Event Detection : Clustering Algorithms
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Unigram Models
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Mixture of Unigrams
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Probabilistic latent semantic indexing
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Latent Dirichlet Allocation
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LSA

TOPIC
MODEL

LSA vs LDA
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LDA: Generative Story

. Choose N ~ Poisson(&).
. Choose 6 ~ Dir(a).

. For each of the N words w,,:

(a) Choose a topic z,, ~ Multinomial(0)

(b) Choose a word w, from p(wj |z,,P).



Dirichlet distribution

Distribution over distributions!
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LDA

P(wordl) .
@ = topic
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document
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Inference in LDA

'Complete Likelihood
p(8.z.w|a.f3)=p6|o) Hp Zn|0)p(Wn |20, B),

Posterior over latent variables

p(0.,z,w|a. )

p(0.zw,o,pB) = p(w|o,3)

Marginal likelihood
pwlo,pB) = //) 0|a) (HZ/) Zn |9) p(Wn | Zn- B))d(—)

Posterior computation and marginal likelihood estimation
could be done through Gibbs Sampling or Variational
Inference
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The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-

tan Opera Co., New York Philharmonic and Juilliard School.

“Our board felt that we had a

real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch. education
and the social services.” Hearst Foundation President Randolph A. Hearst said Monday in
Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate IFund, will make its usual annual 5100000
donation, too.

announcing the grants.




Document representation with LDA
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Dirichlet Process Mixture Model

- Model an unknown number of topics across several corpora of
documents
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- BNP clustering addresses this problem by assuming that there is an
infinite number of latent clusters, but that a finite number of them is
used to generate the observed data.



Dirichlet Process

- Define a distribution over distributions, parameterised by a concentration parameter
a > 0 and a base distribution GO, which is a distribution over a space ©.

- Consider a Partition of ©, {T1, ..., TK}. G~ DP(a, Gp).

(G(TY), .- ., G(Tx)) ~ Dir(@Go(Ty), . .., @Go(Tx)).  E[G(A)] = Go(A), Var[G(A)] = CoU20lA)

- Draw a random distribution from the DP and add up the probability mass in a region
T € ©, then there will on average be GO(T ) mass in that region.

s Consider Gaussian G,
G = E Nkag;‘k.
k=1

N\

1

~ ~ DP(a, G,)
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Dirichlet Process mixture model

- Dirichlet Process mixture model G ~ DP(«, Gp)
helps to cluster data with 0 ~G
unknown number of clusters Xi ~ p(- | 6;).
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Hierarchical Dirichlet Process

- Shares parameters among the grouped data Gy ~ DP(vy, H)

B ~ GEM(7)

- Hierarchical Dirichlet process (HDP) provides Gy(6) = deé (6, k) O ~ H(\) k=12
k v = 1, 4,.

a nonparametric approach to sharing infinite
mixtures.

7; ~ GEM(a)
0 ~Gy t=1,2,...
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Sub-story detection in Twitter

- detecting sub-stories around a main story as they emerge in social
media streams

- Sub-stories share some common vocabulary and the tweet rates
for the sub-stories are comparatively low.

Sub-story id 1

before
involved

- Sub-story id 4

Sub-story id 2



Locality Sensitive hashing

Efficient approximation to nearest neighbor search

Uses random hyperplanes to assign k bit  signature to tweets

Each distinct signature identifies a bucket

- Similar tweets likely to be assigned to same bucket

- Only compare new tweet to tweets in the same bucket

tweet
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If (x.ui<0) i= [1..K]

Else
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Spectral clustering

: keR > Number of clusters (fixed)
: S e R™" > Pairwise similarity matrix
. procedure NSPECTRAL(k, S)
Lyym < 1— D7Y25D~1/2 > Compute graph Laplacian
U= {u;}}, < SVD(Lyn. k) > Get first k eigenvectors
T = {ti;}¥, 0, tij < wiz/ (Dpul)"”?
C + KMeans(t,,....t,) > Run K-means on the reduced space
end procedure
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Spectral clustering for Twitter

- Word- word similarity metric based on NPMI score

- two words appear consistently in the same tweet, then
they are indicative of the same story.

Wordl Word2 | NPMI Description
baghdad bombs 0.705 Baghdad bombings
troops ufe 0.704 UFC Fight for the Troops show
cameras | spotted 0.668 LG G-Slate tablet camera spotted
iran nuclear 0.646 Iran nuclear ambitions
djokoviec | quarters 0.641 Djokovic in Australian Open quarterfinals at tennis

p(z,y)

NPMI(z,y) = —logp(z,y)log
(z.9) (z.9) p(z)p(y)




=Xperimental Results
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