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Handout 2: Data compression
Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
Please email the course instructor in case of any errors.

2.1 Data compression

• Purpose of data compression: save space.

• Convert a source file having n bytes to a compressed file having k ă n bytes.

• Model for source file Xn: randomly generated according to source distribution.

• Xn „ pXn in general.

• In this course, assume that Xn is iid „ pX .

• More realistic model: Markov source. But ideas similar for this case as well.

2.1.1 The source compression problem for discrete memoryless sources

A source sequence Xn is said to be discrete memoryless with source distribution pX if Xi P X , where X is
a discrete set, and Xn is an iid sequence with components drawn according to pX .

A pk, nq compressor/compression scheme for an iid source Xn with each component drawn according to pX
consists of a pair of maps pf, gq, an encoder f : Xn Ñ t0, 1uk and decoder g : t0, 1uk Ñ Xn. The rate of the

scheme is R
def
“ k{n. The probability of error is

Pe
def
“ PrrgpfpXnqq ‰ Xns.

This is also called a fixed-length compressor.

encoder decoder

Figure 2.1: Formal setup for the source compression problem.
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We want to minimize R for a given Pe, or minimize Pe for a given R.

Note: For the moment, we will assume that X is discrete. The case when X is a continuous set (such as
R), will be dealt with in a future course.

Naive solution: Represent Xn in binary without any compression. This gets us to R “ rlog2 |X |s.

2.1.1.1 Optimal solution for minimum Pe

Order sequences in order of decreasing probability, and pick the first 2k sequences. Call this set S. Set fpxnq
to be i if xn is ith in order and xn P S, and set it to be the all-zeros vector 0k otherwise.

The probability of error of the optimal scheme is

Pe “ PrrXn P Ss.

Can we get an expression for Pe for a desired R, or minimum R for a given Pe? This turns out to be difficult.

Easier: Give a scheme that minimizes R for large n (i.e., nÑ8), while ensuring that limnÑ8 Pe “ 0.

The following is called the fundamental theorem of source compression/source coding.

Theorem 2.1 (Shannon, 1948). There exists a compression scheme that achieves limnÑ8 Pe “ 0 and

lim
nÑ8

R « HpXq
def
“ ´

ÿ

xPX
pXpxq log2 pXpxq.

Moreover, if a compression scheme for large n has rate less than HpXq, then limnÑ8 Pe ą 0.

The quantity HpXq is called the entropy of the random variable X. Some comments:

• HpXq in fact, is abuse of notation. This is because X is a random variable, while the entropy is a
deterministic function of pX . The notation HppXq would have been a better choice. However, we will
follow HpXq since this is more commonly used in practice (and by the Cover-Thomas textbook).

• There is another abuse of notation above. The correct definition should be

HpXq
def
“ ´

ÿ

xPX :pXpxqą0

pXpxq log2 pXpxq.

We will therefore “redefine” x log2pxq such that x log2 x “ 0 for x “ 0. Indeed, limxÑ0 x log x “ 0.

• HpXq captures the amount of randomness of a source. The data compression problem can be thought
of as one of formulating a sequence of yes/no questions to arrive at Xn.

We will prove this for Bernoulli sources. In fact, we will use a suboptimal source code and still achieve the
rate guaranteed in Theorem 2.1.

Recall that a binary random variable X is said to be Bernoulli(p) if PrrX “ 1s “ p and PrrX “ 0s “ 1´ p.
Let us assume that Xn is iid with Bernoulli(p) components, for some 0 ă p ă 1{2.

Some questions for you:

• Why does it suffice to consider 0 ă p ă 1{2?



Lecture 2: Data compression 2-3

• What happens if p “ 0? What is the optimal source code?

• What happens if p “ 1{2? What is an optimal source code?

Recall that in the optimal scheme in Sec. 2.1.1.1, S is a set of 2k sequences with the largest probabilities.
We will instead use the following set: For any 0 ă ε ă 1, define

Tε “ txn : npp1´ εq ď number of 1’s in xn ď npp1` εqu.

Prove the following claims:

Claim 2.2.
PrrXn R Tεs ď 2e´nε

2p{3

This can actually be improved.

Claim 2.3.
PrrXn R Tεs ď 2´nDppp1`εq}pqp1`op1qq

where we define

Dpp}qq
def
“ p log2

p

q
` p1´ pq log2

p1´ pq

1´ q

to be the Kullback-Liebler (KL) divergence between p and q.

Claim 2.4.
|Tε| ď 2npH2ppq`εqp1`op1qq

where
H2ppq “ ´p log2 p´ p1´ pq log2p1´ pq

is called the binary entropy of p.

Proof. First, argue that the number of sequences of length n having exactly l 1’s is equal to
`

n
l

˘

. Then,
justify the following chain of inequalities:

|Tε| “
npp1`εq
ÿ

l“npp1´εq

ˆ

n

l

˙

ď 2npε max
npp1´εqďlďnpp1`εq

ˆ

n

l

˙

Now use Stirling’s approximation k! “
?

2πkpk{eqk in the above, simplify, and maximize the expression to
prove the claim.

Now prove Theorem 2.1 using the above claims.

You can prove the following quite easily:

Claim 2.5. Entropy is a nonnegative function of pX .

In the coming lectures, we will study various properties of the entropy, which reinforce the intuition that it
measures the randomness of a source.

There are sources which are not “compressible” in some sense.
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Claim 2.6. If pX is the uniform distribution on a finite alphabet X , then HpXq “ log2 |X |. In other words,
the best compressor for Xn can not do any better than the naive scheme which represents the input directly
in binary form.

Note: Intuitively, if a compressor is optimal (in the sense of achieving minimum possible rate), then the
distribution of the codewords should be uniform. Otherwise, we could compress the compressed sequence to
reduce the rate further, leading to a contradiction.

Note: The entropy rate of a source Xn is defined as

Hr “ lim
nÑ8

HpXnq

n
.

For stationary and ergodic sources, the entropy rate is the best possible compression rate that we can achieve.
We will show the following in later lectures:

• For an iid source, Hr “ HpXq.

• For a first-order Markov source with stationary distribution π and transition probability pX2|X1
, the

entropy rate simplifies to

Hr “ ´
ÿ

x1,x2PX
pX2|X1

px2|x1qπpx1q log2 pX2|X1
px2|x1q.
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