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We now look at some applications of the inequalities that we have studied so far.

6.1 Minimum rate of a fixed-length compression scheme

The source coding theorem says that the minimum rate of any fixed-length compression scheme for a discrete
memoryless source with distribution pX is equal to HpXq. This statement says two things:

1. Existence of an entropy-achieving compression scheme (achievability): There exists a compression
scheme such that as nÑ8, the rate RÑ HpXq, whereas the probability of error PrrX̂n ‰ Xns Ñ 0.

2. No compression scheme can beat entropy (converse): For every compression scheme that satisfies
limnÑ8 PrrX̂n ‰ Xns “ 0, the asymptotic rate cannot be below HpXq.

The source coding theorem requires a proof for both parts. We will now give a proof of the converse (part
2).

Theorem 6.1. Consider any fixed-length compression scheme for a discrete memoryless source Xn „

i.i.d.(pX). Suppose that the scheme has deterministic encoder f , deterministic decoder g and rate R. If
the probability of error Pe “ PrrgpfpXnqq ‰ Xns satisfies limnÑ8 Pe “ 0, then

lim
nÑ8

R ě HpXq.

Proof. We first show that if the probability of error is small, then HpX̂nq « HpXnq.

HpX̂nq “ HpXn, X̂nq ´HpXn|X̂nq (6.1)

“ HpXnq `HpX̂n|Xnq ´HpXn|X̂nq (6.2)

“ HpXnq ´HpXn|X̂nq (6.3)

ě HpXnq ´H2pPeq ´ Pe log2 |X |n (6.4)

“ nHpXq ´H2pPeq ´ Pe log2 |X |n (6.5)

“ nHpXq

ˆ

1´
H2pPeq

nHpXq
´ Pe

log2 |X |
HpXq

˙

(6.6)

where (6.1) and (6.2) follow from the chain rule of entropy, (6.3) since X̂n is a deterministic function of Xn

and hence HpX̂n|Xnq “ 0. Inequality (6.4) is obtained from Fano’s inequality.

Let CnR “ fpXnq denote the codeword.

HpX̂nq “ HpgpCnRqq
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“ HpgpCnRq, CnRq ´HpCnR|gpCnRqq

ď HpgpCnRq, CnRq

“ HpCnRq `HpgpCnRq|CnRq (6.7)

“ HpCnRq (6.8)

ď

nR
ÿ

i“1

HpCiq (6.9)

ď nR (6.10)

where (6.7) and (6.9) follow from the chain rule, and 6.10 from the fact that HpCiq ď log2 2 “ 1. Combin-
ing (6.6) and (6.10), we get

lim
nÑ8

R ě lim
nÑ8

HpXq

ˆ

1´
H2pPeq

nHpXq
´ Pe

log2 |X |
HpXq

˙

“ HpXq.

6.2 Maximum rate of communication over a noisy channel

For a given channel pY |X , let us define the capacity to be the quantity C “ maxpX IpX;Y q.

Just as in the source coding problem, the channel coding theorem consists of two parts:

1. Existence of a capacity-achieving coding scheme (achievability): There exists a channel code such that
as nÑ8, the rate RÑ C, whereas the probability decoding the message incorrectly PrrM̂ ‰M s Ñ 0.

2. No channel code can beat capacity (converse): For every compression scheme that satisfies limnÑ8 PrrM̂ ‰

M s “ 0, the asymptotic rate cannot be greater than C.

Let us prove the converse.

Theorem 6.2. Consider any channel code for a discrete memoryless channel pY |X . Suppose that the scheme
has deterministic encoder f , deterministic decoder g and rate R. If the probability of error Pe “ PrrgpY nq ‰
M s satisfies limnÑ8 Pe “ 0, then

lim
nÑ8

R ď C
def
“ max

pX
IpX;Y q.

To prove this theorem, we will need the following lemma:

Lemma 6.3. For any n and arbitrarily jointly distributed Xn, let Y n be obtained by passing Xn through
the DMC pY |X . Then,

IpXn;Y nq ď nC

Proof. Let us write the mutual information in terms of entropies

IpXn;Y nq “ HpY nq ´HpY n|Xnq

Using the chain rule of entropy,

IpXn;Y nq “
n
ÿ

i“1

HpYi|Y1, . . . , Yi´1q ´

n
ÿ

i“1

HpYi|X
n, Y1, . . . , Yi´1q
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ď

n
ÿ

i“1

HpYiq ´
n
ÿ

i“1

HpYi|X
n, Y1, . . . , Yi´1q

since conditioning reduces entropy. However, HpYi|X
n, Y1, . . . , Yi´1q “ HpYi|Xiq, since conditioned on the

input to the channel Xi, the output Yi is conditionally independent of everything else (since Y n is obtained
by passing through a DMC). Therefore,

IpXn;Y nq ď
n
ÿ

i“1

´

HpYiq ´HpYi|Xiq

¯

“

n
ÿ

i“1

IpXi;Yiq.

For each i, IpXi;Yiq ď C (by definition of C). Hence,

IpXn;Y nq ď nC

proving the lemma.

6.2.1 Proof of Theorem 6.2

Recall that the message consists of k “ nR uniformly distributed random bits. Therefore,

nR “ HpMq “ IpM ; M̂q `HpM |M̂q

by definition of mutual information. Using Fano’s inequality, HpM |M̂q ď H2pPeq ` Pe log |t0, 1unR| “
HpPeq ` nRPe. Using this in the above,

nR ď IpM ; M̂q `HpPeq ` nRPe

Note that M ´Xn ´ Y n ´ M̂ forms a Markov chain. By the data processing inequality,

nR ď IpXn;Y nq `HpPeq ` nRPe.

We now invoke Lemma 6.3.
nR ď nC `HpPeq ` nRPe

Dividing both sides by n and letting nÑ8,

lim
nÑ8

R ď C `Rˆ lim
nÑ8

Pe “ C

since by assumption, limnÑ8 Pe “ 0. This completes the proof.

6.3 Maximizing entropy distributions

6.3.1 Gaussian maximizes differential entropy among random variables with
the same variance

Fix a σ ą 0. Among all probability density functions on R with zero mean and variance σ2, which one
maximizes differential entropy?

Answer: The Gaussian distribution N p0, σ2q.

To state the problem more precisely, let F be the set of all density functions f on R that must satisfy:
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1. fpxq ě 0 for all x P R

2.
ş8

´8
fpxqdx “ 1

3.
ş8

´8
xfpxq “ 0, and

4.
ş8

´8
x2fpxq “ σ2.

Our goal is to compute

f˚ “ arg max
fPF

ż 8

´8

fpxq log2

1

fpxq
dx.

We will show that f˚ is the Gaussian. There are two approaches: One, use calculus to solve the above
optimization problem. The second approach is to use information theoretic inequalities. Specifically, we will
use the fact that for any two pdfs f, g, the KL divergence Dpf}gq ě 0.

To show that the Gaussian maximizes entropy, it suffices to show that if fpxq “ 1?
2πσ2

e´x
2
{p2σ2

q, then for

any g P F , we have hpgq ď hpfq. Let us show this.

hpgq “ ´

ż 8

´8

gpxq log2 gpxqdx

“ ´

ż 8

´8

gpxq log2

gpxqfpxq

fpxq
dx

“ ´Dpg}fq ´

ż 8

´8

gpxq log2 fpxqdx

ď ´

ż 8

´8

gpxq log2 fpxqdx (6.11)

where the last step follows from Dpg}fq ě 0. Substituting for f , we obtain

hpgq ď ´

ż 8

´8

gpxq log2

1
?

2πσ2
´

ż 8

´8

gpxq log2 e
´x2

{p2σ2
q (6.12)

“ ´

ż 8

´8

gpxq log2

1
?

2πσ2
´

ż 8

´8

gpxq
´x2

2σ2
log2 e (6.13)

Since both f, g are in F , it must be the case that
ż 8

´8

gpxqdx “

ż 8

´8

fpxqdx “ 1,

and
ż 8

´8

x2gpxqdx “

ż 8

´8

x2fpxqdx “ σ2.

Using this in 6.13, we get

hpgq ď ´

ż 8

´8

fpxq log2

1
?

2πσ2
´

ż 8

´8

fpxq
´x2

2σ2
log2 e

“ ´

ż 8

´8

fpxq log2

1
?

2πσ2
´

ż 8

´8

fpxq log2 e
´x2

{p2σ2
q

“ ´

ż 8

´8

fpxq log2 fpxqdx

“ hpfq.

This completes the proof.
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