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Abstract

A generally agreed upon requirement for correctness ofwwent executions in Transactional Mem-
ory is that all transactions including the aborted ones @Eatsistent valuesOpacityis a commonly
accepted correctness criterion that satisfies the abou@eagent. Our first contribution in this paper is
extending the opacity definition for closed nested trangast Secondly, we define a restricted class,
again for closed nested transactions, that preservesatsnflihis is akin to conflict-serializable class for
traditional database transactions. Our conflict definitsoappropriate for optimistic executions which
are most common in Software Transactional Memory (STM)esyst We show that membership in
the new class can be checked in polynomial time. With opaaityaborted transaction (considering
only the read steps that were executed before aborting) fifegt ¢he consistency for the transactions
that are executed subsequently. This property is not désina general and may be harmful for closed
nested transactions in the sense that the abort of a sukatiion may make committing its top-level
transaction impossible. As our third contribution, we gys@ a correctness criterion that defines a class
of schedules where aborted transactions do not affect stensiy for other transactions. We define
a conflict-preserving subclass of this class as well. Thegiwe the outline of a scheduler that imple-
ments this subclass. Both the class definitions and the cbdéfinition are new for nested transactions.

Keywords STMs, Closed Nesting, Correctness Criterion, Conflictiot

1 Introduction

In the recent years software transactional memory has gatsignificant interest as an elegant alternative
for developing concurrent code. Software transactionsiaits of execution in memory which enable con-
current threads to execute seamlessly [7, 17]. Traditiphatks have been used for developing parallel
programs. But programming with locks has many disadvastageh as deadlocks, priority inversion etc.
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These disadvantages make it difficult to build scalablenso#t systems. Importantly, lock based software
components are difficult to compose i.e. building largetvgafe systems using simpler software compo-
nents [6]. Software transactions address many of the simigs of lock based systems. Specifically,
software transactions provide a very promising approackdmposing software components [6].

A (memory) transaction is an unit of code in execution in mema software transactional memory
system (STM) ensures that a transaction appears eitheretuxatomically (even in presence of other
concurrent transactions) or to never have executed atfaltransaction executes to completion then it is
committedand its effects are visible to other transactions. Othenitiss abortedand none of its effects
are visible to other transactions. Thus the values writiea bive (incomplete) transaction to the memory
are not visible to other transactions. To explain this cpticeonsider two transactionis, to accessing a
data-item, say, which is initialized to 0. Let the sequence of operations g(z, 5)r2(x)cico Where
c1, co refer to the commit operations of transactiansts respectively. Here the value thatreads forz is
0 since at the time wheh readsr, t; has not yet committed. Thus its write is not yet visiblg4o

To achieve this effect, a commonly used approach by softwansactions is optimistic synchronization
(term used in [6]). In this approach, transactions have alllmgy where they record the values read and
written in the course of its execution. When the transactiompletes, it validates the contents of its log.
If the log contributes to a consistent view of the memorynttiee transaction updates the memory with the
contents of the log. If not it aborts.

A STM system implements the log described above by havinggtntsal buffer for each data-item and
one local buffer for each transaction accessing that daia. itin the example described above, a global
buffer is created for:. Any write tox by ¢; is performed in the local buffer. When commits, the value
in the local buffer is transferred to the global buffer. Thgs write values can be viewed by others. Hence
until t; commits, its write operations are not visibletto

Composing simple transactions to build a larger transadsian extremely useful property which forms
the basis of modular programming. In STMs this can be acHigheough nesting of transactions. A
transaction is called nested if it invokes another tramsaas a part of its execution. Nested transactions
can broadly be classified aslosedandopen Consider a transactiofy which has a sub-transactiag.

In closed nesting when the sub-transactigrcommits its effects are visible #> (and the siblings ofg)
but not to other transactions. On the other hand in openngetie effects of the transactigg are visible
to other transactions immediately after it commits withaaiting for its parent transactioty to commit.
However whernt p aborts thertg is also aborted. In this paper we focus only on closed nesieddctions.

To achieve atomicity, the above discussed notion of meltiplffers extends naturally to closed nested
transactions. When a sub-transaction is invoked, new tsuffee created for all the data-items it writes to.
The contents of the buffers are merged with its parent'sebsifivhen the sub-transaction commits. Thus
if the sub-transaction writes any value to any data-iterat #alue will not be visible to its parent until the
sub-transaction commits.

When (nested or non-nested) transactions accessing conateitems execute concurrently itis imper-
ative that they execute correctly. A commonly acceptedenbness requirement for concurrent executions
in STM systems is that all transactions including abortegsaead consistent values. The values resulting
from any serial execution of transactions are assumed tom&stent. Guerraoui and Kapalka [5] captured
this requirement aspacityby requiring, for any concurrent execution, a single edeivieserial execution of
all committed and aborted transactions, considering drdy¢ad steps of aborted ones. An implementation
of opacity for non-nested transactions has been given in [9]

The correctness criterion used in traditional databasesrializability [14, 18]. According to serial-
izability an interleaving execution of committed transacs is correct if it is equivalent to some serial



execution of the same set of transactions. But serialiipalsibncerns itself only with the events of com-
mitted transactions. Any execution that satisfies sedhllity ensures that all committed transactions read
consistent values. It does not require that the abortegdrions read consistent values. As pointed out
in [5] this is acceptable in the context of databases whieheaecuted in highly controlled environments.
But in the context of STMs, it is imperative that even the apiens of aborted transactions see consistent
values. Otherwise it could have several undesirable sffeath as ‘divide by zero’ error, crash failure or
even infinite loops [5, 9].

On the other hand, the recent understanding (Doherty et]alrftbs et al [8]) is that opacity is too
strong a correctness criterion for STMs. Weaker notiong l@en proposed: (i) The requirement of a single
equivalent serial schedule is replaced by allowing pogsiiiferent equivalent serial schedules, one for all
committed transactions and one for each aborted transactial these schedules need not be compatible;
and (ii) the effects, namely, the read steps, of aborteda@ions should not affect the consistency of the
transactions executed subsequently. The first point refireesonsistency notion for aborted transactions.
The second point is a desirable property for transactiogetireral and a critical point for nested transactions,
where, otherwise, the effects of an aborted sub-transactiay prohibit committing the entire top-level
transaction. The above proposals in the literature have imesle for non-nested transactions.

In this paper, we extend the opacity definition for closedettansactions. We define two notions and
corresponding classes of schedul€tosed Nested Opacity (CN@pdAbort-Shielded Consistency (ASC)
In the first notion, read steps of aborted (sub-)transastare included as in Guerraoui and Kapalka [5, 9].
In the second, they are discarded. These extensions tuto batnontrivial due to the fact that an aborted
sub-transaction may have some committed descendentsraitarlyi some committed ancestors.

Checking opacity, like general serializability (for insta,view-serializability), cannot be done effi-
ciently. Very much like restricted classes of serializ&pibllowing polynomial membership test, and fa-
cilitating online scheduling, restricted classes of ofyacan also be defined. We define such classes along
the lines of conflict-serializability for database trangats: Conflict-Preserving Closed Nested Opacity
(CP-CNO)and Conflict-Preserving Abort-Shielded Consistency (CP-A&LIy conflict notion is tailored
for closed-nested transactions. We give an algorithm feckimg the membership in CP-CNO (which can
be easily modified for CP-ASC) and a scheduler for CP-ASC¢lvisan be easily modified for CP-CNO).
Both use serialization graphs similar to those in [16].

We note that all online schedulers (implementing 2PL, tia®p, optimistic approaches, etc.) for
database transactions allow only subclasses of conflizttzable schedules. We believe similarly that all
STM schedulers can only allow subclasses of conflict-pvasgischedules satisfying opacity or any of its
variants. Such schedulers are likely to use mechanismdesinyan serialization graphs as in the database
area. An example is the scheduler described by Imbs and R@na

In the context of nested transactions there have been matgrimentations of nested transactions in the
past few years [2, 13, 12, 1, 11, 10]. In [5], the authors dis@xtending opacity to nested transactions. But
none of them provide a precise correctness criteria foredesbftware transactional memory system that
can be efficiently verified.

To summarize, in this paper we present two classes of cagsstcriteria for closed nested transactions
and describe subsets of these classes that can be efficieriflgd.

Roadmap In Section 2, we describe our model and background. In &&&j we define CNO, CP-
CNO and give an algorithm for polynomial membership tesSdation 4, we present ASC and CP-ASC. In
Section 5 we discuss about some variations to the definipogsented and Section 6 concludes this paper.
The following table shows the important definitions and tieets of this paper.



Definitions/Theorems | Explanation Page Number
Definition 4 Formally defines CNO 16
Definition 5 Formally defines CP-CNO 18
Theorem 14 Shows that CP-CNO is a subset of CNO 19
Theorem 30 Proves the graph characterization of CP-CIN@9
Definition 6 Formally defines ASC 38
Lemma 34 Shows that CNO is a subset of ASC 38

2 Background and System Model

A transaction is a piece of code in execution. In the courses @kecution a nested transaction may perform
read/write operations on memory and invoke other tranmagt{also referred to as sub-transactions). We
refer to these asperationsof the transaction. A sub-transaction (of a transactionjlccdurther invoke
other transactions as a part of its execution. Thus a coripuitanvolving nested transactions constitutes
a computation tree The nodes of this tree are read and write operations, andactions. The operations
of a transaction can be viewed as its children. The opersoe classified asimple-memory operations
andtransaction operationsr justtransactions Simple-memory operations are read or write operations on
memory and have no children. Thus in the computation treth@lleaves are simple-memory operations.

In addition to memory operations, a transaction also coatacommitor abort operation. If a transac-
tion tx executes successfully to completion, it terminates witbramit operatiorcy. Otherwise it aborts
with the operatiorux. Abort and commit operations are callegtminal operations By default, all the
simple-memory operations always commit.

Consider a closed-nested transactipn All the writes byt p are performed on its local buffer. Whep
commits, the contents of its local buffers are merged wighithffer of its parent. Thus any peer transaction
of tp can read the values written by only after it commits. Ift p aborts then its local write values are not
merged with its parent’s buffers. Thus, none of the writearohborted transaction ever become visible to
other transactions.

We assume that there exists a hypothetical root transastithe computation tree, denotedtgswhich
invokes all the other transactions. On system initial@atwe assume that there exists a child transaction of
to, tinit, Which initializes all the buffers ofy with non-L values. Similarly we also assume that there exists
a child transaction ofy, t y;,,, which reads the contents &fs buffers when the computation terminates.

2.1 Schedules

All transactions and simple-memory operations are nodélseofomputation tree. We denote themmag
An id is concatenation of digits and uniquely identifies a tratisatoperation. When we are specifically
referring to a transaction we denote ittas For a transaction withd ast x havingk children, we name the
child operations as x1,nx32, ....., nxx. |f a child (for examplen x1) is a simple-memory operation reading
or writing data-itemy then we denote it asx; (y) or wx(y) and also asmx1(y).

A sample computation tree is shown here. We show each triémsdallowed by all its operations. In
Figure 1 we show the computation tree for this schedule. Aisated earlier we denote the root transaction
asty:

Example 1 to : {tinit, to1, to2, tos, tfin }s
tor : {to11, smoi2 = woi2(2), smo13 = we13(y), co1 },

to11 : {3m0111 = 7‘0111(5'3),87710112 = w0112(y),c011},
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Figure 1: Computation tree for Example 1

to2 : {to21, to22; co2},

lo21 : {Smozn = 7‘0211(2),87710212 = w0212(y)a6021}a

toga : {smo221 = 10221 (), S22 = Wo222(2), G022}

to3 : {smo31 = r031(y), sMo32 = 7032(2), 5M033 = Wo33(2), Co3}

A schedulés a real time execution of the leaves of a computation trdee @vents of a schedule are
memory operations and terminal operations of transactiotise computation. The events of a schedsile
are totally ordered. A schedule is represented by the tlptes, nodes, ord), whereevts is the set of all
events in the schedulepdes is the set of all the nodes (transactions and simple-meneyations) present
in the computation andrd is a function that totally orders all the events. In the cent# a schedule we
denote an event of a scheduleecasThus all the leaf nodes in the tree are referred to as evefiig icontext
of schedules. A schedule for the computation tree in Exarhplen be represented as:

Example 2
ST :ro11(@)woriz(y)connwor2 (2)ro211 (2)wo212 (¥) co21 wor3 (y) co1 o221 (¥) wozaz (2) a2z co2r031 (Y)r032(2)
wo33(2)co3

For a closed nested transaction, all its write operatiomsvigible to other transactions only after it
commits. Herevga12(y) occurs beforevys(y). Whenty; commits, it writeswgi3(y) in to's buffer. Buttg
commits afterty; commits. Whenty, commits it overwriteg’s y buffer with wga12(y).

To model these effects clearly, we augment a schedule with @xite operations. Prior to the commit
event of a transaction, write operations are added to thedsib to represent the merging of its local buffers
with its parent’s buffers. We call these writes@snmit-writeoperations. To every data buffer a committed
transaction writes to (i.e. values written by a child or acgeslent that has not aborted), there exists a
commit-write operation. This write is the latest value oe ttata buffer. For example consider a transaction
tx consisting of operations x; (y)wx2(z)wxs(y) which it executes in this order and commits. Then in
the schedule there is a commit-write operationgf@nd a commit-write for.



In the above exampley writes to data-itenmy twice. So its local data-buffer will hold the most recently
written value. In this case the buffer holds the writeuofs(y). The commit-write operation foy writes
the latest write operation i.evxs(y). We denote the commit-write far asw$3(y) and forz asw2(z).
The superscript provides the information about which chitide operation this commit-write corresponds
to. Since the local write buffers of an aborted transactie@nret merged with its parent’s buffer there are
no commit-write operations corresponding to an abortedstretion. Using this notation we re-write the
schedule in Example 2 as follows:

Example 3
52 : ronn (@) wornz (y)wiii? (y)cor1worz (2)roe11 (2)woi2 (1) wes* (y) cozr wors (¥)wii? (2)wii® (y)corro1 (y)
w22 (2)ao22wist (y)cozros1 (v)ros2 (2)woss (2)wis® (2)cos

In the original computation tree only the leaves could wiéth this augmentation of transactions even
non-leaf nodes corresponding to committed transactiorite with commit-write operations. For sake of
brevity, we do not represent commit-writes in the compatatree. We assume that all the schedules we
deal with are augmented with commit-writes.

It must be observed that a transaction’s commit-write djmravrites in its parent’s buffers. Forinstance
too1’s commit-writewJs! (y) writes inty’s y buffer (and not intg2’s buffer). We denote the set of commit-
writes of a committed transaction esmmit-set As opposed to commit-write we denote a simple memory
write operation as aimple-memory write

In our model a schedule has the complete information abeutdmputation tree. Thus given a schedule
we can obtain the entire computation tree from the subsooifthe events in it. Now consider two schedules
S1 andS2. If the sets of events in these schedules are the same theortimutation trees represented by
these schedules are the same. This is true irrespective afrttering of the events in the schedules. The
following property states it.

Property 1 Consider two schedulesl and S2. If the sets of events of the schedules are the same then the
computation trees represented by the schedules are alsathe and vice-versa. Formally,
(51,52 : (Sl.evts = S2.evts) < (the computation trees ¢fl and S2 are the samg

Collectively, we refer to simple-memory operations and outywrite operations as memory operations.
Since simple-memory operations are committed by defaaltdmmit-write notion can be extended to any
tree node. Thus for any node, in a computation tree represented by a schedulee define

nx’'s commit-set nx is a committed transaction

. nil nx 1S an aborted transaction
S.cwrite(nx) = . ) .
nx nx is a simple-memory write
nil nx is a read operation

With the introduction of commit-write operations we extethé definition of an operation, denoted as
ox, to represent either a transaction or a commit-write opmratr a simple-memory operation. When
we refer to a node on the computation tree, denotedasit is either a transaction or a simple-memory
operation. Thus a node is also an operation. But an operegfenring to a commit-write operation of a
transaction is not a node since it is not part of the compriatiee. We denote a memory operation (either
commit-write or simple-memory operation) asy (y) or justmx if the data-item is not important to the
context.



We define two kinds of transactions: nested and non-nestethnAested transaction has only simple-
memory operations as its children. A nested transactiorohea®r more nested or non-nested transactions
and zero or more simple memory operations as its children.

2.2 Function Definitions

In this section we describe the functions used for desaibur algorithm. All the functions pertain to the
computation tree represented by a schedule
We define a functiomolder for an operation as:

tx ox is acommit-write belonging toy,

S.hold =
older(ox) {OX ox is a node of the tree

The S.holder(ox) is same a®x when it is a transaction or a simple-memory operation. Fgran
its holder maps it onto a node in the computation tree andulilbe denoted by x. In S2 of Example 3,
S2.holder(wd3i?) is too1 .

For any operatiox, we defineS.level(ox ) as the distance df.holder(ox ) in the tree from the root.
From this definitiont is at level 0. The level of a transaction and all its commiitevoperations are the
same. For instance in Example.level (w(3i?) = S2.level (toa1) = 2.

For a given tree node x (a transaction or a simple-memory operation) in the contjmutdaree repre-
sented by the schedule, we define:S.parent(ny) as the parent of.x on the tree,S.children(nx) as
children ofnx on the treeS.desc(nx ) as the set of descendantsrof on the tree and.ansc(nx) as the
set of ancestors of x on the tree.

These functions can be extended to any operatjpincluding commit-write operation of transactions)
by defining them forS.holder(ox ) over the tree. Thus by this extension the parent of a commiiewn x,
of a transactiortx is tx’'s parent in the tree. Similarlynx’s children aretx’s children. For instance in
S2 of Example 3,52.parent(wiai?) = too andS2.children(wisi?) = {ro211(2), wo212(y)}. But it must
be noted thatS2.parent(ros11(2)) is to21 and notwdai?. Similarly these arguments can be extended to
descendants and ancestors.

Consider two operationsy, oy, in the computation tree represented by a scheduleWe define
S.lca(ox, oy ) as the least common ancestorholder(ox ) andS.holder(oy ) in the computation tree of
S.

Next we definedSet function to be associated with every operation in the scleesiu

Definition 1 (dSet)

ox U ( U S.dSet(ny)) U S.cwrite(ox) ox is atransaction
ny €S.children(ox)
S.dSet(ox) = 5, ox is a simple-memory operation
S.dSet(S.holder(ox)) ox is a commit-write

Thus for a transactiony this function comprises of itself, its descendents, its wiwrites and all
its descendents’s commit-writes. By this definition we dettfor any operatiornx, S.dSet(ox) =
S.dSet(S.hOldGT(Ox)). In Example 3,92.6[5615(1502) = S2.dS€t(w8§1 (y)) = {tog,?“ogn(z),woglg (y),

wost? (y), toa1, 70221 (Y), wo222(2), tozz, wos' (v)}

We have the following properties which follow from the defiion of dSet:
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Figure 2: This figures illustrates optVis. The dashed line reresents the set of ancestors ofi x.

Property 2 In the computation tree represented by a schedyléor any operatiorox belonging tooy’s
dSet, the level afx is greater than or equal toy’'s level. Formally,
(S : (ox € S.dSet(oy)) = (S.level(ox) = S.level(oy))

Property 3 In the computation tree represented by a schedylé an operationox belongs tooy’s dSet
andoy, oy are at the same level then the holdersgf, oy are the same. Formally,
(S : (ox € S.dSet(oy)) A (S.level(ox) = S.level(oy)) = (S.holder(ox) = S.holder(oy)))

Next we define a peer function for an operatiopin a schedules:
S.peers(ox) = {oy|(S.holder(ox) # S.holder(oy)) A (S.parent(ox) = S.parent(oy))}

A transaction and all the elements of its commit-set are aetpof each other even though they all have
the same parent. It is useful to view a transaction and aletements of its commit-set as a single fused
super node in the tree. From this definition we get that € S.peers(oy)) = (oy € S.peers(ox)) but
(ox ¢ S.peers(ox)). Consider two memory operatiomsx (z), my (z) operating on the same data-item.
If they are peers, having the same parentigaythen they have access to the same data buffEionging
totp.

Next we define a very useful functiapt Vi s on two operation®x, oy in a schedules, denoted as
S.optVis(oy,ox). We will explain the significance of this function througtetbourse of this document.

Definition 2 (optVis)

true oy € (S.peers(ox) U S.peers(S.ansc(ox)))

S-optVis(oy, ox) {false otherwise

One can see that optVis function is not symmetrical. That.igytVis(oy, 0x ) does not imply
S.optVis(ox,oy). If S.optVis(oy,ox) is true then we say thaty is optVis toox in S. It must also
be noted that by the definition ib§ € S.dSet(oy)) then S.optVis(oy,ox) is false. As a result, for
any commit-write of a transactioty-, saywy, S.optVis(wy,ty) is false. It can also be seen that if
S.optVis(oy,ox) then theS.holder(oy ) is not an ancestor afy.

8



Figure 2 illustrates optVis. Here the dashed line reprastm set of ancestors ofx. The operations
ma, mpg, mc are peers ofnx’'s ancestors. Hence they all are optVisio, .

In S2 of Example 3, we have thﬁQ.optVis(tm, tog) = S2.0ptViS(t02, tog) = S2.0ptV’L'S(t03, t(]l)
= true because, to2, to3 are peers of each other. Now looking at some subtle examples:
S2.0ptVis(wii3 (y), w33 (2)) is true because)i? (v), wi33 (z) are peersS2.optVis(wi?(z), ro11(2)) is
true asw)i?(z) is a peer otz which is an ancestor ofy11(2). Similarly S2.0ptVis(to1, toe2) is true. But
S2.0ptVis(roz11(2), wii?(2)) and S2.0ptVis(toza, to1) are false. AlsaS2.optVis(wdi? (y), wor12(y)) is
false asvg112(y) isinto;’s dSet andv)i? (y) is a commit-write ofy;. Similarly S2.optVis(wis? (2), ros2(2))
is false. Next we define some properties and lemmas aboutsoptV

Property 4 In a scheduleS if a memory operation (commit-write/simple-memory ogergtmy- is optVis
to another memory operation x thenmx’s holder is a descendent of parentraf,. Formally
(S : S.optVis(my,mx) = (S.holder(mx) € S.desc(S.parent(my))))

Property 5 Consider two write operationsy,wz and a read operationry in a scheduleS. If both
wy, wyz are optVis torx and are at the same level then-, wz have the same parent. Formally,
(S.optVis(wy,rx) A S.optVis(wz,rx) A (S.level(wy) = S.level(wz)) = (S.parent(wy) =
S.parent(wz))

Lemma 6 Consider two scheduleS1 and .S2 such that both of them have the same set of events. Suppose
for two event®y andox, oy is optVis toox in S1. Thenoy is optVis toox in S2 as well. Formally,
(51,52 : {ox,0y} € Sl.evts : (Sl.evts = S2.evts) A (Sl.optVis(oy,ox)) = (52.0ptVis(oy,0x)))

Proof: Since the events o1 and .S2 are the same, from Property 1, we get that the computatiess oé
S1 andS2 are the same. 181, oy is optVis toox. This implies thaby is either a peer obx or a peer of
an ancestor obx in the computation tree @f1. Since the computation tree S2 is the same as that 6fl,
oy is either a peer o x or a peer of an ancestor of in the computation tree &2 as well. Hencey is
optVis tooy in S2 also. Thus we havs2.optVis(oy, ox). O

2.3 Serial Schedules for Closed Nested Transactions

In this section we talk about serial schedules in the cormErested transactions.

Schedule Partial Order: A schedule totally orders all the events of a transactionrthieu it partially
orders all the transactions and simple-memory operatibns.a schedulé' and a transactiohy in it, we
defineS.tx.first as the first operation dfy that executes according # Similarly we defineS.t y.last
as the last operation dfy (i.e., a terminal operation) to execute accordingSto For a simple-memory
operation,S.mx.first = S.mx.last. With these definitions we can define a partial order on alhtbaes
in the computation tree represented by the schedulg: <g ny) = (S.nx.last < S.ny. first)

We call this order as thechedule-partial-orderlt must be noted that all the memory operations having
the same parent are totally ordered.

Serial Schedules: For non-nested transactions a serial schedule is a schieduléch all the transactions
execute serially (as the name suggests) without any iaterlg. Serial schedules are very useful because
their executions are easy to verify since there is no irdeihgy. For a closed nested STM system we define
a serial schedule as follows:
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Figure 3: Computation tree for a serial schedule 0152

Definition 3 A schedules S is called serial if for every transactioty in S.S, the children (both transactions
and simple-memory operations) $f are totally ordered. Formally,
(Vtx € SS.nodes : {ny,nz} C SS.children(tx) : (ny <ssnz)V (nz <ss ny))

A serial schedule with the same events of the schefiRlis as follows:r111 (z)wor12 (¥) w2 (y)conn

wor2(2)woi3 (y)wii? (2)wdi? (y)corro211 (2)wozn2 (¥)wist? () coz1 70221 (Y) wo2a2 (2) avzzwis (y) co2ro31 (y)

r032(2)woss (2)wds® (2)co3. The computation tree for this serial schedule is shows gurféi 3. From the
definition of a serial schedule we get the following property

Property 7 Consider two peer nodes,x,ny in a serial schedulés'S. Letmp be a memory operation
belonging ton x's dSet andngs be a memory operation belonging #9-'s dSet. Ifm g occurs beforeng
in S5, then all the memory operations iny’'s dSet occur before all the memory operations:ofs dSet.
Formally,

({nx,ny} € SS.nodes : (mp € SS.dSet(nx)) N (mg € SS.dSet(ny)) : (SS.parent(nx) =
SS.parent(ny))A(SS is seria\(SS.ord(mg) < SS.ord(mg)) = (Vmp,Ymg : (mp € SS.dSet(nx))A
(mg € SS.dSet(ny)) : (SS.ord(mp) < SS.ord(mq))

2.4 Writes for Read Operations and Well-Formedness

In an earlier sub-section we described how write operatamesperformed by transactions. Now let us
understand how read operations are performed. In our mfmteipn-nested transactions there exists only
a single version for each data-itetn Thus, each read operation in non-nested transaction tbadatest
value in the buffer ofz. This implies that in a schedul& consisting of non-nested transactions, a read
operationrx (z) reads the value written by the previous closest commitewaitz. We call such a write as
thelastWriteof rx (z) 1 and denote it as.lastWrite(rx(z)).

This term is inspired from [12]
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Now coming to the case of nested transactions, a transagtoting to read a data-item, say(unlike
write) has access to data buffers of all its ancestors (apart from its own). Butdes not have access to
its children’s buffers. Hence, the lastWrite could potelhfi be the most recent previous write in any one
of these buffers. Thus, we must identify rules to precisafire lastWrite of a read operation for nested
transactions.

To understand this, we consider the serial (nested) sohaxfd2 shown in Figure 3. Consider the
read operatiomgy11(z) of transaction,ye;. Transactiorty,; has access to its own buffers, the buffers of its
parentty, and the buffers of rooty. In this casero2;11(z) reads from the: buffer with the value written
by commit-writew(12(z). Next, consider the read operatiom; (y) of transactiontpe,. Similar to the
above caseyoo has access to its own buffers, the buffers of its pargnand the buffers of rooty. Thus
ro221(y) has the option of reading the value written by commit-wriff%(y) ontotos’s y buffer or by the
commit-write w13 (y) ontoty’s y buffer. In our modely o1 (y) reads the value written byJai%(y) onto
to2'S buffer.

Having illustrated with examples from a serial schedule,defne the properties that a lastWrite of a
read operation in a schedule (which is not necessarilylsenizst satisfy:

1. The lastWritewy should occur prior to the read operatiog in the schedule.

2. The lastWritavy should be a commit-write belonging to a committed transaadr a simple-memory
operation. Since the read operation can access dlaga buffers of all its ancestors, the commit-write
on z should be a peer ofx(z) or a peer of an ancestor ok (z), i.e., S.optVis(wy,rx) should be
true.

3. The read operationy (z) accesses buffers starting from that of its own transaction. It theoesses
its ancestor’s: buffer in the decreasing order of level. It reads from the bitdfer which has a non-
value in it. Thus the lastWritevy is such that the difference between its level ards level is the
smallest.

4. If there are multiple writes satisfying the above coriti then among these writes the lastWrite
is the closest to y in the schedule.

As mentioned earlier when a new sub-transaction is invokga parent transaction), the sub-transaction
creates a separate set of buffers for each data-item itsExe®n creation these buffers are initialized with
1.

It can be seen that applying these rules to non-nested ttgoss, the lastWrite for a ready (z) boils
down to the previous closest commit-write or a simple-megnugeration.

A nested transactiony wanting to read: can satisfy the above mentioned properties of lastWrite of
rn(z) by following a simple procedurety first reads its locat buffer. If the value read from its buffer
is L then it reads from its parent’s buffer. If that is alsal, it then reads the buffer of the parent of the
parent and so on. It reads théuffers in this way until it reads a nah-value. Sincé’s buffers have been
initialized, ¢ 5 will eventually read a nonk- value.

Next we will formally describe the notion of lastWrite in aggnce of steps. We consider the following
schedule to describe our definitions. The computation tethfs schedule is in Figure 4.

Example 4
Computation Tree:

to : {tinit, to1, to2, to3, trin ts
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to1 : {smo11 = ro11(x), smoi2 = wo12(y), co1 }»

to2 : {to21, smo22 = wo22 (), to23, to2a, Co2 }s

lo21 : {Smozn = 7‘0211(2), 5212 = w0212(90), $Mp213 = w0213(y), 6021},

to23 : {to231,t0232, 023},

o231 : {8m02311 = 7“02311(5'3), 52312 = w02312(y), 00231},

t0232 : {SMo2321 = 702321 (), STM02322 = W02322(T), 502323 = W02323(Y), C0232 },
to24 = {5Mo241 = T0241(), SMo242 = T0242(Y), 5M0243 = W0243(2), Co24 },

toz : {smo31 = r031(y), smo32 = T032(2), sMo33 = woz3(d), co3},

Schedule:

S3 :ron (5'3)7‘0211 (Z)wozlz (w)w022 (5'3)7"02311 (x)wozls (y)wS%P (x)wgg%g (y)0021w012(y)w8%2 (y)c01w02312 (y)
ws1% (y) co2s1702321 (Y)T0241 () wo2sea () 70242 (¥)ros1 (¥) wozs2s (V) wiass? () wissss (y) coasaros2 () aoes

wo243(2) w3 (2)cozawds’ (2) w3 (y)whs* (2)corwoss (d)ws® (d)cos

It must be noted that in the schedu# transactiontss is aborted. But both its child transactions
to0231, to232 are committed.

For two memory operations in a schedule we define two kindsstdigces. We define schDist as
S.schDist(mx,my) = |S.ord(mx) — S.ord(my)|.
Next we define levDist a$.levDist(mx, my) = |level(mx) — level(my)|. For a memory operation
mx(y) in S, we define the following sets:
S.prevW (mx (y)) = {wy (v)|(wy (y) € S.evts) A (S.ord(wy (y)) < S.ord(mx(y)))}
As the name suggests the set prevW consists of al tgtes that happen before x (y) in S irrespective
of whether they are simple write or commit-write operations
S.prevVisW (mx(y)) = {wy (y)|(wy (y) € S.prevW (mx(y))) A (S.optVis(wy (y), mx(y)))}
This set consists of all thewrites that occur beforen x (y) and are optVis ton x (y). Since the transaction
tinie 1S @ child oftg, t;,;; IS OptVis to every other operation in the computation. Hetheeset prevVisW of
every memory operation will contain a write by,;;. As a result, the prevVisW of every memory operation
has at least one element. For instance in the schetBitaentioned in Example 4,
S3.prevVisW (roga1 () = {Winit(x), wisi2(z), wosz (z)}
S3.prevVisW (rozas(y)) = {winit(y), ws1> (), wi*(y)}
S3.prevVisW (rozsa1(y)) = {winit (y), wi1® (¥), wor” (v), wosst* (v), }
Next we define a set having all the writes that occur before mong operation, are optVis to it and are
closest to it in terms of level.

S.prevCloseSet(mx (y)) = {wy (y)|(wy (y) € S.prevVisW (rx(y))) A (S.levDist(wy (y), mx(y))

is smallest}

For instance, for the writes of schedufl8 in Example 4 mentioned above,
S3.prevCloseSet(roga (x)) = {wisi?(z), woz ()}
S3.prevCloseSet(rooaz(y)) = {wgg%g(y)}

S3.prevCloseSet(rozsa (y)) = {wissi?(y)}

Having defined these sets, we define the lastWrite for a reathtipn in a schedule as the closest write
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operation from the prevCloseSet set. Formally,

S.lastWrite(mx(y)) = {wy (y)|(wy (y) € S.prevCloseSet(mx(y)))A
(S.schDist(mx (y), wy (y))is minimum) }

Since the set prevVisW has at least one element, lastWhikevisr nil. In the worst case a read operation

will read the values written by;,.;;. The lastWrites for all the reads $3 of Example 4 are as follows:
{ro11(x) : Winit(2), 70211 (2)  Winit (2), 02311 (%) : Wo2 (), 702321 (y) : w331~ (Y), ro2a1 () = wha12(2),
ro2a2(y)  wisi” () 031 (y) = wgi” (), mos2(2) : winit(2)}

An important requirement of a STM is that no transaction sdaoim an aborted transaction. Intuitively
this implies that the lastWrite of no read operation belottgan aborted transaction’s dSet. Consider the
readroase; (). Its lastWrite iswdss:? (y) which belongs tdgss’'s dSet. Transactionys is aborted. In this
case it might seem that the reags,; (v) is reading from an aborted transaction. 312(y) actually
belongs totp231's dSet which is a committed transaction. Furthg@sa (y) also belongs tdgs. Thus the
properties that we want of aborted transactions have not etated. We have the following property and

lemma which formalizes this notion:

Property 8 Consider a schedul§ which has a read x. Let the lastWrite of x bewy . Then the holder of
wy cannot be an aborted transaction. Formally,
(S:rx € S.evts : (wy = S.lastWrite(rx)) = (S.holder(wy ) is not aborted)

Lemma 9 Consider a schedul® which has a read y. Let the lastWrite of x bewy . If an ancestor of
wy, Sayt 4, is aborted themry isint4’s dSet. Formally,

(S :rx € S.evts,ty € Sinodes : (wy = S.lastWrite(rx)) A (ta € S.ansc(wy)) A (t4 is aborted =
(rx € S.dSet(ty)))

Proof: Let the parent ofwy betp. From Property 4, we get thap is an ancestor ofx. Hence, any
ancestor ofvy is an ancestor afx. This implies that 4 is an ancestor afy. Thus,rx is in the dSet of 4.
O

Informally this lemma implies that no transaction outsideahorted transaction reads from it. Consider
the read operatiompass(y) in S3 of Example 4. Its lastWrite iso)31°(y). But in S3 there is a write
w2 (y) which is optVis torgsa(y) and occurs before it. Moreoveri? is closer torgess(y) in schDist
than w31 (y) i.e. S3.schDist(rooaa(y), wiai>(y)) > S3.schDist(ro2(y), woi2(y)). So intuitively it
might seem thatv}?(y) should be the lastWrite. Bub{3i?(y) is closer torgas(y) in terms of level
than wd}? (condition 3 of the properties required by lastWrite) i.83.lev Dist(ro242(y), wisi (y)) <
S3.levDist(roa (y), w2 (y)). Hencewd3i3(y) is the lastWrite. The following two properties describe
this notion formally,

Property 10 Consider a schedul8 with memory operations;, wy , rx such thatw, occurs prior towy

in S, wy is optVis torx andwy is the lastWrite ofry. Thenwy's level should be less than or equal to
wy's level. Formally,

(S {wz,wy,rx} € S.evts: (S.ord(wz) < S.ord(rx))A\S.optVis(wz,rx)\N(wy = S.lastWrite(rx))
= (S.level(wz) < S.level(wy)))

Property 11 Consider a schedul§ with memory operations z, wy , rx such thatw's level is same as
wy's level,wz occurs prior tory in S, wy is optVis tory andwy is the lastWrite of-x. Thenwy also
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occurs prior towy in S. Formally,
(S {wz,wy,rx} € S.evts: (S.level(wz) = S.level(wy)) A (S.ord(wz) < S.ord(rx))
N S.optVis(wz,rx) A (wy = SlastWrite(rx)) = (S.ord(wz) < S.ord(wy) < S.ord(rx))

We would like to make a note about the definition of optVis. €ldar a read operationy (z) and a
committed transactioty in a schedules. Letrx be inty’'s dSet. Then by our convention all the commit-
writes ofty occur afterrx has executed in th8. Thus no commit-write ofy can be the lastWrite ofy.
Due to this property we defined optVis such that any wiiteis not optVis tor x if rx is contained irty’s
dSet. Formally,

(S : {rx,wy,ty} € S.evts : (rx € S.dSet(ty)) A (wy € ty’scommit-se} = (S.optVis(wy,rx) =
false))

For a nodenp with a read operationy in its dSet, the read is said to be external-readof np if its
lastWrite is not innp’s dSet. For instance;.y () is an external-read dfy, since its lastWrite)s1? (z)
iS not intge4’'s dSet. The reaatyq321(y) is not an external-read of the transactigp; since its lastWrite
w3312 (y) belongs tatpas’'s dSet. From this definition we get that every read operdti@m external-read of
itself. Thus,rp241(x) is an external-read of itself. It can be seen that a nestedaction interacts with its
peers through external-reads and commit-writes. Thussgdéransaction can be treated as a non-nested
transaction consisting only of its external-reads and carmtes. The external-reads and commit-writes
of a transaction constitute iextOpsSet

A schedule is calledvell-formedif it satisfies: (1) Validity of Transaction limits: After adnsaction
executes a terminal operation no operation (memory or tetnbelonging to it can execute; and (2) Validity
of Read Operations: Every read operation reads the valutewhy its lastWrite operation.

We assume that all the schedules we deal with are well-formed

3 Conflict Preserving Closed Nested Opacity

In this section, we (1) define opacity for closed nested #etiens, represented by a class of schedtN®,
(2) present a new conflict notiasptConf for closed nested transactions (3) def®i-CNQ a subclass of
CNO based on optConf and then (4) present an algorithm fafyireg the membership of CP-CNO in
polynomial time.

3.1 Closed Nested Opacity

A STM system allows interleaving between transactions ficieftly utilize the system resources. But the
STM system should also ensure that the interleaving traéinsacexecute in correct manner. In the context of
traditional databases the correctness criterion for tleeugion of concurrent transactionsssrializability
[19]. Serializability ensures that the execution of all tmmmitted transactions corresponds to a serial
execution. But serializability does not specify the comess of aborted transactions. In STM systems
where transactions execute in memory it is imperative thdtamsactions including aborted transactions
execute correctly. Incorrect execution of aborted tratisas could result in the STM system entering
into an inconsistent state. This could result in many ersoich as crash failures, division-by-zero etc. as
described in Section 1.

To address this shortcoming Guerraoui and Kapalka [5] cgmwiti the notion ofbopacity. A schedule,
consisting of an execution of transactions, is said tompaqueif there is an equivalent serial schedule
such that it respects the original schedule’s schedulgaparder and the lastWrite for every read operation
(including the reads of aborted transactions) in the sedhedule is the same as in the original schedule.
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To effectively capture this notion, Imbs and Raynal [9] tralathe aborted transactions in a given schedule
as read-only transactions. Then in the resulting schedhdg try to find an equivalent serial schedule
satisfying the above mentioned conditions. We extend tbtioon to nested transactions. That is, in our
characterization, all aborted sub-transactions are \desgeread-only transactions. We define a class of
schedules called as Closed Nested Opacity or CNO as follows

Definition 4 A scheduleS belongs to Closed Nested Opacity (CNO) class if there eaistsial schedule
SS such that:

1. Event Equivalence: The eventssodnd SS are the same. Formally,
((S.evts = SS.evts))

2. schedule-partial-order Equivalence: For any two nodgs nz that are peers in the computation tree
represented by if ny occurs beforewz in S thenny occurs beforer in SS as well. Formally,
(tx : {ny,nz} C S.children(tx) : (ny <gnz) = (ny <ssnz))

3. lastWrite Equivalence: For all read operations the lasifés in.S and S'S are the same. Formally,
(8,88 :Vrx : S.lastWrite(rx) = SS.lastWrite(rx))

Even though the definition of CNO is similar to opacity, thendibion lastWrite equivalence captures
the intricacies of nested transactions. This class enshatshe reads of all the transactions including all
the sub-transactions of aborted transactions read censigilues. We denote this equivalence between a
scheduleS and a serial schedulgS assS ~, SS.

3.2 Conflict Notion: optConf

Checking opacity, like general serializability (for inst®, view-serializability) cannot be done efficiently.

Restricted classes of serializability (like conflict-sdidability) have been defined based on conflicts which
allow polynomial membership test, and facilitate onlinéestuling. Along the same lines, we define a
subclass of CNO, CP-CNO.

This subclass is based on the notion of conflicts. Two mempeyaiions operating on the same data-
item are said to be in conflict if one of them is a write operat{and the other is either a read or write
operation). We extend the notion of conflicts to closed me#tnsactions. We call this conflict notion as
optConf (conflict for optimistic executions). It is tailored for ded-nested nature of transactions. This
notion is similar to the idea of conflicts presented in [4] fmm-nested transactions. In this section we
preseniConflict Preserving Closed Nested OpaaityCP-CNOa subclass of CNO based on optConf notion
for closed nested transactions.

Consider a schedul€ and a serial schedulgS with the same set of events &s We show that, if the
set of optConfs between the eventsSimre also inS.S, then the lastWrite for every read is also the same in
S andSS. It must be noted that since the set of events (and transagt&e the same i andS'S, from
Property 1 we get that their computation trees are also the sAs a result if an operatiany is at levell x
in S, then its level inS'S is alsol x .

The conflict notion optConf is defined only between memoryrafiens in extOpsSets (defined in Sec-
tion 2.4) of two peer nodes. As explained earlier, a noderémsaction) interacts with its peer nodes through
its extOpsSet. Consider two peer nodes ng. For two memaory operations. x, my in the extOpsSets of
na,ng, S.optConf(mx,my) is true if myx occurs beforeny in S and one of the following conditions
hold:
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Figure 5: Example illustrating w-r and r-w conflicts

1. w-r optConf:mx is a commit-writewx of n4 andmy is an external-ready of ng or
2. r-w optConf:mx is an external-ready in n 4, my is a commit-writewy of np or
3. w-w optConf:mx is a commit-writew x of n 4 andmy is a commit-writewy of np.

Figure 5 illustrates the conflicts for a reag. Herew; andnp are peers withy in np's dSet and
the lastWrite ofrx is wy,. In the figure on the leftwy is a peer ofw;, andnp. This figure illustrates w-r
conflict betweenvy andry. The dotted line shows the conflict.

The figure on the right of Figure 5 illustrates r-w conflict. this figure,wy belongs tonp’s dSet and
is a peer ofng. The commit-writewy is a peer ofvp. The readrx is inng’s dSet and imp’s dSet with
np being an ancestor ofy. Sincerx’s lastWrite is not inng’s dSet and also not inp’s dSet, it is an
external-read of bothg andnp. Hencerx is in r-w optConf with bothwy andwy.

Next, we will motivate the reason for defining the conflictstirs manner. Consider a reag (d) in
a schedules with lastWrite aswy,(d). Letwy(d) be an arbitrary write it that is optVis torx (d). Let
their levels bd x, 1,4 respectively. From optVis definition we get that, < Ix andl4 < [x and these
relationships hold ir5'S as well (since the set of events$handS'S are the same). The conflicts are defined
such thatw4 does not becomex’s lastWrite in any conflict equivalent serial sched§lg. The following
paragraphs explain this.

Forwy, to be the lastWrite of x in SS, wy, must occur beforex in SS as well. This is ensured by
w-r optConf. Next, let us analyse the motive of r-w optConforfa the definition of lastWrite, we get that
if l4 <l (i.e,wy is closer to the root tham;) thenw 4 can never be the lastWrite of in S.S. Hence, it
suffices to define r-w conflict only between the readand any suchw, whose level 4 is greater than or
equal tol;,. We do not need to consider conflicts between read and whitgsate at level smaller than its
lastWrite (i.e. closer to the root than the lastWrite).

Consider the case that > [1,. Consider two peer nodes-, ng (which are at the same level in the tree
since they are peers). Let be innp’'s dSet andv 4 in ng’s dSet. Also, letrx occur beforav4 in S. Since
wy is optVis torx, wa must beng’s commit-write (if ng is a simple-memory operation then it is same
aswy,). As aresult, the levels ofp, ng andw, are the same. From our assumption, we havedhgs
level is greater than or equal tp. Hencenp's level is greater than or equal tg as well. From Property 2
we get thaty x's lastWritewy, cannot be imp’s dSet. As a result;x is an external-read ofp. Thus by
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defining r-w conflict between suehy andw 4 we ensure thaib 4 can never be x’s lastWrite in any conflict
equivalent serial schedules.

Now consider the case that the writey occurs beforev;, andrx in S. Letwy’s level i, be same as
l1,. Combining this with the observation thaty andw;, are optVis torx, we get thatv 4 andwy, are peers.
It must be noted that w-r conflict ensures that occurs before x in §S. But it is possible thatv 4 occurs
betweenw; andry in SS. Thenw4 becomes: x’s lastWrite inS.S. The w-w conflict betweem 4 andw;,
ensures thab 4 occurs beforevy, in SS as well. Thus all the three conflicts ensure thatis r x's lastWrite
in S.S as well.

The set of conflicts for the schedu#8 mentioned in Example 4 are:

{(ron (2), w3 (x)), (roz11 (2), wis> (2)), (woaz (x), wi1? (), (wo2e (x), 02311 (%)), (rozsin (), whsi > (x)),
(rogs11 (), we3ss” (@), (w1 (1), o242 (), (WO (y), To31 (1)), (WO1? (), wis' (), (rozsi (), wsi? (x)),
(wi3a1® (), ro2s21 (y)), (wizat® (), whsss: (1)), (W12 (), rozar (), (wo2z (), To241 (), (ro31 (¥), wis" (),

(ros2(2), wgs* (2))}
The conflicts involvingt;,;; andt;, are not shown here. Now, we describe a property about w-riconfl
and a lemma about r-w conflict,

Property 12 If the lastWrite of read x in S is wy thenwy andrx are in w-r optConf. Formally,
{((wy = S.lastWrite(rx)) = (S.optConf(wy,rx)))

Lemma 13 Consider a writew 4 and a readry in a schedules. Letrx’s lastWrite bew;,. Let the levels of
rx,wa,wr belx,la,lr respectively. If; is less than or equal tby andw 4 is optVis torx andrx occurs
beforew, in S thenS.optConf(rx,w,) is true. Formally,

(wr, = S.lastWrite(rx)) A (I, <1la) A (S.optVis(wa,rx)) A (S.ord(rx) < S.ord(wa)) =
(S.optConf(rx,wa))

Proof: Let holder ofw, ben4 (which is same aw 4, if it is a simple-write). Sinceav, is optVis tory,
there is a peenp of ny such that-x is in ng’s dSet. Sincev4,np are peers we get thatvel(wy) =
level(na) = level(ng) = l4. Here we have two cases depending on the levels;odndw 4.

Case 11, < l4: This case implies thdf, < level(np). Combining this with the contrapositive of Property 2,
we get thatw;, is not inng’s dSet. Butry is in ng’s dSet. Hence x is an external-read ofg.

Case 21;, = l4: This case implies thdf, = level(np). Consider the case that;, is innp's dSet. Then from
Property 3, we get that holder af;, is same asz’s holder. This is possible only whan;, is ng’s
commit-write. Sincew;, is lastWrite ofry, it occurs before x in S. This implies thatw;, is not a
commit-write ofn g. This is possible only whewy, is not inng’s dSet. Hence x is an external-read
of np.

Thus in both the cases, we get that is an external-read ofz. From our assumptions we have that

na,np are peerswy is a commit-write ofn 4, and we are given thdtS.ord(rx) < S.ord(wa). These are
the conditions of r-w conflict. Hencé,.optCon f(rx,w4) is true. O

Based on this conflict definition, we define a class of schedtddled asConflict Preserving Closed Nested
Opacityor CP-CNQ

Definition 5 A scheduleS belongs to CP-CNO class if there exists a serial scheddlesuch that:
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1. Event Equivalence: The eventssband SS are the same. Formally,
((S.evts = SS.evts))

2. schedule-partial-order Equivalence: For any two nodgs nz that are peers in the computation tree
represented by if ny occurs beforevy in S thenny occurs beforer, in S.S as well. Formally,
(tx : {ny,nz} C S.children(tx) : (ny <snz) = (ny <ss nz))

3. optConf Implication: if two memory operations.$hare in optConf then they are also in optConf in
SS. Formally,

(Vmy,Ymyz : {my,mz} C S.evts : (S.optConf(my,mz) = SS.optConf(my,mz)))

We denote this equivalence to such a serial scheduls as,. SS). As we can see, the class CP-CNO
is different from CNO only in condition 3. We prove this ecalence also ensures that lastWrites are the
same i.e. class CP-CNO is a subset of CNO.

Theorem 14 If a schedulesS is in the class CP-CNO then it is also in CNO. Formally,
((S € CP-CNO = (S € CNO))

Proof: SinceS € CP-CNO, we know that there exists a serial schediflesuch thatS ~,. SS. We
will prove that the lastWrite for every read operation Sty is same as in5. We will prove this using
contradiction. Consider a read. Let (wy = S.astWrite(rx)) # (wz = SS.lastWrite(rx)). Let

S.parent(wy) = tp andS.parent(wyz) = tg. Sincewy is the lastWrite of-x in .S, from the definition of
optConf and Property 12, we get tifabptCon f (wy, rx ) is true which also implies'S.optCon f (wy, rx)

is true. Thus from the definition of optConf we get that occurs prior tarx in S'S. Formally,

Property 12 S&eSS

((wy = S.lastWrite(rx)) S.optCon f(wy,rx)

optCon
P /

SS.optCon f(wy,rx) (SS.ord(wy) < SS.ord(rx))) (1)

de finition

From the definition of lastWrite we have that

S.evts=SS.evts,

(wy = S.lastWrite(rx)) = S.optVis(wy,rx) SS.optVis(wy,rx)) (2)

Lemma 6

S.evts=SS.euvts,

(wz = SS.lastWrite(rx)) = SS.optVis(wz,rx) S.optVis(wz,rx)) (3)

Lemma 6

Consider Eqn (1) and Egn (2). We have that occurs prior ta-x in S.S andSS.optVis(wy, rx ). Further
we have thatvy is the lastWrite of-x in S'S. Combining these with Property 10 we get thef.lcvel (wy)
is greater than or equal ©S.level(wy ). Formally,

((SS.ord(wy) < SS.ord(rx)) A SS.0ptVis(wy,rx) A (wz = SS.dastWrite(ry)) — 2 20

(SS.level(wz) = SS.level(wy)) S5 cots=5.evts, (S.level(wyz) = S.level(wy))) (4)

Now we have two cases based on the positions gfr x in S.
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Case 1S.ord(wz) < S.ord(rx): Herewy also occurs beforex in S. Similar to the argument of Eqn (4),
combining Egn (3) with this case we get that levekaf in S andSS is greater than equal to;'s
level,

(S.ord(wz) < S.ord(rx)) A S.optVis(wz, rx) A (wy = SlastWrite(rx)) — 22

(S.level(wy) = S.level(wy)) S5 cots=5.cvts, (SS.level(wy) = SS.level(wgz))) (5)

Combining Egn (4) with Egn (5) we get that level®of- in S andSS is equal tow’s level,

(S.level(wyz) = S.level(wy)) A (S.level(wy) = S.level(wz)) = (S.level(wy) = S.level(wy))

SEClZI, (58 Jevel(wy) = SS.level(wy))  (6)

This gives us that the levels are the same. Combining thidtredth the information ofS i.e. wy
occurs prior torx in S, wy is optVis tory andwy is the lastWrite ofrx in S and Property 11 we
get thatw occurs prior tawy in S. Formally,

((S.level(wz) = S.level(wy)) A (S.ord(wz) < S.ord(rx) A S.optVis(wz,rx)A
(wy = S.lastWrite(rx)) Lroverty 11, (S.ord(wz) < S.ord(wy))) (7)

Similarly combining Egn (6) with the information abogtS, we get thatwy occurs prior towy in
SS.

((SS.level(wz) = SS.level(wy)) A (SS.ord(wy) < SS.ord(rx) A SS.optVis(wy,rx)A

IR, (SS.ord(wy) < SS.ord(wz)))  (8)

(wy = SS.lastWrite(rx))

From Egn (2) we have thaty is optVis torx in S and from Egn (3) we have that, is optVis to
rx in S. In Eqn (6) we obtained that level af; is same asvy’'s level in .S. Combining these results
with Property 5 we get that parent of; is same asvy in S,

(S.optVis(wy,rx) A S.optVis(wz,rx) A (S.level(wz) = S.level(wy))

LIPT R, (S.parent(wy) = S.parent(wz))) (9)

Combining Egn (7), which states that; occurs beforevy in S, with the result obtained just above
in Egn (9) we get thatv is in optConf withwy in S. FromS =,. 5SS, we get that this is also true in
SS. Hencewy should also occur prior tay in S.S,

((S.parent(wy) = S.parent(wz))A((S.ord(wz) < S.ord(wy)) doz;t‘CTf (S.optConf(wz,wy))
5055, (S.optConf(wz,wy)) optCon] ((SS.ord(wz) < SS.ord(wy))) (10)

de finition

20



But this result contradicts with Eqn (8) which states that should occur prior tavz in S.S. Hence
this case is not possible.

Case 2S.ord(rx) < S.ord(wz): In this case-x occurs beforevy in S.

Eqgn (3) states is optVis tory in S. From Eqgn (4) we have that level af; is greater than or equal
to level ofwy which is the lastWrite of-x in .S. Combining all these with the current case we obtain
thatry, wy are in optConf inS. From S ~,. SS, we get that this is also true ifiS. Hencewy
should occur afterx in SS,

(S.ord(rx) < S.ord(wz)) A (S.level(wz) = S.level(wy)) A S.optVis(wz,rx)A
(wy = S.lastWrite(rx)) Lemma 13, (S.optConf(rx,wz)) S%oeSS,
(SS.optConf(rx,wz)) optConf (SS.ord(rx) < SS.ord(wz))) (11)

de finition

Thusw, cannot be lastWrite ofx in S.S which again is a contradiction. Hence this case is also not
possible and rules out all cases.

This implies thatwz # SS.lastWrite(rx)). ]

Next we give an example of a schedule which is in CNO but notPRG@NO. Consider the following
computation tree and schedule:

Example 5 Computation Tree:

to : {tinit: to1, to2, to3s tfin }s

to1 : {smo11 = ro11(x), smoi12 = wo12(y), co1 }»

toz : {smo21 = 1021 (), sMo22 = wo22(y), co2},

to3 : {smo31 = 1031(2), sMo32 = wo32(Y), co3 }

Schedule:

54 : ror1 (2)ro21 (y)wor2 () wii? (y) corwoae (y) wis? (y) coarost (2)wose () wis (y) cos

Figure 6 shows the computation tree corresponding4toAn equivalent opaque serial schedule is:

S5 o1 (y)w022 (y)w(O)%Q (y)0027“011 (U’U)w(nz(y)wf))%2 (y)0017“031 (Z)w032 (y)w8§’2 (y)Cos

The set of optConfs ih4:

{(T021 (y))7 w8%2 (y))7 (T021 (y))7 wo22 (y))7 (T021 (y))7 w8§2 (y))7 (w8%2 (y)7 w8%2 (y))7 (w8%2 (y)7 w8§2 (y))7

(w3 (y), wos” ()}

But there is no optConf equivalent serial schedule for tkegple. In the next section we will show this
using the graph construction algorithm. This shows thatGD ¢ CNO.

In many of the existing STM systems proposed (for non-nestmusactions), whenever a conflict is
detected between a read and a write operation of two traosacbne of the transactions is aborted [9]. It
can be verified that the set of schedules accepted by suchemsisa subclass of CP-CNO. By defining
optConf only between external-reads and commit-writegpae®ed to any arbitrary read and write, the class
CP-CNO is as non-restrictive as possible.
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tfin,
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7021 (Y) wo12(Y)

Figure 6: The computation tree for Example 5

3.3 Algorithm

In this subsection, we describe the algorithm for testirggrttembership of the class CP-CNO in polyno-
mial time. Our algorithm is based on the graph constructigordghm by Resende and Abbadi [16]. For
a schedules, the algorithm computes @onflict graph(also referred aserialization graph based on opt-
Confs, denoted aS.optCon f Graph, and checks for the acyclicity of the graph constructed. ¥ethis
asoptConfGraphCons algorithmThe graphS.optCon f Graph is constructed as follows: (1) Vertices: It
comprises of all the nodes in the computation tree. The xéotea noden x is denoted asx. (2) Edges:
Consider each transactiai starting fromt,. For each pair of childrenp, ng, (other thant;,;; andt ;,,)

in S.children(tx) we add an edge from vertex> (corresponding tap) to vertexvg (corresponding to
ng) as follows:

1. Completion edges: tip <g ng

2. Conflict edges: For any two memory operatioms;, myz such thatny is innp’'s dSet andny is in
ng's dSet, an edge fromp to ng if S.optConf(my, mz) is true.

Then the algorithm checks for the acyclicity of the grapbptCon fGraph constructed. Since the
position of the transactions,,;; andt;, are fixed in the tree and in any schedule, we do not consider
them in our graph construction algorithm. It must be noted th our graph construction all the edges are
between vertices corresponding to peer nodes. There adges between vertices that correspond to nodes
of different levels. Thus the graph constructed consisiigbint subgraphs. Applying this algorithm on
the schedule of3 of Example 4 we get the graph shown in Figure 7. In Figure 8 vegvghe serialization
graph for the schedul®4 of Example 5. As one can see this graph has a cycle caused loptifiécts:
(w2 (y), wd3?(y)) and(ro21 (y), wii? (y)). Hence this schedule is not in CP-CNO.

We use this graph characterization to determine if a sckeflus in CP-CNO or not. We show in
Theorem 30 that a scheduteis in CP-CNO if and only if the serialization graph constegtts acyclic. We
prove this theorem using a series of lemmas and properties.pfioperties and lemmas from Property 15
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Figure 7: The serialization graph for the schedule in Exampé 4. Only the subgraphs of nested trans-
actions are show here.
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no1

M-
N2 03

Figure 8: The serialization graph for the schedule in Exampé 5. Only the subgraph of the nested
transaction ¢ is show here.

until Lemma 20 show that i is in CP-CNO thenS.optCon fGraph is acyclic (forward direction of the
theorem).

Proposition 15 Consider a graphyl, which is a subgraph of another grapf2. If g1 is cyclic theng2 is
also cyclic. Formally,
((g1 C ¢2) A (g1 is cyclic) = (g2 is cyclic))

From graph theory we get the above property. Next we get thewimg property and lemmas from
optConfGraphCons algorithm.

Property 16 Consider a schedulg, and the corresponding grapl§,optCon f Graph, constructed by opt-
ConfGraphCons algorithm. Let it contain two verticeg (corresponding to the tree nodeg) and vg
(corresponding to the tree nods;). If there is an edge fromp to vg then the tree nodesi andng have
the same parent.

Lemma 17 Consider a serial schedul&s, its serialization graphSS.optCon f Graph constructed using
optConfGraphCons algorithm. Let it contain two vertiags (corresponding to the tree nodeg) andvg
(corresponding to the tree nodg;). If there is an edge fromp to vg then the last event afz in S\S occurs
before the first event ofg in SS.

Proof: From the construction of S.optCon fGraph as observed in Property 16 we have that there is a
transactiont p which is the parent ofhig andng. Now we have two cases depending on the type of edge

connecting fronvy to vg.

e Completion edge: From the definition of completion edge, inectly get thatS'S.ord(SS.ng.last) <
SS.ord(SS.ng.first).

e Conflict edge: From the definition of conflict edge, we have,tha
((Fmx,my : (mx € SS.dSet(ngr))A\(my € SS.dSet(ng))A(SS.parent(nr) = SS.parent(ng))A

(SS.optCon f(mx,my))) dgit??f ((Fmx,my : (mx € SS.dSet(ng))\(my € SS.dSet(ng))A

(SS.parent(ng) = SS.parent(ng)) A (SS.ord(mx) < SS.ord(my)))
Applying Property 7 on this result we get th&.ord(SS.ng.last) < SS.ord(SS.ng.first)
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Lemma 18 For a serial schedul&'S, SS.optCon fGraph is acyclic.

Proof: We will prove this using contradiction. LétS.optCon f Graph be cyclic. Letacycle itt'S.optCon f Graph
be composed df vertices,ux1 — vxs — ... = vxr — vx1. From Lemma 17 we get that,
(SS.ord(SS.nxi.last) < SS.ord(SSmnxs.first) < SS.ord(SS.mnxs.last) < SS.ord(SS.nxs.first) <

.. < 8S.ord(SS.nxi.first) < SS.ord(SS.nxi.last)) = (SS.ord(SS.nxi.last) < SS.ord(SS.nxi.last))
This is not possible. HencgS.optCon f Graph cannot be cyclic. O

Lemma 19 Consider a schedul§ and a serial schedul8 S such that(S ~,. SS). ThenS.optCon fGraph
is a subgraph of'S.optCon f Graph. Formally,
(S mpe SS) N (SS'is serial) = (S.optConfGraph C SS.optConfGraph))

Proof: To prove this we have to show that(§ ~,. S.S) then(S.optCon fGraph.v = SS.optCon fGraph.v)A\
(S.optCon fGraph.e C SS.optConfGraph.e)).

From optConfGraphCons algorithm we get that every vertekéngraph corresponds to a computation
tree node. SincéS ~,. S5), the set of events and transactionsSoére the same aSS. Hence we get
(S.optCon fGraph.v = SS.optCon fGraph.v).

Coming to the edges, any edgeSmptCon f Graph corresponds to either a completion or conflict edge
between peer nodes i From=,. equivalence we get that these relationships also exisbirHence these
edges also exist i8.S.optCon fGraph. Thus we have S.optConfGraph.e C SS.optConfGraph.e).
This implies(S.optCon fGraph C SS.optConfGraph). O

Lemma 20 Let S be a schedule for which there is a serial schedsil¢ such that(S ~,. SS). Then
S.optCon fGraph is acyclic. Formally,
(S mpe SS) N (SS'is serial) = (S.optCon fGraph is acyclic))

Proof: We will prove this using contradiction. L&toptCon f Graph be cyclic. We have,

(S moc SS) A (SS'is seria) A (S.optCon fGraph is cyclic)
= { Lemma 19}

(S.optConfGraph C SS.optConfGraph) A (SS'is seria) A (S.optCon fGraph is cyclic)
= { Property 15}

(SS'is seria) A (SS.optCon fGraph is cyclic)
= { contrapositive of Lemma 18

(SS'is seria) A (SS is not seria)
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Here we have a contradiction. HenSeptCon f Graph is acyclic. O

Next we show that for a given schedufeif its serialization graph is acyclic thesiis in CP-CNO (the
reverse direction of Theorem 30). This is shown in propgrfiemmas Lemma 21 to Lemma 29.

We give an algorithm for generating conflict preserving aleschedule fromS.optCon fGraph if it
is acyclic. We call thissxpander algorithm The expander algorithm separates the disjoint sub-graphs
S.optCon fGraph. For a transactiony, a subgraph denoted ag is constructed by taking all the nodes
corresponding tdx's children nodes and the edges between them. To constredindl schedule the
expander algorithm works witkschedulesA xschedule is like a normal schedule but also has tramsacti
operations in its event set. Similar to a schedule all thetsvim a xschedule are totally ordered. When a
xschedule has no transaction operations in it, then it isesasrma normal schedule. For a transactigna
subgraph denoted gs; = tx.subGraph(S) is constructed as follows:

Initialize a xscheduleX S to ¢

1 Parse the xschedulgS. Perform the following actions when each of the followingigountered:

1.1 Transactiori: Replace this transaction with all its child operationdlofwed byt ’s commit-
write set and y's terminal operation. The order of;’s children is given by a topological sort
obtained from the graphy = tn.subGraph(S).

1.2 Memory and Terminal operations: Nothing needs to be.done
2 Repeat the above step until the serial schediufecontains only memory and terminal operations.

When the expander algorithm starts, the xschedifehas only one transactiag in it. Then expander
algorithm recursively replaces any transaction operatioxiS with its children, its commit-write operations
and its terminal operation untiX'.S has no more transactions in it. We denote the various changés
xschedule by subscripting 'S. The expander algorithm starts wihS,, working throughX .S, XS5 and
so on until it reaches the final schedWes ;. We denote the final scheduleS; as RS (resultant schedule).

The topological sorts of the various subgraphs obtainegplyang this algorithm ors3.optCon f Graph
of Example 4:

9o : to1tosto2

go1 : to11toi2

go2 * tozatozsto21to24
9021 : to211t0212t0213
go23 : to231t0232

90231 * t02311t02312
90232 * to2s21t02322102323
9024 * to241t0242t0243
gos : tozitosztoss

The resultant schedule is:

S6 : ro11 (2)wor2 () w2 (y)co1mo31 (¥)rosz (2)woss (d)whs® (d) coswoz (2)ro2s11 (2)woasi2 (y)wias 2 (y) cozst
T02321 (1) Wo2s22 () wo2323 (1) wisa2 (2)wdaas> (y) co2s2a023T0211 (2)wo212 () woe1s (v) wisi? (z)wist3 (y) coz1

r0241 () 70242 (¥)wo2a3 (2) wias® (2)wis ! (x)wls* (y)wis* (2)co

Now we will prove if S.optConfGraph is acyclic then the reéant scheduleRS obtained is serial and
optConf equivalent to the original schedue
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Lemma 21 Consider aX S; that has two nodes p, ng such that p occurs beforeip. TheninX S;(RS),
the last event ofip, X'Sy.np.last occurs before the first eventof), X.Sy.ng. first. Formally,
({np,ng} € XS;.evts : XS;.ord(np) < XS;(ng)) = (XSf.ord(XSs.np.last) < XSy.ord(
XSf.ng.first)))

Proof: This is can be easily proved using induction on the distaeteden: p, ng in X.S;: 6 = | X S;.ord(np)
— X S;.ord(ng)|. 0

One can see the following property abdus.

Property 22 Consider a schedul& such thatS.optCon f Graph is acyclic. Then the resultant schedut&
satisfies validity of transaction limits i.e. after a tramsian terminates no operation (memory or terminal)
belonging to it should execute

In the next lemma we describe the relationship between edgegraph ofS.optCon f Graph and the
resultant schedul®&sS.

Lemma 23 Consider a schedul§ with the graphS.optCon f Graph being acyclic. Let there be two ver-
tices invp,vg in it corresponding to tree nodesp, ng. If there is an edge fromp to vg then inRS the

last event of: p occurs before the first event of). Formally,

(vp,vg C S.optCon fGraph.v,e; € S.optConfGraph.e : (e; connectup to vg) = (RS.ord(RS.np.last) <
RS.ord(RS.ng.first)))

Proof: From our construction ob.optCon fGraph, we get thathp,ng are peers. Let these nodes be
children of a transactiory in the computation tree. Let the subgraph correspondingytde gy =
tn.subGraph(S). When the expander algorithm encounteksin some xscheduleX S; and parses, it
replaceg y by all its children, followed by y’s commit-write set andy’s terminal operation. The ordering
among the child nodes is given by topological sorygf

Since there is an edge fromp to vg in S.optCon fGraph, the expander algorithm ensures that
occurs beforey, in the topological sort ofy. Hence inX S, 1, the expander algorithm placeg before
ng. Combining this result with Lemma 21, we get that/i$' the last event of.p occurs before the first
event ofng. O

Next we show thafz.S satisfies each of the conditions mentioned in the definittoc@®-CNQ

Property 24 If S.optCon fGraph is acyclic thenRS contains the same events gsFormally,
((S.optCon fGraph is acyclic) = (S.evts = RS.evts))

This property directly follows from the observation thag tixpander algorithm does not alter the computa-
tion tree. It only alters the schedule of the memory openatio

Property 25 If S.optCon fGraph is acyclic thenRS is serial.
This property follows directly from the working of expandsdgorithm.

Lemma 26 Consider a schedulé such thatS.optCon fGraph is acyclic. Letty be a transaction inS
with childrennp andng. If np occurs beforeng in S thennp also occurs before in RS. Formally,

(S :tx € Snodes,{np,ng} C S.children(tx) : ((S.optConfGraphis acyclic) A (np <g ng)) =
(np <rs nqQ))
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Proof: From the construction of = S.optCon fGraph we can see that it contains two verticgs (cor-
responding to:p) anduvg (corresponding tavg). If (np <g ng) then ing there is an edge from, (the
vertex corresponding top) to v, (the vertex corresponding tey). Combining this with Lemma 23 we get
that(RS.ord(RS.np.last) < RS.ord(RS.ng.first)) which implies thatnp <grs ng). O

Lemma 27 Consider a schedul§ with two memory operations: x, my such thatS.optCon f(mx,my)
is true. If S.optCon f Graph is acyclic then inR.S, mx occurs beforeny . Formally,
(S.optCon fGraph is acyclig A S.optConf(mx,my) = (RS.ord(mx) < RS.ord(my))

Proof: From the definition of optConf, we get that there exist tworpssesn p, ng such thatnx is in
np’'s dSet andmny is in ng’s dSet. From the construction gf = S.optCon fGraph we can see that it
contains two verticesp (corresponding tap) andvg (corresponding tag) and there is an edge between
vp andvg. Now the argument is similar to the proof of Lemma 26. Due ®ghesence of an edge, from
Lemma 23 we get thatRS.ord(RS.np.last) < RS.ord(RS.nq.first)). Hence,myx occurs beforeny

in RS. O

Lemma 28 Consider a schedulé such thatS.optCon fGraph is acyclic. Then the lastWrite for every
read operation inS is the same as iRS. Formally,
(S.optConfGraph = (Vrx € S.evts : (S.lastWrite(rx) = RS.lastWrite(rx)))

Proof: The proof is very similar to Theorem 14. O

Lemma 29 Consider a schedul§ with two memory operations: x, my such thatS.optCon f (mx,my)
is true. If S.optCon fGraph is acyclic thenRS.optCon f (mx, my) is true as well. Formally,
((S.optCon fGraph is acyclig A S.optConf(mx, my) = RS.optConf(mx,my))

Proof: From Property 24, we get that all the eventsd is same a$5. Thus their computation trees are
the same. Further from Lemma 28, we get that all the last@/fdeevery read are same fhand RS. Let
us consider each case of conflict:

e mx = wyx, my = ry: This case implies that there exist two peer nodesn such thatvx isnp’'s
commit-write andry is ng’s external-read irt. Since the computation trees Sfand RS are the
same and the lastWrites for every read are the same we hawve tha n p's commit-write andry is
ng's external-read imRS as well. From Lemma 27, we get thaty occurs beforey in RS. These
are the conditions fotwy andry to be in optConf inRS. Hence,wx,ry are in optConf inRS as
well.

e mx =rx, my = wy: The argument is the same as above.

e mx = wy, my = wy: Here,wx andwy are peers irb. Since the computation trees 8fand R.S
are the sameyx andwy are peers irRS as well. From Lemma 27, we get thaty occurs before
wy in RS. Hencewx,wy are in optConf inkS as well.

Thus, in all the cases we get th@S.optCon f(mx, my) is true. O

Finally we have,
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Theorem 30 A scheduleS is in CP-CNO iff if the conflict grapty.optCon f Graph is acyclic. Formally,
(S € CP-CNO < (S.optCon fGraph is acyclic)

Proof: We will prove each direction.

(=) (S € CP-CNO = (S.optCon fGraph is acyclio:
Here we have that,

(S € CP-CNO % ((S ~pe SS) A (SS is seria)) 2220 (S optCon.f Graph
is acyclic

(<) (S.optConfGraphis acyclic = (S € CP-CNO:

Since S.optCon fGraph is acyclic, the expander algorithm generates a sche@lgle From Prop-
erty 25 we get thaRS is serial. Next we will prove each of the conditions requibgcthe definition
of CP-CNQ

— Event Equivalence: From Property 24 we get that,
((S.evts = RS.evts) A (S.nodes = SS.nodes)).

— schedule-partial-order Equivalence: From Lemma 26, welgef
(S :tx € Sinodes, {np,ng} C S.children(tx) : (np <gng) = (np <grs nqQ))

— optConf Implication: From Lemma 29, we get that,
(S: ({mx,my} C S.evts) : (S.optConf(mx,my)) A (S.optCon fGraph is acyclic) =
(RS.optCon f(mx,my))).

This proves all the requirements for CP-CNO.

a

This r(?_of shows tha checking1 the mernbership of CP-CNO eafobe in polynomial time since checking
for acyclicity can be done in polynomial time.

4 Extensions to Closed Nested Opacity

In the previous section we developed a polynomial time \adgiéi characterization of CP-CNO, a subclass
of CNO (Theorem 30). In this section we will develop some egiens to CNO.

4.1 Drawback of CNO

Given a schedule with aborted transactions, opacity spedifiat the read operations of aborted transac-
tions also read consistent values. To ensure that no tiamsaieads from an aborted transaction, aborted
transactions are treated as read-only transactions. A ggkedule is said to be opaque if there exists a
serial schedule equivalent to it. In this way the currentmation of opacity ensures that the reads of all
transactions (including aborted transactions) are ctargiand the writes of aborted transactions are hidden
from other transactions. Class CNO extends opacity to désiasactions, treating aborted sub-transactions
in the same manner.
Consider the following transactions,
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Transaction 1ty Transaction 3¢g29

1: ready 1: ready

2: write y 2: readz

3: write z 3: writed
Transaction 2tgy Transaction 4 tga3
1: readd 1: readp

2: invoketgos 2: readz

3: invoketgas 3: write z

For this example, let the transactiohs, to2 execute in an interleaved manner. Let the following partial
schedule represent the execution of these transactionthislpartial schedule, transactions do not have
terminal operations. A STM scheduler on receiving thesatsva this order will decide to abort or commit
the transactions.

Example 6 to : {tinitv t()l, tog, tfm},

to1 : {smo11 = ro11(y), smo12 = wo12(y), smo13 = woe13(2)},

to2 : {smo21 = r021(d), tozz, to23},

to2 : {smo221 = T0221(Y), sMo222 = T0222(2), SM0223 = Wo223(d)},
to23 : {80231 = 70231 (D), 50232 = T0232(2), SM233 = W0233(2)},

Schedule:
ST 2 ro11(y)ro21 (d)woi2(y)roza1 (y)woiz (2)rozaz (2)wozes (d)ro231 (p)ro2s2 (2)woess (2)

Consider a schedulgi based on the class CP-CNO (and hence the class CNO) whictiudebehese
events. The scheduler is invoked on-demand basis. Whensatithon wishes to perform a read operation or
wishes to commit, it invokes the scheduler. On being invokied scheduler looks at the current operation
(either read or commit operation) with the history of evealtgady executed. Using all these events it
constructs a serialization graph based on optConf and sHeclacyclicity. If the graph is acyclic, then the
scheduler allows the current operation to execute. Otlseriwidoes not allow the operation to execute and
aborts the corresponding transaction.

In the given schedule, the scheduler allows all the evelhthditransactiort;; commits. None of these

events form a conflict cycle. Thus the schedule of the everts a

ro11(y) 021 (d)wor2 (y)rozzr (y)wors (2)wii? (y)woi® () con

Then, let the next event to be executedrpgq(z) belonging toty22. In between the reads of the variables
y and z by the transactiongss, the transactiony; updates these variables. Thus a conflict cycle is formed
between the transactiong andtgs in the serialization graph and hence this schedule is noPHOBIO. As
a result the scheduler will abort the transactign. Further it can be verified that this schedule is not in the
class CNO as well.

Next the events of the transactiags execute as shown in the schedule. The read operagign(p) is
allowed by the scheduler. The next event to execute is a neadtionrgqs2(z). But the scheduleH will
not allow this event to execute as it causes a conflict cytleart be seen that the read operatigs; (v)
by the transactiorniy2 has been performed before the transactigncommits. But the readgasz(z) is
performed aftety; commits and the lastWrite ofya32(2) is wi?(2). Due to these operations, a cycle is
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Figure 9: The tree for Example 6

formed in the serialization graph between the nagesndty.. Even though the transactiagg,, has been
aborted, its read operation still causgs; to abort. Thus, this schedule of evel#s is not in CP-CNO.
This schedule is not in CNO as well. For this schedule to bepted by the scheduler, no sub-transaction
of tgy starting aftertyoo has aborted can read any of the data-items writtetyfayln the worst case all the
sub-transactions dfy, starting aftertyze could abort due taq21 (y) which effectively implies thatgs is
aborted as well. This shows that the read of an aborted aniséction can cause its top-level transaction to
abort.

Thus with CNO, an aborted sub-transaction can severelsigietste concurrency of nested transactions.
An aborted transaction affects the transactions thatvioito But ideally we would want an aborted trans-
action to have no affect on the transactions that follow it afldress this shortcoming, we formulate a
new correctness criterion callébort-Shielded Consisten@y ASC This criterion is based on the notion
of sub-schedules. Next, we will describe a few notationscviwe will later use to describe the correctness
criterion.

4.2 Notations

For a transactiorty in S we denote the terminal operations of all the sub-transagtio ¢ x's dSet by
terminal operation ofS.termOp(tx). We denoteS.schOps(tx) as the set of operations ifldSet(tx)
which are also present ifi.evts along with the set of terminal operations. FormallyschOps(tx) =
(S.dSet(tx) N S.evts) U S.termOp(tx).

We define two functions for a commit-write operation.ulf is a commit-write operation iy, then
S.orgWrite(wx (d)) denotes the original simple-write ofx (d). Let the holder of the commit-write x be
nx. Then functionS.baseWrite(wx (d)) denotes the corresponding commit-write or simple-writelom
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the child transaction af x. For example in57 of Example 6, for the commit-writesJ32(d), the baseWrite
is w)333 (d) and the orgWrite isvge23(d). For the commit-writesdss® (d), the baseWrite and orgWrite are
wp223(d). Thus the orgWrite is always a simple-write whereas the\Mate can be either a commit-write
or a simple-write.

We define a few notations based on aborted transactions inealgle. Consider a schedu$e with a
transactiont x . We denoteS.abort(tx) as the set of all aborted transactions jis dSet. Iftx is an aborted
transaction therb.abort(tx) containstx as well. Forty, we defineS.prune(tx) as all the events in the
schOps of x after removing the events from all the aborted transactiong’'s dSet. Formally,
S.prune(tyx) = {S.schOps(tx) — ( U S.schOps(ta))}

ta€S.abort(tx)
Intuitively this function denotes the schOps remaining inafter pruning all the aborted transactions

fromit. If tx has no aborted transaction in its dSet teprune(tx ) is same a$.schOps(tx). If tx is an
aborted transaction thefprune(tx) is nil. Also for a schedule$.prune(ty) denotes the schedule events
with only the committed transactions and no aborted traimsac

To capture all the pruned descendants of an aborted trimsaat define chrnPruned (children-pruned)
function. For a transactioty (either committed or aborted),

S.chrnPruned(tx) = { U S.prune(ty) U S.cwrite(ty )}
ty €S.children(tx)

It must be noted that for a committed transactiqn S.prune(tx) is same as$.chrnPruned(tx).

For a noden p, its anscTermSedenoted as.anscTermSet(np) is the set of terminal operations of all
its ancestors in the schedule. We denote a nodecasnanitted nodé it is either a committed transaction
or a simple-memory operation.

4.3 Sub-Schedules

Now we will formally define the notion of sub-schedules. Giveewell-formed schedul8§ a sub-schedule
subS should satisfy:

e subS.evts C S.evts
e subS.ord C S.ord

It was observed earlier that the events of schedutenstitute a computation tree with the events being
the leaves. The same property appliesd6S as well.

Consider a sub-scheduka:bS of a scheduleS. Since the events irubS could be a random subset
of events of a5, it may not signify anything. FosubS to be meaningful it must be well-formed. The
conditions of well-formedness defined in Section 2.4 foreskttes also apply to sub-schedules. The set of
events of the sub-schedule is a subset of the evestsarwell-formed schedule. Since the order of events in
the sub-scheduleubsS is same as the order of the events in fhafter a transaction terminates no operation
belonging to it executes. This is the condition (1), vajidif transaction limits, of the well-formedness
requirement.

A read operation in a sub-schedule is valid if it reads ittlage value ofS which is condition (2) of
well-formedness. Thus for any read operation in a sub-sdbeds lastWrite inS should also be iBubS.

In addition to this, for any memory operationy in subS, all the memory operations thaffectm y in S
should also be inubS. This requirement is callechusalityof events. We say thaubS is causally complete
w.rtmy if it contains all the events that affegtx in S. Now we define a few functions to formally define
the affects relationship. First, we define a functisdsefulbetween two memory operations. This function
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defines when one memory operation is useful to another mepypmeyation. It is similar tammediately-
useful-torelation of [18]. For two memory operationsy , mx in S, itis denoted as$.isU se ful (my, mx):

1. my = wy,myx = rx: wy is the lastWrite of-x thenS.isUse ful(wy,rx) is true

2. my =ry,mx = wx, Wherewy is a simple-write: If there exists a nodg> such thain p is optVis
to wx, ng is a peer ol p with wx is inng’s dSet,np occurred beforeg in S, ry is in the pruned
set ofnp andry is an external-read ofp thenS.isUse ful(ry,wx ) is true. Formally,

(Inp,3Ing : (np,ng are peersA (np <g ng) A (ry € S.prune(np)) A (SlastWrite(ry) ¢
S.dSet(np)) A (wx € S.dSet(ng)) = S.isUseful(rx,wy))

3. my =ry,mx = wx, Wherewy is a commit-write: LetS.orgWrite(wx ) bewy, the corresponding
simple write. TherS.isUse ful(ry,wx) is true whenS.isUse ful(ry,wz) is true

A read operation’s lastWrite affects the read operatiomdsat is useful to the read operation. Consider
a simple-write operationwy, and a read operation,. If the read is its peer and occurs before it in the
schedule themy affectswy. Consider another scenario. Lep andng be two peer nodes such thap
occurs beforeng in S. Letwx be inng’s dSet. Hencevp is optVis towx. If ry is in the pruned set
of np and is an external-read afp then it affectswy. The same idea can be extendedug if it is a
commit-write. Hence-y is useful towx. Thus, from the definition of isUseful we get thatiify- is useful
to mx, thenmy occurs beforeny in S.

In the schedul&s7, S7.isUseful(wii3(2), mo232(2)) is true, sincawii3(z) is the lastWrite ofrga32(2).
Then S7.isUse ful(ro11(y), woi3(2)) and S7.isUseful(ro11(y), wii3(2)) are true sinceo; <s7 wois,
wo13 is the simple-write forwdi? androy1 (d) being a simple-memory operation is an external-read df.itse

Based on isUseful function, for a given memory operatiog in S, we define the saisefulMemOps
which consists of all memory operations that are usefuh g,

S.useful MemOps(mx) = {my|S.isUseful(my,mx)}

Next based on the notion of usefulMemOps, we identify a setaofes that are useful to a memory
operationmyx in S. It consists of all the nodes that are optVisioy and have at least one memory
operation in their pruned sets which is usefuhta.. We call this set assefulNodesFormally,
S.usefulNodes(mx) = {ny|S.optVis(ny,mx) A (S.prune(ny) N S.useful MemOps(mx) # nil)}

It can be verified that any node in the usefulNodes set of a mepperationm x terminates beforevx in
the schedule.

Next we define a functiotransUsefulNodeghat computes all nodes that are directly and transitively
useful to a memory operation x. This is recursively defined and uses usefulNodes as thechase

S.transUseful Nodes(mx) = (S.useful Nodes(mx))J
( U S.transUseful Nodes(my))

ny €S.useful Nodes(mx )Amy €S.prune(ny)

Thus any node that is useful to a memory operation is alsgithegly useful to it. It must also be noted
that if a transaction is aborted, then it cannot be usefulamsitively useful to any memory operation. Thus
we have the lemma,

Lemma 31 If a nodeny is useful to some memory operationy in S, then the nodex; is a committed
node. Formally,
(ngz € StransUsefulNodes(mx) = nz is a committed node
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Proof: This can be proved using induction over the schDist of thiedasnt ofn; from mx. The base case
of the induction is whem  is in the usefulNodes set aof x. O

The notion committed node is defined in Section 4.2. SimdangefulNodes, it can be proved that all the
nodes in the set transUsefulNodes terminate beigrén S.

Using the set transUsefulNodes we will construct the seulSehEvts for a memory operation . It
consists of all the pruned operations from all the nadgsthat are transitively useful tax. Formally,
S.usefulSchEvts(mx) = {( U S.prune(ny))}

ny €S.transUseful Nodes(mx)
Using usefulSchEvts we can formally define affects relatngm A memory operatiomy affects another

memory operatiomn x if my is in the usefulSchEvts set ofy. Formally,
true  (my € S.usefulSchEvts(mx))
false otherwise

Having formally defined the affects function, we state trguireements for the well-formedness of any
sub-schedule:

S.affectgmy, mx) =

1. Causality Completeness: For any memory operatignpresent in a sub-scheduebS of a schedule
S, the sub-schedule should also contain all the memory dpesathat affectn x. Formally,
(mx € subS.evts = S.usefulSchEvts(mx) € subS.evts)

Consider a sub-scheduebS of a schedules that is causally complete. With this definition of causal-
ity completeness, we get that if a commit-write operatiog is in subS then the baseWrite ofvy,
S.baseWrite(wx) is also insubS. If wx's baseWrite is another commit-write then its baseWritelss a
in subS. Following the baseWrites recursively which terminatesvi’s orgWrite, we get that it is also
included insubS.

Having described the usefulSchEvts w.r.t a memory oparatie next extend this notion to transactions
as well (and nodes). Consider a nodg in a schedule. For this node we define usefulSchEvts as tba uni
of usefulSchEvts of all the memory operations in the pruretasn x. Formally,

S.usefulSchEvts(nx) = {( U S.usefulSchEvts(my))}
my €S.chrnPruned(nx)

In addition to causality, we also require that for every sation present in a sub-schedule, its terminal
operation is also present in it. This clearly indicates whdransaction completes.

2. Transaction termination: Consider a sub-scheduleS of a schedules. If the subS contains events
from a transactiony then it also contains the terminal operatiory gfin its set of events. Formally,
(tx € subS.evts = S.termOp(tx) € subS.evts)

It must be noted that by this characterization a transadtioa well-formed sub-schedule can have
its commit operation but none of its commit-write operasian the sub-schedule. The sub-schedule still
satisfies all the requirements of well-formedness. Frornsai#y completeness, we get the following lemma
on sub-schedules.

Lemma 32 Consider a schedul& in CNO. LetsubS be a sub-schedule ¢f that is causally complete.
Then, there exists a serial sub-schedsd@bS that:

1. Sub-Schedule Event Equivalence: The eventsidf and ssubS are the same.
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2. Schedule-Partial-Order Equivalence: For any two nodgs nz that are peers in the computation
tree represented byubsS if ny occurs before: in subS thenny occurs beforerz in ssubS as well.

3. LastWrite Equivalence: For all read operations the lagtés in subS and ssubS are the same.

Proof: These properties follow directly from the definition of CN8inceS is in CNO, we get that there
exists a serial schedulgS which has the same set of eventssasRemoving all the events from the serial
schedule that are not ¥ubS, we get that the resulting sub-schedule, denoted.88.5, has the same set of
events agubS and is serial. Further it can be seen that schedule-partif@r insubS is same asubSS.
This proves the conditions 1 and 2 above.

It must be noted that sincg is in CNO, the lastWrites for every read fhandS'S are the same. Since
subS is causally complete the lastWrite for every read operatibrubS is also insubS. Similarly the
lastWrite for every read operation efibSS is also insubSS. Further from the construction e.bSS, we
get that the lastWrite of every read4nbS.S is same as iBubS. This proves the condition 3 above. Hence,
the lemma follows. O

4.4 Abort Shielded Consistency

In Section 4.1 we observed how an aborted transaction cact #fie transactions following it. Butideally we
want an aborted transaction to have no effect on the transadhat follow it. By looking for a single serial
schedule involving all transactions, opacity limits camency. In this section, we present a class of sched-
ulesAbort-Shielded Consistenoy ASG which define a correctness criterion in which an abortetstation
does not affect the transactions that follow it. Then we gme€onflict Preserving Abort-Shielded Consis-
tencyor CP-ASC a subset of ASC based on optConf. The membership of CP-AS@&sted in polynomial
time. Using CP-ASC, we give the design of a scheduler CP-&8fed for scheduling interleaving nested
transactions.

We consider the following scheduk for illustrating this class.

Example 7 to : {tinit, to1, to2, tos, tfin

to1 : {smo11 = ro11(x), smo12 = wo12(y), smo13 = wo13(2), co1 },

toz : {smo21 = 1021(b), sMp22 = 1022(2), SMo23 = wo23(d), co2 }

to3 : {tos1,tos2, tos3, o3},

tos1 : {smoz11 = r0311(y), o312 = woz12(b), ap31 },

toz2 : {smo321 = T0321(d), sM0322 = T0322(2), Q032 },

to3s : {smo331 = T0331(y), 0332 = T0332(d), sM0333 = Wo0333(7), Co33 },

Schedule:
59 = o1 (2)ro311 () wor2 (y)roz21 (b)wors (2)wit? (y)wor® (2)co1ro22 () wosi2 (b)aos1 rose: (d)wozs (d)ws? (d)
coaros22(2)aosaro331 (y) o332 (d)wosss (z)wlis® (z)cosswls () cos

In this scheduleygsi: (y) reads frome;,;:, whereasvi?(y) of to; writes iny. Butrgsae(z) reads from
wii3(2) of tg;. Thus between two external-readstgf, we haveto;’s updates. Hence there is no serial
schedule equivalent to it. As a result it is not in CNO. TheQuptf serialization graph for this schedule is
shown in Figure 11 which shows th&f is not in CP-CNO.

Consider a schedulgé with an aborted transactiary. If the aborted transaction should not affect the
transactions following it, thetiy should be dropped from the schedule while considering thecimess of
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Figure 11: The graph shows the CP-CNO conflict graph forS9
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the remaining transactions. Generalizing this idea tolaifri@d transactions, we construct a sub-schedule
which consists of events only from committed transacti@ub{transactions) and no event from any aborted
transaction. It does not contain events from committedsaeations that are sub-transactions of aborted
transactions as well. Thus, the sub-schedule consist$ thieatvents front.prune(t). For simplicity we
will denote this sub-schedule asmmitSubSchy. Then we check for the correctnesscofnmitSubSchy.
This idea is similar to verifying the consistency of comurittransactions in virtual worlds consistency [8].
As explained in [5], it is necessary that each aborted timat 4 also reads consistent values. To
ensure this, we construct a sub-schedul& ofenoted agpre f SubSch 4 (pruned prefix sub-schedule) for
t 4. For this, we consider the prefix of all the events untik abort operation. From this prefix we construct
the sub-schedule by removing (1) events from transactimaisaborted earlier and (2) events of any aborted
sub-transaction of 4. Thus, the sub-schedule consists of events from transactimt committed before
t 4 and events from live transactions, i.e., transactionshtheg not yet terminated when is aborted. The
ordering among the events is same as in the original schédule
Finally, for every live transaction which including the astors oft 4, we add a commit operation after
t o's abort operation to the sub-schedule. But we do not adddherat-writes for these transactions. The
ordering among the commit operations is such that an antestammit operation is added only after all
its children’s commit operations (which are also ancesbdrisy) have been added. This ensures that well-
formedness of the sub-schedule is maintained. By addingdhanmit operations, we ensure that all the
transactions in the sub-schedule have a terminal operafiben we look for the correctness of this sub-

schedule. In59, for the aborted transactidpsy, ppref SubSchos; is:
ro11(2)ro311 (¥)wor2 (¥)ro21 (b)wors (2)wii? (y)wii (2)cor rozz (2)wozi2 (b)ags1 cozcos-

Similarly the sub-schedules for every aborted transaa#&mbe constructed.

The set of pprefSubSchs for the schedtifeare,
commiitSubSchg = roy1 (@) wor2(y)roz1 (b)wors (2)ws 2 (y)wor® (2)co1mo22 () woes (d)wis® (d) coarosst (y)
ro332(d)wosss (z)wiss” (z)cosswls® (x)cos
ppre fSubSchosi = ro11(2)ro311 (¥)wor2(y)ro21 (b)wors (2)wdi? (y)wii? (z)co1r022 (2)wozi2 (b)aos1 cozcos
ppre fSubSchoss = ro11 (z)wor2(y)roz1 (b)wors (2)woi? (y)wii® (2)co1mo22 (2) o321 (d)woes (d)wis® (d) coz
70322(2)@032C03
From the definition of pprefSubSch we can prove that ppreS8tb are causally complete stated in the

following lemma,
Lemma 33 For every aborted transactioty in S, the sub-schedulgpre f SubSch 4 is causally complete.

Proof: This follows from the construction of pprefSubSch. The sohedulepprefSubSch 4 contains
events either from transactions that committed befgrer transactions that have not yet terminated. Thus,
all the events that affects, are inpprefSubSch 4. Hence it is causally complete. O

For a schedules, we define a set of well-formed sub-schedules denotedi&SchSet. It consists of
the following sub-schedules:

1. The sub-schedule@mmitSubSchg is in subSchSet . Formally,
(commitSubSchy € subSchSet)

2. For every aborted transaction in S, there exists a pprefSubSaimre f SubSch 4 in subSchSet,
(Vta : pprefSubScha € subSchSet)

Using subSchSet, we define a class of sched@lesrt-Shielded Consistenoy ASCas:

37



Definition 6 A scheduleS belongs to ASC class if for every sub-schedwl&S in the setsubSchSet of S,
there exists a serial sub-schedule:bS such that:

1. Sub-Schedule Event Equivalence: The everdsidf and ssubS are the same. Formally,
(subS.evts = ssubS.evts)

2. schedule-partial-order Equivalence: For any two nodegs n that are peers in the computation tree
represented byubS if ny occurs beforeny in subS thenny occurs beforeny in ssubS as well.
Formally,

(tx : {ny,nz} C subS.children(tx) : (ny <sups nz) = (Ny <ssubs nz))

3. lastWrite Equivalence: For all read operations the lasités in subS and ssubS are the same. For-
mally,
(Vrx € subS : subS.lastWrite(rx) = ssubS.lastWrite(rx))

Similarly using pprefSubSch we define an extension to CP-CBlahflict Preserving Abort Shielded
Consistencyr CP-ASC It differs from the definition of the class ASC only in the edsas:

3. optConf Implication: If two memory operations smbS are in optConf then they are also in optConf
in ssubS. Formally,

(Vmy ,VYmyz : {my,mz} C subS.evts : (subS.optConf(my,mz) =
ssubS.optConf(my,mz)))

For this class, we get the following lemmas

Lemma 34 If a scheduleS is in CNO then it is also in ASC. Formally
(CNO C ASC)

Proof: Consider a schedul§ in CNO. Then, from the definition of CNO we get that there exstserial
scheduleS'S such that the lastWrites ¢f andS'S are the same. Thus for any sub-schedulgS of S that
is causally complete, there exists a serial sub-schedulgS that is serial and has the same lastWrites of
subS, by Lemma 32.

To prove thatS is also in ASC, we have to prove that,

e For commitSubSchy, there exists a serial sub-schedule, namelymitSer SubSchSSy: It must
be noted thatommitSubSchy is a sub-schedule & and is causally complete. Sinéeis in CNO,
from Lemma 32 we get that there exists a serial sub-scheduenitSer SubSchSSy.

e The sub-scheduleprefSubSch for every aborted transactiom,s has an equivalent serial sub-
schedule: From Lemma 33 we get that the sub-scheghilef SubSch 4 is causally complete. Hence
the reasoning for this case is same as the above case.

This completes the proof. O

It can be verified that schedul is in ASC but not in CNO. Hence, the class CNO is a strict subket
ASC.

Lemma 35 If a scheduleS is in CP-ASC then it is also in ASC. Formally
(CP-ASCC ASC)
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Figure 12: The serialization graphs for the schedule in Exarple 7. This shows that this schedule is in
CP-ASC

Proof: The proof is similar to Theorem 14. O

It can be seen that verifying whethg&ris in CP-ASC or not can be done in polynomial time. From the
scheduleS, the sub-schedulemmmitSubSchy andpprefSubSch 4 for every aborted transactian, are
constructed. Then for each sub-schedule, the serializgtiaph is constructed using optConfGraphCons
algorithm based on optConf. If all the graphs constructedaayclic, then the scheduleis in CP-ASC.
The equivalent serial sub-schedules for the sub-scheduéemstructed from the graphs using the expander
algorithm.

For the schedul&9 of Example 7, the set of serigbrefSerSubSchs are as follows where
commitSerSubSchSSy is the serial sub-schedule correspondingdmmitSubSchy,

commitSerSubSchSSo = tmtogtog = rou(x)wmg(y)wmg(z)wg? (y)w8%3(2)0017°021 (b)?“ogg(z)wogg(d)

w33 (d)coarosst (Y)ross2 (d)wosss (2)wiss: (z)cosswis® (x)cos

pprefSerSubSchosi = tostortoz = ros11(y)wosi2(b)aosi cosror1 (z)wors (y)wors (2)wii? (y)wii? (2)cor
7021 (b)7022(2)Co2

ppre fSerSubSchosa = toitostor = ro11(z)wor2 (y)wors (2)woi? (y)wii?® (2)co1rose1 (d)rose (2)aoscos
1021 (b)r022 (2)woes (d)wdz> (d)cos

The CP-ASC serialization graphs are shown in Figure 12.

45 CP-ASC-Sched: A scheduler based on CP-ASC

In this section we give the outline of a scheduler, called BsASC-Sched (CP-ASC Scheduler) which
implements the class CP-ASC. When a transaction wants th vede or commit, it sends the request
to the scheduler CP-ASC-Sched. The scheduler on receivieguest from a transaction, checks with
the previously committed and live transactions to see ifréggiest maintains the consistency. If it does,
then CP-ASC-Sched allows the request to proceed. Otheitdses not allow the request to proceed and
aborts the corresponding transaction. Consistency iskelday adding the appropriate conflict edges in the
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conflict graph and checking for its acyclicity.
The scheduler maintains a conflict graph for each transactip denoted a€7p. The scheduler CP-
ASC-Sched implements CP-ASC using optConfGraphConsiligofdescribed in Section 3.3) as follows:

1. On receiving a request from a transactignto invoke a new transactioty, a nodevg is created in
G p. Then CP-ASC-Sched adds completion edges from all the pééegghat have terminated earlier
tovg

2. Onreceiving a read request (d) from a transactionp, CP-ASC-Sched creates a nage for rx in
G p and adds completion edges from all the peer nodes;dhat completed before it. Lety’s last-
Write bewy,, wr, be a commit-write of a node;, (either a transaction or simple-memory operation)
andw;'s parent bet( (tg is same asp if wy, is a peer ofrx). Also letng be a peer node ofz, in
whose dSet is the read; is contained. Then CP-ASC-Sched adds a w-r conflict edge #oto v
in Gg. Then, the ready is stored as an external-read in all its ancestors stantorg fp ending at

nK.

3. On receiving a write requesty (d) from a transactiort p, CP-ASC-Sched adds a node in the
graph. Then it adds completion edges from all the peersyothat have completed before it. For
any peer node.z of wy that has an external-reag; (d), a r-w conflict edge is added frony, to vy
in Gp. Similarly for any peer node that has a commit-writes7-(d) a w-w conflict edge is added
from vp to vy

4. Transactiorip on receiving a request to commit from a transactign CP-ASC-Sched adds r-w and
w-w conflict edges w.r.t the commit-writes of (similar to step 3). It adds these edges betwegn
and its corresponding peersa#p.

After adding the edges, CP-ASC-Sched checks if these edgasafcycle inG,,. If no cycle is formed,
then the requested action of the transaction is permitteéder@ise, the requested action is not permitted.
The corresponding transactiop (or ¢tx) and all its live descendant transactions are aborted (dtessof
committed sub-transactions of the aborted transactiomireomchanged). The vertex and edgesofire
removed from the graph. All the readsip’s dSet that are stored as external-reads in its ancesters ar
removed. In this way, an aborted transaction does not afecbther transaction that follows it. With this
implementation, we get that any schedule accepted by CP-3@fed is also in CP-ASC.

We note that the scheduler can be implemented in a compldigiybuted manner. The different com-
ponents of the graph can be maintained by different prosedsis not necessary for any single process to
have the global information. A more detailed version of fraper can be found in [15].

5 Discussion

5.1 A Simpler Conflict Notion

Having described the idea of optConf, in this subsection wWkdiscuss a variant to the conflict notion.
As discussed earlier (in Section 2.4), a read operation €adh irom the value written by a write operation
only if the write is optVis to the read. Based on this obseéovatone can come up with a simpler notion of
conflict between any arbitrary read and a write operatioedasly on optVis. This conflict notion does not
concern if a given read operation is an external-read orWetcall such a conflict asgConf

For two memory operations. x, my in the dSets of peensa, ng, S.vCon f(mx(d), my (d)) is true if
mx occurs beforeny in S and one of the following conditions holds:
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1. r-w conflict: mx is a readrx (and not necessarily an external-readhifis dSet,my is a commit-
write wy of ng or

2. w-r conflict: m y is a commit-writew x of n4 andmy is a readry in ng's dSet or
3. w-w conflict: m x is a commit-writew x of n4 andmy is a commit-writewy of ng.

Based on this conflict definition we can define a class of sdkedalled ad/isible Conflict Preserving
Closed Nested Opacityr VCP-CNQ It is very similar to CP-CNO and differs only in condition 8 GP-
CNO definition, the conflict implication. It is defined as h&lo
vConf Implication: if two memory operations isiare in vConf then they are also in vConf$tb. Formally,

(Vmy,Ymyz : {my,mz} C S.evts : (SwConf(my,mz) = SS.wConf(my,mz)))

We denote this equivalence to such a serial schedul® as,. S.S). From the definitions of vConf and
optConf we get that in a given scheduie if two memory operationsn x, my are in optConf then they
are also in vConf i.eS.optConf(my,mz) = SwConf(my,mz). From this one can prove that if any
scheduleS is in VCP-CNO then it is also in CP-CNO i.éS € VCP-CNO) = (S € CP-CNO. But the
class VCP-CNO is not as generic as CP-CNO. There are somdudebavhich are in CP-CNO but not in
VCP-CNO. The following example illustrates it.

Example 8 Computation Tree:

to : {tinits to1, to2, to3, tpin }s

tor : {ro1(x), woi2(y), co1 },

toz2 : {ro21(d), wo2a (), wo23(y), coz }s

tos : {tos1,to32, sMo3s = wo33(2), co3 },

to31 : {smo311 = 10311(2), 50312 = Wo312(Y), Co31 },

toz2 : {smo321 = 10321 (Y), sM0322(T) = wo322(x), co32}

Schedule:

510 : ro11 () ro21 (d)wor2 (y)rosin (2)wlis (¥)cor wosia (y)wizi? (y)cos1 wozz () ros21 () wosea (2)wiss” ()
cozawozs (Y)wis” () wis? (y)coowoss (2) w3 (y)wis” (x)wo3® (z)cos

The corresponding computation tree is shown in Figure 13 [@ktWrites for all the reads in the above
example are:

{ro11(x) + Winit(x), 021 (d) : Winit (d), o311 (2) * Winit (2), ros21 (v) : w2 (y)}

The set of all optConfs in the above example:

{(rou1 (@), w3 (2)), (ro11 (@), w3 (2)), (ros11(2), woss(2)), (W™ (x), w3 (), (we31? (), ros21 (y)),
(wor* (y), w3 (), (wii? (y), wos' (v)), (wes? (y), wis' ()}

The set of all vConfs in the above example:

{(ro11 (), w32 (x)), (ro11 (), wis? (x)), (ros11(2), woss(2)), (w3 (@), w3 (), (WL (), Tos21 (y)),

(woi? (y), wos° (), (Wi (), w3 (y), (wos° (y), wos' (¥)), (wi*(y), ro321 (y)), (ros21 (y), wo3” (¥)) }
We have underlined the extra conflicts in this example. Wendidnention the conflicts caused by;;

andt g, in the above conflicts. We discussed the optConfGraphCausitdm in the previous section to
verify if a given schedules is in CP-CNO or not. This algorithm can be easily adapted tifywé the
scheduleS is in VCP-CNO or not. This algorithm differs only in the wayrtdbct edges are added. We
add a conflict edge when two memory operations are in vCotdaiasof optConf. We call this algorithm
vGraphCons algorithm.
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Figure 13: The computation tree for Example 8

Using optConfGraphCons algorithm and vGraphCons algorithe generate the serialization graphs
based on both these conflicts. The graphs are shown in Figureht graphs show that the schedflle is
in CP-CNO but not in VCP-CNO. As one can see from the conflits, 86521 (y) andw33(y) are in vConf
but not in optConf. They cause the cycle betweggandngs in the graph of VCP-CNO. This shows that
VCP-CNO is a proper subset of CP-CNO. The optConf equivaenial schedule is:

ro11 () wor2 (1) wots (y)corroz1 (d)woaz () woas (y)whs? () w3 (y) coarosi1 (2)wosr2 (y)wist > (y) cos1 o321 (i)
w0322(9€)w8§’§2 (96)603211)033(2)“183%1 (y)w8§2 (x)wg??j?’(z)cog

5.2 Schedule Partial Order

The second condition in the definitions of the classes CNOA®@ is schedule-partial-order. This con-
dition specifies that for any two peer nodes (transactiorsmple-memory operation), say -, nz, in the
scheduleS such thatny executes before, then in the corresponding serial schedslg, ny executes
beforen; as well. But for some nested STM systems this may not be sarificThe application that gener-
ates the transactions might dictate the STM to be more sfrlitse systems might want that the condition
schedule-partial-order to be modified such that if any nedeccurs before any other transactiop in S,
then inSS alsony occurs beforerz. That is, the nodesy andnz need not be peers but any arbitrary
nodes. Thus the condition 2 of CNO can restated as follows:

schedule-partial-order Equivalence: For any two nadgsny in the computation tree represented $if
ny occurs beforev in S thenny occurs before; in S'S as well. Formally,

(S :{ny,nz} € Sinodes : (ny <g nz) = (ny <ss nz))

This madification can be made to the definitions of CP-CNO aReXSC. To accommodate this change
in the graph construction optConfGraphCons algorithm, veglifg the way completion edges are added.
Consider the nodesy,nz in S for which (ny <g nyz). Lettp be a transaction such that it is the least
common ancestor ofy,ny, i.e., S.lca(ny,nz) = tp. Sinceny occured before.; in S, ny cannot be a
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Figure 14: These are the serialization graphs based on opt@band vConf for the schedule in Exam-
ple 8

ancestor of1z nor the vice-versa. Henaee cannot be the same as or nz but an ancestor to both. Thus
tp will have two childrenn zp andny such thaty isin S.dSet(ng) andnz is in T.dSet(ng). Next we add
a completion edge frompg, to ny in the graph. Then we check for acyclicity of the resultingpr. If the
graph is acyclic then in the resultant schedRlg generatedpy will be beforeny i.e. ny <gs nz.

6 Conclusion

Composing simple transactions to build larger transaci@tems is extremely useful property which forms
the basis of modular programming. In STMs this can be acHi¢wemugh nesting of transactions. There
have been many implementations of nested transaction®ipast few years. But none of them provide
a precise and efficient formulation of the guarantees thaséed software transactional memory system
should provide.

Concurrent executions of transactions in Transactionainbtg are expected to ensure that aborted
transactions also, as the committed ones, read consistiergsv In addition, the property that aborted trans-
actions should not affect the consistency for the othersaations following it is desirable. Incorporating
these simple-sounding criteria has been non-trivial esendn-nested transactions as can be seen in recent
publications [5, 9, 3].

In this paper, we have considered these requirements feedloested transactions. We have also
defined new conflict-preserving classes that allow polymbmmiembership test, by means of constructing
conflict-graphs and checking acyclicity. Further, the dohfireserving classes have resulted in the elegant
design of a scheduler. The conflict-graph has separate amngofor each (parent) sub-transaction. Each
component can be maintained at a different site (processutrg the sub-transaction) autonomously and
the checking can be done in a distributed manner.

We have chosen a novel representation of schedules, naadding commit-writes, that facilitates easy
association of lastWrites for the read operations. We belieat this representation will be useful for dealing
with commit-pending transactions also. Our future workudes the study of how the above two properties
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manifest in executions with open nested transactions atidnein-transactional steps.
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