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Many discrete events in continuous time
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Qmee, 2013



Variety of processes behind these events

4

News spread 
in Twitter

Events are (noisy) observations of a 
variety of complex dynamic 
processes…

…in a wide range of temporal 
scales.
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Example I: Idea adoption/viral marketing
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Friggeri et al., 
2014
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impact  
in the off-line world 

S D
means

D follows S
Christine

Bob

Beth

Joe

David

3.00pm

3.25pm

3.27pm

4.15pm



✗

Upvote

Addition
Refutation

Question
Answer

Example II: Information creation & 
curation
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Example III: Learning trajectories
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Detailed event traces
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The availability of event traces boosts a 
new generation of  

data-driven models and algorithms
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Previously: discrete-time models & algorithms

Discrete-time models artificially introduce epochs:
1. How long is each epoch? Data is very heterogeneous.
2. How to aggregate events within an 
epoch?3. What if no event within an epoch?

4. Time is treated as index or conditioning variable, not easy 
to deal with time-related queries.

Epoch 1 Epoch 2 Epoch 3 Epoch 4
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Outline of the Seminar

1. Intensity function 
2. Basic building blocks 
3. Superposition 
4. Marks and SDEs with jumps

REPRESENTATION: TEMPORAL POINT 
PROCESSES

APPLICATIONS: MODELS
1. Information propagation 
2. Opinion dynamics  
3. Information reliability 
4. Knowledge acquisition

This 
lecture

APPLICATIONS: 
CONTROL1. Influence maximization  
2. Activity shaping 
3. When to post 
4. When to fact check



11

1. Intensity function 
2. Basic building blocks 

3. Superposition 
4. Marks and SDEs with 

jumps

Representation:  
Temporal Point 

Processes
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Temporal point processes

time

Temporal point process:  
A random process whose realization 
consists of  
discrete events localized in time Discrete 

events

History, 

Formally
: 

Dirac delta 
function
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Model time as a random variable

History, 

time

Prob. between [t, t+dt)

Prob. not before 
t

density

Likelihood of a 
timeline:
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Problems of density parametrization (I)

It is difficult for model design and interpretability:

1. Densities need to integrate to 1 (i.e., partition 
function) 

2. Difficult to combine timelines

time
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Problems of density parametrization (II)

Difficult to combine timelines:

time

time

Sum of random 
processes

+

=

✗
✗
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Intensity function

History, 

time

Intensity:  
Probability between [t, t+dt) but not 
before t  

Prob. between [t, t+dt)

Prob. not before 
t

Observation
: 

density

It is a rate = # of events / unit of time 
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Advantages of intensity parametrization (I)

time

Suitable for model design and 
interpretable:1. Intensities only need to be nonnegative 

2. Easy to combine timelines
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Advantages of intensity parametrization (II)

Easy to combine timeline:

time

time

Sum of random 
processes

+

=

✗
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Relation between f*, F*, S*, λ*

Central quantity  
we will use!
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1. Intensity function 
2. Basic building blocks 

3. Superposition 
4. Marks and SDEs with 

jumps

Representation:  
Temporal Point 

Processes
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Poisson process

Intensity of a Poisson process

Observations
:

time

1. Intensity independent of history 
2. Uniformly random occurrence 
3. Time interval follows exponential distribution
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Fitting a Poisson from (historical) timeline 

Maximum  
likelihood

time
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Sampling from a Poisson process

We sample using inversion 
sampling:

time

We would like to sample:
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Inhomogeneous Poisson process

time

Intensity of an inhomogeneous Poisson process

Observations
: 1. Intensity independent of history



Fitting an inhomogeneous Poisson

time

Maximum  
likelihood

Design            such 
that  

max. likelihood is 
convex

(and use CVX)
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Nonparametric inhomogeneous Poisson process

Positive combination of (Gaussian) RFB kernels:



Sampling from an inhomogeneous Poisson

time

Thinning procedure (similar to rejection 
sampling):
1. Sample     from Poisson process with intensity

3. Keep the sample if 

Inversion  
sampling

2. Generate Keep sample 
with prob. 
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Terminating (or survival) process

time

Intensity of a terminating (or survival) process

Observations
: 1. Limited number of occurrences Try

 sampling 

and fit
ting!
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Self-exciting (or Hawkes) process

time

Intensity of self-exciting  
(or Hawkes) process:

Observations
: 1. Clustered (or bursty) occurrence of events 

2. Intensity is stochastic and history dependent

History, 
Triggering kernel



Fitting a Hawkes process from a recorded timeline

time

Maximum  
likelihood

The max. likelihood  
is jointly convex 

 in     and (u
se

 C
VX

!)



31

Sampling from a Hawkes process

time

Thinning procedure (similar to rejection 
sampling):1. Sample     from Poisson process with intensity

3. Keep the sample if 

Inversion  
sampling

2. Generate Keep sample 
with prob. 
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Summary

Building blocks to represent different dynamic 
processes:
Poisson processes:

Terminating point processes:

Self-exciting point processes:

Inhomogeneous Poisson processes:
We know how to fit them  

and how to sample from them
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1. Intensity function 
2. Basic building blocks 

3. Superposition 
4. Marks and SDEs with 

jumps

Representation:  
Temporal Point 

Processes
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Superposition of processes

Sample each intensity + take minimum = Additive 
intensity

time
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Mutually exciting process

Clustered occurrence affected by neighbors

timeBob

Christine time

History

History
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Mutually exciting terminating process

Clustered occurrence affected by neighbors

timeBob

Christine time

History
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1. Intensity function 
2. Basic building blocks 

3. Superposition 
4. Marks and SDEs with 

jumps

Representation:  
Temporal Point 

Processes
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Marked temporal point processes

Marked temporal point process:  
A random process whose realization consists of discrete 
marked events localized in time 

History, 

time

time
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Independent identically distributed marks

time

Distribution for the marks:

Observations
: 1. Marks independent of the temporal 

dynamics 
2. Independent identically distributed 

(I.I.D.)
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Dependent marks: SDEs with jumps

Observations
: 1. Marks dependent of the temporal dynamics 

2. Defined for all values of t

Marks given by stochastic differential equation with 
jumps:

Drift Event 
influence

History, 

time
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Dependent marks: distribution + SDE with jumps

1. Marks dependent on the temporal dynamics 
2. Distribution represents additional source of 

uncertainty

Distribution for the marks:

Event 
influence

DriftObservations
:

History, 

time



42

Mutually exciting + marks

Neighbor 
influence

Drift

Marks affected by neighbors

time

Christine

Bob
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1. Intensity function 
2. Basic building blocks 
3. Superposition 
4. Marks and SDEs with jumps

REPRESENTATION: TEMPORAL POINT 
PROCESSES

APPLICATIONS: MODELS
1. Information propagation 
2. Opinion dynamics  
3. Information reliability 
4. Knowledge acquisition

This 
lecture

Next 
lecture

APPLICATIONS: 
CONTROL1. Influence maximization  
2. Activity shaping 
3. When to post 
4. When to fact check


