Machine learning for Dynamic Social Network Analysis

Manuel Gomez Rodriguez Manuel Systems

> **IIT HYDERABAD, DECEMBER 2017**

Interconnected World

Many discrete *events* **in continuous time**

Qmee, 2013

Variety of processes behind these events

Example I: Idea adoption/viral marketing

They can have an impact in the off-line world

Click and elect: how fake news helped 5 Donald Trump win a real election

Example II: Information creation & curation

Example III: Learning trajectories

Detailed *event traces*

Varren Buffett ©

Warren is in the house.

fanuel Gomez Rodriguez updated his cover photo. d 17 at 1:14pm \cdot 6

Pique-Longue, French Pyrenees Easter 2017

The availability of event traces boosts a new generation of data-driven models and algorithms

Previously: discrete-time models & algorithms

Outline of the Seminar

REPRESENTATION: TEMPORAL POINT

PROCESSES. Intensity function

- **2. Basic building blocks**
- **3. Superposition**
- **4. Marks and SDEs with jumps**

APPLICATIONS: MODELS

- **1. Information propagation**
- **2. Opinion dynamics**
- **3. Information reliability**
- **4. Knowledge acquisition**

APPLICATIONS:

- **COMTR@hce maximization**
- **2. Activity shaping**
- **3. When to post**
- **4. When to fact check**

This lecture

Representation: Temporal Point Processes

1. Intensity function 2. Basic building blocks 3. Superposition 4. Marks and SDEs with jumps

Temporal point processes

Model time as a random variable

Likelihood of a timeline:

 $f^*(t_1) f^*(t_2) f^*(t_3) f^*(t) S^*(T)$

Problems of density parametrization (I)

It is difficult for model design and interpretability:

- **1. Densities need to integrate to 1 (i.e., partition function)**
- **2. Difficult to combine timelines**

Problems of density parametrization (II)

Difficult to combine timelines:

15

Intensity function

It is a rate = # of events / unit of time **Observation :**

Advantages of intensity parametrization (I)

Suitable for model design and interpretable: 1. Intensities only need to be nonnegative

2. Easy to combine timelines

Advantages of intensity parametrization (II)

Easy to combine timeline:

18

Relation between f*, F*, S*, λ*

Representation: Temporal Point Processes

1. Intensity function 2. Basic building blocks 3. Superposition 4. Marks and SDEs with jumps

Poisson process

Intensity of a Poisson process

$$
\lambda^*(t)=\mu
$$

Observations

:

- **1. Intensity independent of history**
- **2. Uniformly random occurrence**
- 21 **3. Time interval follows exponential distribution**

Fitting a Poisson from (historical) timeline

22

Sampling from a Poisson process

We would like to samplet $\sim \mu \exp(-\mu (t - t_3))$ **We sample using inversion** $Uniform(0, 1)$ **sampling:**
 $F_t(t) = 1 - \exp(-\mu(t - t_3)) \implies t \sim -\frac{1}{\mu} \log(1 - u) + t_3$ $F^{-1}(u)$ $\mathbb{P}(F_t^{-1}(u) \leq t) = \mathbb{P}(u \leq F_t(t)) = F_t(t)$ 23 $F_u(u)=u$

Inhomogeneous Poisson process

Intensity of an inhomogeneous Poisson process

$$
\lambda^*(t) = g(t) \geq 0
$$

Observations

: 1. Intensity independent of history

Fitting an inhomogeneous Poisson

Nonparametric inhomogeneous Poisson process

Sampling from an inhomogeneous Poisson

Thinning procedure (similar to rejection sampling): 1. Sample_t from Poisson process with inte μ ity

Inversion sampling 2. Generate Keep sample with prob. 3. Keep the sample if

Terminating (or survival) process

Intensity of a terminating (or survival) process

$$
\lambda^*(t) = g^*(t)(1 - N(t)) \geq 0
$$

Observations

Observations
 1. Limited number of occurrences $\frac{1}{1!}$ sampling!

and fitting!

Self-exciting (or Hawkes) process

Observations

- **: 1. Clustered (or bursty) occurrence of events**
- **2. Intensity is stochastic and history dependent**

Fitting a Hawkes process from a recorded timeline

Sampling from a Hawkes process

Thinning procedure (similar to rejection sampling): from Poisson process with inte μ *i*sty

$$
t \sim -\frac{1}{\mu_3} \log(1-u) + t_3
$$

2. Generate $u_2 \sim Uniform(0,1)$
3. Keep the sample $iu_2 \leq g(t) / \mu_3$
with $p g(t) / \mu_3$

Summary

Building blocks to represent **different dynamic processes:** Poisson processes: $\lambda^*(t) = \lambda$ Inho We know **how to fit** them Term and how to sample from them $\left\{ U\right\} (1 - N(t))$

Self-exciting point processes:

$$
\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}(t)} \kappa_\omega(t - t_i)
$$

Representation: Temporal Point Processes

1. Intensity function 2. Basic building blocks 3. Superposition 4. Marks and SDEs with jumps

Superposition of processes

$$
t=\min\left(\tau,\tau_1,\tau_2,\tau_3\right)\ \ \blacksquare\ \ \ \lambda^*(t)=\mu+\alpha\sum\nolimits_{t_i\in\mathcal{H}(t)}\kappa_\omega(t-t_i)
$$

Mutually exciting process

Clustered occurrence affected by neighbors

$$
\lambda^*(t) = \mu + \alpha \sum_{t_i \in \mathcal{H}_b(t)} \kappa_{\omega}(t - t_i)
$$

$$
+ \beta \sum_{t_i \in \mathcal{H}_c(t)} \kappa_{\omega}(t - t_i)
$$

Mutually exciting terminating process

Clustered occurrence affected by neighbors

$$
\lambda^*(t) = (1 - N(t)) \left(g(t) + \beta \sum\nolimits_{t_i \in \mathcal{H}_c(t)} \kappa_\omega(t - t_i) \right)
$$

Representation: Temporal Point Processes

1. Intensity function 2. Basic building blocks 3. Superposition

4. Marks and SDEs with jumps

Marked temporal point processes

Marked temporal point process:

A random process whose realization consists of **discrete** *marked* **events localized in time**

38

Independent identically distributed marks

Distribution for the marks:

$$
x^*(t_i) \sim p(x)
$$

Observations

- **: 1. Marks independent of the temporal dynamics**
	- **2. Independent identically distributed (I.I.D.)**

Dependent marks: SDEs with jumps

2. Defined for all values of t

Dependent marks: distribution + SDE with jumps

Distribution for the marks:

$$
x^*(t_i) \sim p(x^*|x(t)) \implies dx(t) = f(x(t), t)dt + h(x(t), t)dN(t)
$$

Observations
1. Marks dependent on the temporal dynamics
of
the general dynamics

2. Distribution represents additional source of uncertainty

Mutually exciting + marks

Marks affected by neighbors

$$
dx(t) = f(x(t), t)dt + g(x(t), t)dM(t)
$$

Drift
Neighbour

42

REPRESENTATION: TEMPORAL POINT

PROCESSES. Intensity function

- **2. Basic building blocks**
- **3. Superposition**
- **4. Marks and SDEs with jumps**

APPLICATIONS: MODELS

- **1. Information propagation**
- **2. Opinion dynamics**
- **3. Information reliability**
- **4. Knowledge acquisition**

APPLICATIONS:

COMTR@hce maximization

- **2. Activity shaping**
- **3. When to post**
- **4. When to fact check**

This lecture

Next lecture