(t) € {0,1}  Dirac delta
‘1’ functioru,

Formally N(t) = [TdN(s) ® dN(t)= Y 6(t—t;)dt
. t; €H(t)



Model time as a random variable

density
Prob. between [t, t+dt) f-* t):= f(t|H(¢ )
t)dr
| |
I I
0+ 1 1 T/‘/\ e
® _ ! >
t t+ dt =T
\ ' S‘(t)
History: 'H(t) tProb. not before
) F) e e S
- T T :
&® _ —
t1 Lo {3 t t=T
Likelihood of a o (t) fr(t2) f7(t3) fo(t) S*(T) P

timeline:



Problems of density parametrization ()

[ (t2) [ (&) [ (¢) S*(T)

If"‘(ltl) ' |
o1 T 1 1 ;
1 to t3 t

exp(w, z/J (t,)) / exp{w, " (t3))

exp{w,P* (1))
—f ; dt
exp(w, z/; (t,)) Z exp(w, 1/) (1)) " 7

It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition
function)

2. Difficult to combine timelines

14



Problems of density parametrization (ll)

Difficult to combine timelines:

| ()
o 12 ? ¢ 0
| t IS0
O ¢ P 2% time
1 ] 1*(t)
2 7% TP TV :

roX e+ 5o
Sum of random » “
processes ) X fr@t) x f(t)

15



Intensity function

density
Prob. between [t, t+dt) fr ()= f(t[H(?))

(l T

+ I :
an | T T T/(\ |, time
tt+m t=T
| ! Prob S*(tt)b f
History,?-[(t) tI'O . ot bertore
Intensity:
Probability between [t, t+dt) but not
before t .
) f*(t)dt
A (t)dt = @ >0 = )\ (t)dt=E[dN(t)|H(t)]

Observation \*(t) Itis arate = # of events / unit of time



Advantages of intensity parametrization (l)

t) f(t2) £ ST

:EHH

A" (t1) A*(t2) X*(t3) A* () exp ( /O ) dT)

(w, Qb({))' (W,dj(t:;)) \ \

T
(w, p*(t,)) (w, " (£)) exp (—fo (w,d)‘(r))a’.r)

Suitable for model design and

int?.r H'r'ﬁ'é‘:?%ﬁfes only need to be nonnegative
2. Easy to combine timelines 7



Advantages of intensity parametrization (ll)

Easy to combine timeline:

| A (t)
- | .
o | ? ? T ? time
+ x5 (1)

s NI N S X S

] | A*(t)

|2 %0 999 99

: A(t) = A} MO
Sum of random g O+ %0 I8

processes X (1) X AT(E) k AL(t)



Relation between f*, F*, S*, A*

Central quantity
we will use!

19



Representation:
Temporal Point
Processes

2. Basic building blocks

20



Poisson process

"~
g ,» time

Intensity of a Poisson process

()= W
Observations

1. Intensity independent of history
2. Uniformly random occurrence

3. Time interval follows exponential distribution



Fitting a Poisson from (historical) timeline

~ : ? ¢ ¢ A (t) = :
< I |, time
tl t2 t3 t =T
T
)‘*(tl) /\*(tQ) A (tj) exp (/ A*(7) dT)
t LD |
: K exp (—p T)
Maximum
likelihood
* 3
p = argmax 3logpu — pT = —
T 22

14



Sampling from a Poisson process

"~
e

We would like to samplet ~ pexp(—pu(t —t3))

We sample using inversion Uni form(0,1)
sampling: 1 \
E(t)=1— o (-p(t 1)) ¢~ logll —w)+6

F(u)
P(F(u)<t)= Plu< F(t)) < F(t)



i TTTT TT T i,time

1 to t3 e t =T

Intensity of an inhomogeneous Poisson process

A"(t) =g(t) 2 0

Observations

1. Intensity independent of history

24



Fitting an inhomogeneous Poisson

Mo Tt

ty tytz e f_T
T
)\*(tl),\*(tg) A*(t3) = N* (t) exp(/o ¥ ( )m)
I I r |
Y
g(t ) ( ) t) g tn) -
3 exp ( [ 9 d,,_)
Maximum 0
likelihood
maximize log g(t;) / g(r)dr Desig gsﬁlt such
) mamd likselitivXy is

convex



Nonparametric inhomogeneous Poisson process




Sampling from an inhomogeneous Poisson

1 = max g(t)

|, time
t1  tg t3 t=T

"~
e

Thinning procedure (similar to rejection
sam lin %)
1. Sampl from Poisson process with inte pity

Uniform(0,1)
v Inversion

b~ — L log(1 — u) + to sampling
)
2. Generate ug ~ Uniform(0,1) } Keep sample

3. Keep the sample iuy; < g(t /H with pg(t)/



Terminating (or survival) process

o L i

|, time
t t="T

Intensity of a terminating (or survival) process
A*(t) = g7 (t)(1 = N(¢)) =2 0

Observations \°\( S
\% \

1. Limited number of occurrences ,“\; 5;,{\&&\
20
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Self-exciting (or Hawkes) process

~
- . , time
t1 taotz ¢ =T
‘ 1 Lot ’ t
1
History, 4 (¢) LN

Triggering kernel

Intensity of self-excitin [ \
(or Hawkes) process: \*(t) = u + « th{%(t) Kew(t — ;)

=+ aky(t) *x dN(t)
Observations

1. Clustered (or bursty) occurrence of events

2. Intensity is stochastic and history dependent .



Fitting a Hawkes process from a recorded timeline

A (t) = p+a Ztiemt) Koo (t — t;)
Maximum

likelihood ‘

T The max. likelihood S@
maximize log \*(t X (1) dr is jointly convex _©
g
0

: . 2
TRe r— in ;, anca &




Sampling from a Hawkes process

"~
Py |, time
tl t2t3 t: T

Thinning procedure (similar to rejection

?a'EEnlw‘B‘l%‘t from Poisson process with inte yity

Uniform(0,1)
\1, Inversion

b~ — 1 log(1 — ) + t3 sampling
M3
2. Generate yy ~ Uniform(0,1) }

Keep sample

3. Keep the sample iju; < g(t)/u3 with pg(t)/ u,

31



Summary

Building blocks to represent different dynamic

processes:
Poisson processes: . 0 .

A (t) = A\

Inho

We know how to fit them
and how to sample from them

Ter

Self-exciting point processes:

A(t) = p+ «a Z Keo(t —t;) ! M | | N

ti€H(t) ' T3




Representation:
Temporal Point
Processes

3. Superposition

33



Superposition of processes

QO Ky (t — t3)

>

' l
| (] ;
"~ | !
« : : time
| 1 totz |
| O ;
| |
H l ,
1 T :
- P
| |
|
QO Ky (t — t2) | T\ L,
‘ :
I |
|

Sample each intensity + take minimum = Additive
intensity

t_mm T 7'1,7'2,7'1 - A*(t) — ,U,+az K t_t'L)

t; EH(t)



Mutually exciting process

| |
| |
| o o
Bob /™ ! ! >tlme
yOl L :
T : History ’Hb(t) :
| |
.« L. I ® 00 I
Christine n . N . time
| t1 totj I
1 ' J
History 2 .(t)

Clustered occurrence affected by neighbors

+th lﬂ)w(t—tz‘) 35



Mutually exciting terminating process

|
Bob (" A

|

| |

| |

| |

' I time
o I t I g

| |
T | |

| |

| 00 :

Christine o : ? L

: '] =, lime

! t1 tots |

\

Y
History 7 .(t)

Clustered occurrence affected by neighbors

N0 = (1= N®)(9&) +BY, _,, ., Fwt =)
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Representation:
Temporal Point
Processes

4. Marks and SDEs with
jumps

37



Marked temporal point processes

Marked temporal point process:
A random process whose realization consists of discrete
marked events localized in time

o 0 - N(t)e{0}U Z* i

h t2 3 t (=T
CL‘(t) T i1 ? ’ t
[ 8

time
y(t)] o ’
l “ 2 6 ¢ time
\ J
| 38

History, 7{(t)



Independent identically distributed marks

t
' ? . » time

Distribution for the marks:

z*(t;) ~ p(z)
Observations

1. Marks independent of the temporal
dynamics

2. Independent identically distributed 39
(1.1.D.)



Dependent marks: SDEs with jumps

...... - 11 ’ ® » time

v History, H(t) <
Marks given by stochastic differential equation with l

iumbns:
z(t + dt) — z(t) = dx(t) :‘f(:r:(t), t)dt,+‘h(a:(t), t)dN(t),
| |
Observations Drift Event

1. Marks dependent of the temporal dyRflngase

2. Defined for all values of t *



Dependent marks: distribution + SDE with jumps

Histm!y, H(t) <€

Distribution for the marks: l’
z*(t;) ~p(x*|z(t)) & dx(t) = f(@(t), t)dt + h(z(t), t)dN (t),
|
Observations Drift Event

1. Marks dependent on the temporal dynanifdiuence

2. Distribution represents additional source of
nincertaintv

41



Mutually exciting + marks

- ﬂf(t)‘
1 5 ?’ Q- . time
...... Q- to t3 /
Christine | |
| +
o | ?Q @ M) e{0}U Z |
| L -,
2 t2 13 t t="T

Marks affected by neighbors

dx(t) = f(x(t), t)dt_-f-‘g(x(t), t)dM(t),

‘ ' ' 42
Drift Neighbor




REPRESENTATION: TEMPORAL POINT

PROCESSES. Intensity function
2. Basic building blocks
3. Superposition
4. Marks and SDEs with jumps

APPLICATIONS: MODELS

1. Information propagation
2. Opinion dynamics

3. Information reliability
4. Knowledge acquisition

APPLICATIONS:

GOMFR@hce maximization
2. Activity shaping

3. When to post

4. When to fact check

This
lecture

Next
lecture
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