
EE5847: Information Theory 2022

Handout 2: Data compression
Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
Please email the course instructor in case of any errors.

2.1 Data compression

• Purpose of data compression: save space.

• Convert a source file having n bytes to a compressed file having k ă n bytes.

• Model for source file Xn: randomly generated according to source distribution.

• Xn „ pXn in general.

• For most of this course, assume that Xn is iid „ pX .

• More realistic model: Markov source. But ideas similar for this case as well.

A compression scheme consists of two parts:

• An encoder/compressor: This is a function that takes Xn P Xn as input, and outputs a sequence of k
bits. We refer to Xn as the raw file, or the source sequence, or simply the source. The set X is called
the source alphabet.
For example, if we are compressing English text, then we could treat Xn as a sequence of characters, in
which case X consists of the set of all letters in the English alphabet, as well as spaces and punctuation
marks. We could also view the Xn as a sequence of words, in which case X is the set of all valid
English words. It turns out that no matter how we model the source (as a sequence of characters or
words), the optimal compression performance remains the same. However, the optimal compression
scheme (and more importantly, the complexity) will change.

• A decoder/decompressor: This is a function that takes a sequence of k bits as input, and outputs
X̂n P Xn. We refer to X̂n as the decompressed sequence, or the estimate, or the reconstruction.

encoder decoder

Figure 2.1: Formal setup for the source compression problem.
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In this course, we will assume that both the encoder and decoder know pXn .

2.1.1 Classification of compression schemes

Based on the requirements on X̂n, we classify compression schemes broadly into two:

• Lossless/almost-lossless compression schemes: In this case, we require X̂n “ Xn all the time (zero
error), or at least that the probability of error, defined as Pe “ PrrX̂n ‰ Xns to be small, typically
one that tends to zero as nÑ8 (vanishing error). Typical examples are zip, rar, etc.

• Lossy compressors/quantizers: In this case, we do not demand that X̂n “ Xn. We permit some
loss of information. The quality of the reconstruction is measured in terms of a distortion measure,
d : X ˆ X Ñ Rě0, and we typically require EdpX̂n, Xnq ď D for some specified D ą 0. Common
example: jpeg.

Based on k, we can classify compressors as follows:

• Fixed-length compressors: In this case, k depends on n, pXn but is independent of the realization of
Xn. The rate of the compressor is defined as R “ k{n. It is impossible to achieve any nontrivial rate
of compression if we demand zero error. We therefore study fixed-length lossless compressors with
vanishing error probability, or fixed-length lossy compressors.

• Variable-length compressors: In this case, k can depend on not just n, pXn but also on the realization
of Xn. In this case, we measure the performance using the average rate,

R “
EkpXnq

n
.

We refer to EkpXnq as the expected compressed length, or simply the expected length. Generally, we
study zero-error lossless variable-length compressors.

2.2 Variable length compression

While fixed length compression is a nice problem, in most applications, we cannot tolerate any error. It is
usually desirable to have X̂n “ Xn. Clearly, no fixed length compression scheme can achieve a nontrivial
rate. We therefore relax our constraints, and allow k to be a function of Xn. For now, let us assume that k is
available to the decoder (perhaps through a header in the compressed file, or some sort of side information)1.

Our goal is to design an encoder-decoder pair pf, gq so as to minimize the expected compressed length while
ensuring that gpfpxnqq “ xn for all xn P Xn.

Clearly, the optimal scheme would be to sort the sequences in decreasing order of probability, and assign
codewords of increasing length to these. If xnp1q, xnp2q, . . . are in decreasing (to be more precise, nonin-
creasing) order of probability, then we assign fpxnp1qq “ φ (the empty string), fpxnp2qq “ 0, fpxnp3qq “ 1,
fpxnp4qq “ 00, fpxnp5qq “ 01, and so on.

Verify that the length of the compressed string for xnpiq is equal to tlog2 iu.

1It is possible to construct a prefix-free encoding for the set of nonnegative integers so that the integer k can be represented
using 2rlog2 ks`1 bits. This additional overhead is small enough for our purposes since we only want to minimize the compression
rate, and plog kq{n vanishes as nÑ8.
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Justify the following sequence of inequalities:

pXnpxnpiqq ď
1

i

which implies that

i ď
1

pXnpxnpiqq

tlog2 iu ď log2

1

pXnpxnpiqq

Etlog2 iu ď E log2

1

pXnpxnpiqq

“
ÿ

xnPXn

pXnpxnq log2

1

pXnpxnq

“ HpXnq

From the calculations above, it is evident that the entropy is an upper bound on the rate for variable length
compression.

2.3 Fixed-length compression for discrete memoryless sources

A source sequence Xn is said to be discrete memoryless with source distribution pX if Xi P X , where X is
a discrete set, and Xn is an iid sequence with components drawn according to pX .

A pk, nq compressor/compression scheme for an iid source Xn with each component drawn according to pX
consists of a pair of maps pf, gq, an encoder f : Xn Ñ t0, 1uk and decoder g : t0, 1uk Ñ Xn. The rate of the

scheme is R
def
“ k{n. The probability of error is

Pe
def
“ PrrgpfpXnqq ‰ Xns.

This is also called a fixed-length compressor.

We want to minimize R for a given Pe, or minimize Pe for a given R.

Note: For the moment, we will assume that X is discrete. The case when X is a continuous set (such as
R), will be dealt with in a future course.

Naive solution: Represent Xn in binary without any compression. This gets us to R “ rlog2 |X |s.

2.3.0.1 Optimal solution for minimum Pe

Order sequences in order of decreasing probability, and pick the first 2k sequences. Call this set S. Set fpxnq
to be i if xn is ith in order and xn P S, and set it to be the all-zeros vector 0k otherwise.

The probability of error of the optimal scheme is

Pe “ PrrXn P Ss.

Can we get an expression for Pe for a desired R, or minimum R for a given Pe? This turns out to be difficult.
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Easier: Give a scheme that minimizes R for large n (i.e., nÑ8), while ensuring that limnÑ8 Pe “ 0.

The following is called the fundamental theorem of source compression/source coding.

Theorem 2.1 (Shannon, 1948). There exists a compression scheme that achieves limnÑ8 Pe “ 0 and

lim
nÑ8

R « HpXq
def
“ ´

ÿ

xPX
pXpxq log2 pXpxq.

Moreover, if a compression scheme for large n has rate less than HpXq, then limnÑ8 Pe ą 0.

The quantity HpXq is called the entropy of the random variable X. Some comments:

• HpXq in fact, is abuse of notation. This is because X is a random variable, while the entropy is a
deterministic function of pX . The notation HppXq would have been a better choice. However, we will
follow HpXq since this is more commonly used in practice (and by the Cover-Thomas textbook).

• There is another abuse of notation above. The correct definition should be

HpXq
def
“ ´

ÿ

xPX :pXpxqą0

pXpxq log2 pXpxq.

We will therefore “redefine” x log2pxq such that x log2 x “ 0 for x “ 0. Indeed, limxÑ0 x log x “ 0.

• HpXq captures the amount of randomness of a source. The data compression problem can be thought
of as one of formulating a sequence of yes/no questions to arrive at Xn.

We will prove this for Bernoulli sources. In fact, we will use a suboptimal source code and still achieve the
rate guaranteed in Theorem 2.1.

Recall that a binary random variable X is said to be Bernoulli(p) if PrrX “ 1s “ p and PrrX “ 0s “ 1´ p.
Let us assume that Xn is iid with Bernoulli(p) components, for some 0 ă p ă 1{2.

Some questions for you:

• Why does it suffice to consider 0 ă p ă 1{2?

• What happens if p “ 0? What is the optimal source code?

• What happens if p “ 1{2? What is an optimal source code?

Recall that in the optimal scheme in Sec. 2.3.0.1, S is a set of 2k sequences with the largest probabilities.
We will instead use the following set: For any 0 ă ε ă 1, define

Tε “ txn : npp1´ εq ď number of 1’s in xn ď npp1` εqu.

Prove the following claims:

Claim 2.2.
PrrXn R Tεs ď 2e´nε

2p{3

This can actually be improved.
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Claim 2.3.
PrrXn R Tεs ď 2´nDppp1`εq}pqp1`op1qq

where we define

Dpp}qq
def
“ p log2

p

q
` p1´ pq log2

p1´ pq

1´ q

to be the Kullback-Liebler (KL) divergence between p and q.

Claim 2.4.
|Tε| ď 2npH2ppq`εqp1`op1qq

where
H2ppq “ ´p log2 p´ p1´ pq log2p1´ pq

is called the binary entropy of p.

Proof. First, argue that the number of sequences of length n having exactly l 1’s is equal to
`

n
l

˘

. Then,
justify the following chain of inequalities:

|Tε| “
npp1`εq
ÿ

l“npp1´εq

ˆ

n

l

˙

ď 2npε max
npp1´εqďlďnpp1`εq

ˆ

n

l

˙

Now use Stirling’s approximation k! “
?

2πkpk{eqk in the above, simplify, and maximize the expression to
prove the claim.

Now prove Theorem 2.1 using the above claims.

You can prove the following quite easily:

Claim 2.5. Entropy is a nonnegative function of pX .

In the coming lectures, we will study various properties of the entropy, which reinforce the intuition that it
measures the randomness of a source.

There are sources which are not “compressible” in some sense.

Claim 2.6. If pX is the uniform distribution on a finite alphabet X , then HpXq “ log2 |X |. In other words,
the best compressor for Xn can not do any better than the naive scheme which represents the input directly
in binary form.

Note: Intuitively, if a compressor is optimal (in the sense of achieving minimum possible rate), then the
distribution of the codewords should be uniform. Otherwise, we could compress the compressed sequence to
reduce the rate further, leading to a contradiction.

Note: The entropy rate of a source Xn is defined as

Hr “ lim
nÑ8

HpXnq

n
.

For stationary and ergodic sources, the entropy rate is the best possible compression rate that we can achieve.
We will show the following in later lectures:
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• For an iid source, Hr “ HpXq.

• For a first-order Markov source with stationary distribution π and transition probability pX2|X1
, the

entropy rate simplifies to

Hr “ ´
ÿ

x1,x2PX
pX2|X1

px2|x1qπpx1q log2 pX2|X1
px2|x1q.
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