
Correctness of Concurrent Executions of Closed Nested
Transactions in Transactional Memory Systems∗†

Sathya Peri‡

sathya@iitp.ac.in
CSE Department, Indian Institute of Technology Patna, Patna, India

K.Vidyasankar
vidya@mun.ca

Department of Computer Science, Memorial University, St John’s, Canada

Abstract

A generally agreed upon requirement for correctness of concurrent executions in Transactional Mem-
ory is that all transactions including the aborted ones readconsistent values.Opacity is a commonly
accepted correctness criterion that satisfies the above requirement. Our first contribution in this paper is
extending the opacity definition for closed nested transactions. Secondly, we define a restricted class,
again for closed nested transactions, that preserves conflicts. This is akin to conflict-serializable class for
traditional database transactions. Our conflict definitionis appropriate for optimistic executions which
are most common in Software Transactional Memory (STM) systems. We show that membership in
the new class can be checked in polynomial time. With opacity, an aborted transaction (considering
only the read steps that were executed before aborting) may affect the consistency for the transactions
that are executed subsequently. This property is not desirable in general and may be harmful for closed
nested transactions in the sense that the abort of a sub-transaction may make committing its top-level
transaction impossible. As our third contribution, we propose a correctness criterion that defines a class
of schedules where aborted transactions do not affect consistency for other transactions. We define
a conflict-preserving subclass of this class as well. Then wegive the outline of a scheduler that imple-
ments this subclass. Both the class definitions and the conflict definition are new for nested transactions.

Keywords: STMs, Closed Nesting, Correctness Criterion, Conflict Notion

1 Introduction

In the recent years software transactional memory has garnered significant interest as an elegant alternative
for developing concurrent code. Software transactions areunits of execution in memory which enable con-
current threads to execute seamlessly [7, 17]. Traditionally locks have been used for developing parallel
programs. But programming with locks has many disadvantages such as deadlocks, priority inversion etc.

∗This research is supported in part by the Natural Sciences and Engineering Research Council of Canada individual research
grant 3182

†A preliminary version of this paper appeared in Twelfth International Conference on Distributed Computing and Networking
(ICDCN 2011)

‡Corresponding Author

These disadvantages make it difficult to build scalable software systems. Importantly, lock based software
components are difficult to compose i.e. building larger software systems using simpler software compo-
nents [6]. Software transactions address many of the shortcomings of lock based systems. Specifically,
software transactions provide a very promising approach for composing software components [6].

A (memory) transaction is an unit of code in execution in memory. A software transactional memory
system (STM) ensures that a transaction appears either to execute atomically (even in presence of other
concurrent transactions) or to never have executed at all. If a transaction executes to completion then it is
committedand its effects are visible to other transactions. Otherwise it is abortedand none of its effects
are visible to other transactions. Thus the values written by a live (incomplete) transaction to the memory
are not visible to other transactions. To explain this concept, consider two transactionst1, t2 accessing a
data-item, sayx, which is initialized to 0. Let the sequence of operations be: w1(x, 5)r2(x)c1c2 where
c1, c2 refer to the commit operations of transactionst1, t2 respectively. Here the value thatt2 reads forx is
0 since at the time whent2 readsx, t1 has not yet committed. Thus its write is not yet visible tot2.

To achieve this effect, a commonly used approach by softwaretransactions is optimistic synchronization
(term used in [6]). In this approach, transactions have a local log where they record the values read and
written in the course of its execution. When the transactioncompletes, it validates the contents of its log.
If the log contributes to a consistent view of the memory, then the transaction updates the memory with the
contents of the log. If not it aborts.

A STM system implements the log described above by having oneglobal buffer for each data-item and
one local buffer for each transaction accessing that data item. In the example described above, a global
buffer is created forx. Any write tox by t1 is performed in the local buffer. Whent1 commits, the value
in the local buffer is transferred to the global buffer. Thent1’s write values can be viewed by others. Hence
until t1 commits, its write operations are not visible tot2.

Composing simple transactions to build a larger transaction is an extremely useful property which forms
the basis of modular programming. In STMs this can be achieved through nesting of transactions. A
transaction is called nested if it invokes another transaction as a part of its execution. Nested transactions
can broadly be classified as:closedandopen. Consider a transactiontP which has a sub-transactiontS.
In closed nesting when the sub-transactiontS commits its effects are visible totP (and the siblings oftS)
but not to other transactions. On the other hand in open nesting the effects of the transactiontS are visible
to other transactions immediately after it commits withoutwaiting for its parent transactiontP to commit.
However whentP aborts thentS is also aborted. In this paper we focus only on closed nested transactions.

To achieve atomicity, the above discussed notion of multiple buffers extends naturally to closed nested
transactions. When a sub-transaction is invoked, new buffers are created for all the data-items it writes to.
The contents of the buffers are merged with its parent’s buffers when the sub-transaction commits. Thus
if the sub-transaction writes any value to any data-item, that value will not be visible to its parent until the
sub-transaction commits.

When (nested or non-nested) transactions accessing commondata-items execute concurrently it is imper-
ative that they execute correctly. A commonly accepted correctness requirement for concurrent executions
in STM systems is that all transactions including aborted ones read consistent values. The values resulting
from any serial execution of transactions are assumed to be consistent. Guerraoui and Kapalka [5] captured
this requirement asopacityby requiring, for any concurrent execution, a single equivalent serial execution of
all committed and aborted transactions, considering only the read steps of aborted ones. An implementation
of opacity for non-nested transactions has been given in [9].

The correctness criterion used in traditional databases isserializability [14, 18]. According to serial-
izability an interleaving execution of committed transactions is correct if it is equivalent to some serial

2

execution of the same set of transactions. But serializability concerns itself only with the events of com-
mitted transactions. Any execution that satisfies serializability ensures that all committed transactions read
consistent values. It does not require that the aborted transactions read consistent values. As pointed out
in [5] this is acceptable in the context of databases which are executed in highly controlled environments.
But in the context of STMs, it is imperative that even the operations of aborted transactions see consistent
values. Otherwise it could have several undesirable effects such as ‘divide by zero’ error, crash failure or
even infinite loops [5, 9].

On the other hand, the recent understanding (Doherty et al [3], Imbs et al [8]) is that opacity is too
strong a correctness criterion for STMs. Weaker notions have been proposed: (i) The requirement of a single
equivalent serial schedule is replaced by allowing possibly different equivalent serial schedules, one for all
committed transactions and one for each aborted transaction, and these schedules need not be compatible;
and (ii) the effects, namely, the read steps, of aborted transactions should not affect the consistency of the
transactions executed subsequently. The first point refinesthe consistency notion for aborted transactions.
The second point is a desirable property for transactions ingeneral and a critical point for nested transactions,
where, otherwise, the effects of an aborted sub-transaction may prohibit committing the entire top-level
transaction. The above proposals in the literature have been made for non-nested transactions.

In this paper, we extend the opacity definition for closed nested transactions. We define two notions and
corresponding classes of schedules:Closed Nested Opacity (CNO)andAbort-Shielded Consistency (ASC).
In the first notion, read steps of aborted (sub-)transactions are included as in Guerraoui and Kapalka [5, 9].
In the second, they are discarded. These extensions turn outto be nontrivial due to the fact that an aborted
sub-transaction may have some committed descendents and similarly some committed ancestors.

Checking opacity, like general serializability (for instance,view-serializability), cannot be done effi-
ciently. Very much like restricted classes of serializability allowing polynomial membership test, and fa-
cilitating online scheduling, restricted classes of opacity can also be defined. We define such classes along
the lines of conflict-serializability for database transactions: Conflict-Preserving Closed Nested Opacity
(CP-CNO)andConflict-Preserving Abort-Shielded Consistency (CP-ASC). Our conflict notion is tailored
for closed-nested transactions. We give an algorithm for checking the membership in CP-CNO (which can
be easily modified for CP-ASC) and a scheduler for CP-ASC (which can be easily modified for CP-CNO).
Both use serialization graphs similar to those in [16].

We note that all online schedulers (implementing 2PL, timestamp, optimistic approaches, etc.) for
database transactions allow only subclasses of conflict-serializable schedules. We believe similarly that all
STM schedulers can only allow subclasses of conflict-preserving schedules satisfying opacity or any of its
variants. Such schedulers are likely to use mechanisms simpler than serialization graphs as in the database
area. An example is the scheduler described by Imbs and Raynal [9].

In the context of nested transactions there have been many implementations of nested transactions in the
past few years [2, 13, 12, 1, 11, 10]. In [5], the authors discuss extending opacity to nested transactions. But
none of them provide a precise correctness criteria for nested software transactional memory system that
can be efficiently verified.

To summarize, in this paper we present two classes of correctness criteria for closed nested transactions
and describe subsets of these classes that can be efficientlyverified.

Roadmap: In Section 2, we describe our model and background. In Section 3, we define CNO, CP-
CNO and give an algorithm for polynomial membership test. InSection 4, we present ASC and CP-ASC. In
Section 5 we discuss about some variations to the definitionspresented and Section 6 concludes this paper.
The following table shows the important definitions and theorems of this paper.

3

Definitions/Theorems Explanation Page Number
Definition 4 Formally defines CNO 16
Definition 5 Formally defines CP-CNO 18
Theorem 14 Shows that CP-CNO is a subset of CNO 19
Theorem 30 Proves the graph characterization of CP-CNO29
Definition 6 Formally defines ASC 38
Lemma 34 Shows that CNO is a subset of ASC 38

2 Background and System Model

A transaction is a piece of code in execution. In the course ofits execution a nested transaction may perform
read/write operations on memory and invoke other transactions (also referred to as sub-transactions). We
refer to these asoperationsof the transaction. A sub-transaction (of a transaction) could further invoke
other transactions as a part of its execution. Thus a computation involving nested transactions constitutes
a computation tree. The nodes of this tree are read and write operations, and transactions. The operations
of a transaction can be viewed as its children. The operations are classified as:simple-memory operations
andtransaction operationsor just transactions. Simple-memory operations are read or write operations on
memory and have no children. Thus in the computation tree allthe leaves are simple-memory operations.

In addition to memory operations, a transaction also contains acommitor abort operation. If a transac-
tion tX executes successfully to completion, it terminates with a commit operationcX . Otherwise it aborts
with the operationaX . Abort and commit operations are calledterminal operations. By default, all the
simple-memory operations always commit.

Consider a closed-nested transactiontP . All the writes bytP are performed on its local buffer. WhentP
commits, the contents of its local buffers are merged with the buffer of its parent. Thus any peer transaction
of tP can read the values written bytP only after it commits. IftP aborts then its local write values are not
merged with its parent’s buffers. Thus, none of the writes ofan aborted transaction ever become visible to
other transactions.

We assume that there exists a hypothetical root transactionof the computation tree, denoted ast0, which
invokes all the other transactions. On system initialization, we assume that there exists a child transaction of
t0, tinit, which initializes all the buffers oft0 with non-⊥ values. Similarly we also assume that there exists
a child transaction oft0, tfin, which reads the contents oft0’s buffers when the computation terminates.

2.1 Schedules

All transactions and simple-memory operations are nodes ofthe computation tree. We denote them asnid.
An id is concatenation of digits and uniquely identifies a transaction/operation. When we are specifically
referring to a transaction we denote it astX . For a transaction withid astX havingk children, we name the
child operations asnX1, nX2,, nXk. If a child (for examplenX1) is a simple-memory operation reading
or writing data-itemy then we denote it asrX1(y) or wX1(y) and also assmX1(y).

A sample computation tree is shown here. We show each transaction followed by all its operations. In
Figure 1 we show the computation tree for this schedule. As indicated earlier we denote the root transaction
ast0:

Example 1 t0 : {tinit, t01, t02, t03, tfin},
t01 : {t011, sm012 = w012(z), sm013 = w013(y), c01},
t011 : {sm0111 = r0111(x), sm0112 = w0112(y), c011},

4

r0111(x)

w012(z)

t0

t01

w0112(y)

t011

r0211(z) w0212(y)

t021

t02

w013(y)

c01

c021c011

tinit

c02

w0222(z)

a022

r0221(y)

t022

t03
tfin

r031(y) r032(z)
w033(z)

c03

Figure 1: Computation tree for Example 1

t02 : {t021, t022, c02},
t021 : {sm0211 = r0211(z), sm0212 = w0212(y), c021},
t022 : {sm0221 = r0221(y), sm0222 = w0222(z), a022},
t03 : {sm031 = r031(y), sm032 = r032(z), sm033 = w033(z), c03}

A scheduleis a real time execution of the leaves of a computation tree. The events of a schedule are
memory operations and terminal operations of transactionsin the computation. The events of a scheduleS
are totally ordered. A schedule is represented by the tuple〈evts, nodes, ord〉, whereevts is the set of all
events in the schedule,nodes is the set of all the nodes (transactions and simple-memory operations) present
in the computation andord is a function that totally orders all the events. In the context of a schedule we
denote an event of a schedule asei. Thus all the leaf nodes in the tree are referred to as events in the context
of schedules. A schedule for the computation tree in Example1 can be represented as:

Example 2
S1 : r0111(x)w0112(y)c011w012(z)r0211(z)w0212(y)c021w013(y)c01r0221(y)w0222(z)a022c02r031(y)r032(z)
w033(z)c03

For a closed nested transaction, all its write operations are visible to other transactions only after it
commits. Herew0212(y) occurs beforew013(y). Whent01 commits, it writesw013(y) in t0’s buffer. Butt02
commits aftert01 commits. Whent02 commits it overwritest0’s y buffer withw0212(y).

To model these effects clearly, we augment a schedule with extra write operations. Prior to the commit
event of a transaction, write operations are added to the schedule to represent the merging of its local buffers
with its parent’s buffers. We call these writes ascommit-writeoperations. To every data buffer a committed
transaction writes to (i.e. values written by a child or a descendent that has not aborted), there exists a
commit-write operation. This write is the latest value on the data buffer. For example consider a transaction
tX consisting of operationswX1(y)wX2(z)wX3(y) which it executes in this order and commits. Then in
the schedule there is a commit-write operation fory and a commit-write forz.

5

In the above exampletX writes to data-itemy twice. So its local data-buffer will hold the most recently
written value. In this case the buffer holds the write ofwX3(y). The commit-write operation fory writes
the latest write operation i.e.wX3(y). We denote the commit-write fory aswX3

X (y) and forz aswX2
X (z).

The superscript provides the information about which childwrite operation this commit-write corresponds
to. Since the local write buffers of an aborted transaction are not merged with its parent’s buffer there are
no commit-write operations corresponding to an aborted transaction. Using this notation we re-write the
schedule in Example 2 as follows:

Example 3
S2 : r0111(x)w0112(y)w

0112
011 (y)c011w012(z)r0211(z)w0212(y)w

0212
021 (y)c021w013(y)w

012
01 (z)w013

01 (y)c01r0221(y)
w0222(z)a022w

021
02 (y)c02r031(y)r032(z)w033(z)w

033
03 (z)c03

In the original computation tree only the leaves could write. With this augmentation of transactions even
non-leaf nodes corresponding to committed transactions write with commit-write operations. For sake of
brevity, we do not represent commit-writes in the computation tree. We assume that all the schedules we
deal with are augmented with commit-writes.

It must be observed that a transaction’s commit-write operation writes in its parent’s buffers. For instance
t021’s commit-writew021

02 (y) writes in t0’s y buffer (and not int02’s buffer). We denote the set of commit-
writes of a committed transaction ascommit-set. As opposed to commit-write we denote a simple memory
write operation as asimple-memory write.

In our model a schedule has the complete information about the computation tree. Thus given a schedule
we can obtain the entire computation tree from the subscripts of the events in it. Now consider two schedules
S1 andS2. If the sets of events in these schedules are the same then thecomputation trees represented by
these schedules are the same. This is true irrespective of the ordering of the events in the schedules. The
following property states it.

Property 1 Consider two schedulesS1 andS2. If the sets of events of the schedules are the same then the
computation trees represented by the schedules are also thesame and vice-versa. Formally,
〈S1, S2 : (S1.evts = S2.evts) ⇔ (the computation trees ofS1 andS2 are the same)〉

Collectively, we refer to simple-memory operations and commit-write operations as memory operations.
Since simple-memory operations are committed by default the commit-write notion can be extended to any
tree node. Thus for any nodenX in a computation tree represented by a scheduleS, we define

S.cwrite(nX) =























nX ’s commit-set nX is a committed transaction

nil nX is an aborted transaction

nX nX is a simple-memory write

nil nX is a read operation

With the introduction of commit-write operations we extendthe definition of an operation, denoted as
oX , to represent either a transaction or a commit-write operation or a simple-memory operation. When
we refer to a node on the computation tree, denoted asnX , it is either a transaction or a simple-memory
operation. Thus a node is also an operation. But an operationreferring to a commit-write operation of a
transaction is not a node since it is not part of the computation tree. We denote a memory operation (either
commit-write or simple-memory operation) asmX(y) or justmX if the data-item is not important to the
context.

6

We define two kinds of transactions: nested and non-nested. Anon-nested transaction has only simple-
memory operations as its children. A nested transaction hasone or more nested or non-nested transactions
and zero or more simple memory operations as its children.

2.2 Function Definitions

In this section we describe the functions used for describing our algorithm. All the functions pertain to the
computation tree represented by a scheduleS.

We define a functionholder for an operation as:

S.holder(oX) =

{

tX oX is a commit-write belonging totX ,

oX oX is a node of the tree

TheS.holder(oX) is same asoX when it is a transaction or a simple-memory operation. For any oX ,
its holder maps it onto a node in the computation tree and thuswill be denoted bynX . In S2 of Example 3,
S2.holder(w0212

021) is t021.
For any operationoX , we defineS.level(oX) as the distance ofS.holder(oX) in the tree from the root.

From this definition,t0 is at level 0. The level of a transaction and all its commit-write operations are the
same. For instance in Example 3,S2.level(w0212

021) = S2.level(t021) = 2.
For a given tree nodenX (a transaction or a simple-memory operation) in the computation tree repre-

sented by the scheduleS, we define:S.parent(nX) as the parent ofnX on the tree,S.children(nX) as
children ofnX on the tree,S.desc(nX) as the set of descendants ofnX on the tree andS.ansc(nX) as the
set of ancestors ofnX on the tree.

These functions can be extended to any operationoX (including commit-write operation of transactions)
by defining them forS.holder(oX) over the tree. Thus by this extension the parent of a commit-write,mX ,
of a transactiontX is tX ’s parent in the tree. SimilarlymX ’s children aretX ’s children. For instance in
S2 of Example 3,S2.parent(w0212

021) = t02 andS2.children(w0212
021) = {r0211(z), w0212(y)}. But it must

be noted thatS2.parent(r0211(z)) is t021 and notw0212
021 . Similarly these arguments can be extended to

descendants and ancestors.
Consider two operationsoX , oY , in the computation tree represented by a scheduleS. We define

S.lca(oX , oY) as the least common ancestor ofS.holder(oX) andS.holder(oY) in the computation tree of
S.

Next we definedSet function to be associated with every operation in the schedule S.

Definition 1 (dSet)

S.dSet(oX) =



















oX ∪ (
⋃

nY ∈S.children(oX)

S.dSet(nY)) ∪ S.cwrite(oX) oX is a transaction,

oX oX is a simple-memory operation,

S.dSet(S.holder(oX)) oX is a commit-write

Thus for a transactiontX this function comprises of itself, its descendents, its commit-writes and all
its descendents’s commit-writes. By this definition we get that for any operationoX , S.dSet(oX) =
S.dSet(S.holder(oX)). In Example 3,S2.dSet(t02) = S2.dSet(w021

02 (y)) = {t02, r0211(z), w0212(y),
w0212
021 (y), t021, r0221(y), w0222(z), t022, w

021
02 (y)}

We have the following properties which follow from the definition of dSet:

7

t0

mC

mB

mX

mA

Figure 2: This figures illustrates optVis. The dashed line represents the set of ancestors ofmX .

Property 2 In the computation tree represented by a scheduleS, for any operationoX belonging tooY ’s
dSet, the level ofoX is greater than or equal tooY ’s level. Formally,
〈S : (oX ∈ S.dSet(oY)) ⇒ (S.level(oX) > S.level(oY)〉

Property 3 In the computation tree represented by a scheduleS, if an operationoX belongs tooY ’s dSet
andoX , oY are at the same level then the holders ofoX , oY are the same. Formally,
〈S : (oX ∈ S.dSet(oY)) ∧ (S.level(oX) = S.level(oY)) ⇒ (S.holder(oX) = S.holder(oY))〉

Next we define a peer function for an operationoX in a scheduleS:
S.peers(oX) = {oY |(S.holder(oX) 6= S.holder(oY)) ∧ (S.parent(oX) = S.parent(oY))}

A transaction and all the elements of its commit-set are not peers of each other even though they all have
the same parent. It is useful to view a transaction and all theelements of its commit-set as a single fused
super node in the tree. From this definition we get that(oX ∈ S.peers(oY)) ⇒ (oY ∈ S.peers(oX)) but
(oX /∈ S.peers(oX)). Consider two memory operationsmX(z), mY (z) operating on the same data-item.
If they are peers, having the same parent saytP , then they have access to the same data bufferz belonging
to tP .

Next we define a very useful functionoptVis on two operationsoX , oY in a scheduleS, denoted as
S.optV is(oY , oX). We will explain the significance of this function through the course of this document.

Definition 2 (optVis)

S.optV is(oY , oX) =

{

true oY ∈ (S.peers(oX) ∪ S.peers(S.ansc(oX)))

false otherwise

One can see that optVis function is not symmetrical. That is,S.optV is(oY , oX) does not imply
S.optV is(oX , oY). If S.optV is(oY , oX) is true then we say thatoY is optVis tooX in S. It must also
be noted that by the definition if (oX ∈ S.dSet(oY)) thenS.optV is(oY , oX) is false. As a result, for
any commit-write of a transactiontY , saywY , S.optV is(wY , tY) is false. It can also be seen that if
S.optV is(oY , oX) then theS.holder(oY) is not an ancestor ofoX .

8

Figure 2 illustrates optVis. Here the dashed line represents the set of ancestors ofmX . The operations
mA,mB ,mC are peers ofmX ’s ancestors. Hence they all are optVis tomX .

In S2 of Example 3, we have thatS2.optV is(t01, t02) = S2.optV is(t02, t03) = S2.optV is(t03, t01)
= true becauset01, t02, t03 are peers of each other. Now looking at some subtle examples:
S2.optV is(w013

01 (y), w033
03 (z)) is true becausew013

01 (y), w033
03 (z) are peers.S2.optV is(w012

01 (z), r0211(z)) is
true asw012

01 (z) is a peer oft02 which is an ancestor ofr0211(z). SimilarlyS2.optV is(t01, t022) is true. But
S2.optV is(r0211(z), w

012
01 (z)) andS2.optV is(t022, t01) are false. AlsoS2.optV is(w013

01 (y), w0112(y)) is
false asw0112(y) is in t01’s dSet andw013

01 (y) is a commit-write oft01. SimilarlyS2.optV is(w033
03 (z), r032(z))

is false. Next we define some properties and lemmas about optVis.

Property 4 In a scheduleS if a memory operation (commit-write/simple-memory operation) mY is optVis
to another memory operationmX thenmX ’s holder is a descendent of parent ofmY . Formally
〈S : S.optV is(mY ,mX) ⇒ (S.holder(mX) ∈ S.desc(S.parent(mY)))〉

Property 5 Consider two write operationswY , wZ and a read operationrX in a scheduleS. If both
wY , wZ are optVis torX and are at the same level thenwY , wZ have the same parent. Formally,
(S.optV is(wY , rX) ∧ S.optV is(wZ , rX) ∧ (S.level(wY) = S.level(wZ)) ⇒ (S.parent(wY) =
S.parent(wZ))

Lemma 6 Consider two schedulesS1 andS2 such that both of them have the same set of events. Suppose
for two eventsoY andoX , oY is optVis tooX in S1. ThenoY is optVis tooX in S2 as well. Formally,
〈S1, S2 : {oX , oY } ∈ S1.evts : (S1.evts = S2.evts) ∧ (S1.optV is(oY , oX)) ⇒ (S2.optV is(oY , oX))〉

Proof: Since the events ofS1 andS2 are the same, from Property 1, we get that the computation trees of
S1 andS2 are the same. InS1, oY is optVis tooX . This implies thatoY is either a peer ofoX or a peer of
an ancestor ofoX in the computation tree ofS1. Since the computation tree ofS2 is the same as that ofS1,
oY is either a peer ofoX or a peer of an ancestor ofoX in the computation tree ofS2 as well. HenceoY is
optVis tooX in S2 also. Thus we haveS2.optV is(oY , oX). ✷

2.3 Serial Schedules for Closed Nested Transactions

In this section we talk about serial schedules in the contextof nested transactions.

Schedule Partial Order: A schedule totally orders all the events of a transaction. Further it partially
orders all the transactions and simple-memory operations.For a scheduleS and a transactiontX in it, we
defineS.tX .f irst as the first operation oftX that executes according toS. Similarly we defineS.tX .last
as the last operation oftX (i.e., a terminal operation) to execute according toS. For a simple-memory
operation,S.mX .f irst = S.mX .last. With these definitions we can define a partial order on all thenodes
in the computation tree represented by the schedule:(nX <S nY) ≡ (S.nX .last < S.nY .f irst)

We call this order as theschedule-partial-order. It must be noted that all the memory operations having
the same parent are totally ordered.

Serial Schedules: For non-nested transactions a serial schedule is a schedulein which all the transactions
execute serially (as the name suggests) without any interleaving. Serial schedules are very useful because
their executions are easy to verify since there is no interleaving. For a closed nested STM system we define
a serial schedule as follows:

9

r0211(z) w0212(y)

t021

c021

w013(y)

c01

r0111(x)

w012(z)

t0

t01

w0112(y)

t011

t02

c011

tinit

c02

w0222(z)

a022

r0221(y)

t022

t03
tfin

r031(y) r032(z)
w033(z)

c03

Figure 3: Computation tree for a serial schedule ofS2

Definition 3 A scheduleSS is called serial if for every transactiontX in SS, the children (both transactions
and simple-memory operations) ofSS are totally ordered. Formally,
〈∀tX ∈ SS.nodes : {nY , nZ} ⊆ SS.children(tX) : (nY <SS nZ) ∨ (nZ <SS nY)〉

A serial schedule with the same events of the scheduleS2 is as follows:r0111(x)w0112(y)w
0112
011 (y)c011

w012(z)w013(y)w
012
01 (z)w013

01 (y)c01r0211(z)w0212(y)w
0212
021 (y)c021r0221(y)w0222(z)a022w

021
02 (y)c02r031(y)

r032(z)w033(z)w
033
03 (z)c03. The computation tree for this serial schedule is shows in Figure 3. From the

definition of a serial schedule we get the following property:

Property 7 Consider two peer nodes,nX , nY in a serial scheduleSS. Let mR be a memory operation
belonging tonX ’s dSet andmS be a memory operation belonging tonY ’s dSet. IfmR occurs beforemS

in SS, then all the memory operations innX ’s dSet occur before all the memory operations ofnY ’s dSet.
Formally,
〈{nX , nY } ∈ SS.nodes : (mR ∈ SS.dSet(nX)) ∧ (mS ∈ SS.dSet(nY)) : (SS.parent(nX) =
SS.parent(nY))∧(SS is serial)∧(SS.ord(mR) < SS.ord(mS)) ⇒ (∀mP ,∀mQ : (mP ∈ SS.dSet(nX))∧
(mQ ∈ SS.dSet(nY)) : (SS.ord(mP) < SS.ord(mQ)〉

2.4 Writes for Read Operations and Well-Formedness

In an earlier sub-section we described how write operationsare performed by transactions. Now let us
understand how read operations are performed. In our model,for non-nested transactions there exists only
a single version for each data-itemz. Thus, each read operation in non-nested transaction readsthe latest
value in the buffer ofz. This implies that in a scheduleS consisting of non-nested transactions, a read
operationrX(z) reads the value written by the previous closest commit-write onz. We call such a write as
the lastWriteof rX(z) 1 and denote it asS.lastWrite(rX(z)).

1This term is inspired from [12]

10

Now coming to the case of nested transactions, a transactionwanting to read a data-item, sayz, (unlike
write) has access toz data buffers of all its ancestors (apart from its own). But itdoes not have access to
its children’s buffers. Hence, the lastWrite could potentially be the most recent previous write in any one
of these buffers. Thus, we must identify rules to precisely define lastWrite of a read operation for nested
transactions.

To understand this, we consider the serial (nested) schedule of S2 shown in Figure 3. Consider the
read operationr0211(z) of transactiont021. Transactiont021 has access to its own buffers, the buffers of its
parentt02 and the buffers of roott0. In this case,r0211(z) reads from thez buffer with the value written
by commit-writew012

01 (z). Next, consider the read operationr0221(y) of transactiont022. Similar to the
above case,t022 has access to its own buffers, the buffers of its parentt02 and the buffers of roott0. Thus
r0221(y) has the option of reading the value written by commit-writew0212

021 (y) ontot02’s y buffer or by the
commit-writew013

01 (y) onto t0’s y buffer. In our model,r0221(y) reads the value written byw0212
021 (y) onto

t02’s buffer.
Having illustrated with examples from a serial schedule, wedefine the properties that a lastWrite of a

read operation in a schedule (which is not necessarily serial) must satisfy:

1. The lastWritewY should occur prior to the read operationrX in the schedule.

2. The lastWritewY should be a commit-write belonging to a committed transaction or a simple-memory
operation. Since the read operation can access thez data buffers of all its ancestors, the commit-write
on z should be a peer ofrX(z) or a peer of an ancestor ofrX(z), i.e.,S.optV is(wY , rX) should be
true.

3. The read operationrX(z) accessesz buffers starting from that of its own transaction. It then accesses
its ancestor’sz buffer in the decreasing order of level. It reads from the first buffer which has a non-⊥
value in it. Thus the lastWritewY is such that the difference between its level andrX ’s level is the
smallest.

4. If there are multiple writes satisfying the above conditions then among these writes the lastWritewY

is the closest torX in the scheduleS.

As mentioned earlier when a new sub-transaction is invoked (by a parent transaction), the sub-transaction
creates a separate set of buffers for each data-item it accesses. On creation these buffers are initialized with
⊥.

It can be seen that applying these rules to non-nested transactions, the lastWrite for a readrX(z) boils
down to the previous closest commit-write or a simple-memory operation.

A nested transactiontN wanting to readz can satisfy the above mentioned properties of lastWrite of
rN (z) by following a simple procedure:tN first reads its localz buffer. If the value read from its buffer
is ⊥ then it reads from its parent’sz buffer. If that is also⊥, it then reads the buffer of the parent of the
parent and so on. It reads thez buffers in this way until it reads a non-⊥ value. Sincet0’s buffers have been
initialized, tN will eventually read a non-⊥ value.

Next we will formally describe the notion of lastWrite in a sequence of steps. We consider the following
schedule to describe our definitions. The computation tree for this schedule is in Figure 4.

Example 4
Computation Tree:
t0 : {tinit, t01, t02, t03, tfin},

11

r0211(z)

r011(x)

t021

w0212(x)

t023

r0241(x)

r02311(x) w02323(y)

r0242(y)

w033(d)

t024

t0232

w0213(y)
t0231

w0243(z)

r032(z)

r031(y)

t03t01

w02322(x)

w022(x)

t02

t0

tinit

c021

w012(y)

c01

w02312(y)

c0231
c0232

a023

c02

c024

c03

r02321(y)

tfinF
igure

4:
C

om
putation

tree
for

E
xam

ple
4

12

t01 : {sm011 = r011(x), sm012 = w012(y), c01},
t02 : {t021, sm022 = w022(x), t023, t024, c02},
t021 : {sm0211 = r0211(z), sm0212 = w0212(x), sm0213 = w0213(y), c021},
t023 : {t0231, t0232, a023},
t0231 : {sm02311 = r02311(x), sm02312 = w02312(y), c0231},
t0232 : {sm02321 = r02321(y), sm02322 = w02322(x), sm02323 = w02323(y), c0232},
t024 : {sm0241 = r0241(x), sm0242 = r0242(y), sm0243 = w0243(z), c024},
t03 : {sm031 = r031(y), sm032 = r032(z), sm033 = w033(d), c03},

Schedule:
S3 : r011(x)r0211(z)w0212(x)w022(x)r02311(x)w0213(y)w

0212
021 (x)w0213

021 (y)c021w012(y)w
012
01 (y)c01w02312(y)

w02312
0231 (y)c0231r02321(y)r0241(x)w02322(x)r0242(y)r031(y)w02323(y)w

02322
0232 (x)w02323

0232 (y)c0232r032(z)a023
w0243(z)w

0243
024 (z)c024w

021
02 (x)w021

02 (y)w024
02 (z)c02w033(d)w

033
03 (d)c03

It must be noted that in the scheduleS3 transactiont023 is aborted. But both its child transactions
t0231, t0232 are committed.

For two memory operations in a schedule we define two kinds of distances. We define schDist as
S.schDist(mX ,mY) = |S.ord(mX)− S.ord(mY)|.
Next we define levDist asS.levDist(mX ,mY) = |level(mX) − level(mY)|. For a memory operation
mX(y) in S, we define the following sets:
S.prevW (mX(y)) = {wY (y)|(wY (y) ∈ S.evts) ∧ (S.ord(wY (y)) < S.ord(mX(y)))}
As the name suggests the set prevW consists of all they writes that happen beforemX(y) in S irrespective
of whether they are simple write or commit-write operations.
S.prevV isW (mX(y)) = {wY (y)|(wY (y) ∈ S.prevW (mX(y))) ∧ (S.optV is(wY (y),mX(y)))}
This set consists of all they writes that occur beforemX(y) and are optVis tomX(y). Since the transaction
tinit is a child oft0, tinit is optVis to every other operation in the computation. Hencethe set prevVisW of
every memory operation will contain a write bytinit. As a result, the prevVisW of every memory operation
has at least one element. For instance in the scheduleS3 mentioned in Example 4,
S3.prevV isW (r0241(x)) = {winit(x), w

0212
021 (x), w022(x)}

S3.prevV isW (r0242(y)) = {winit(y), w
0213
021 (y), w012

01 (y)}
S3.prevV isW (r02321(y)) = {winit(y), w

0213
021 (y), w012

01 (y), w02312
0231 (y), }

Next we define a set having all the writes that occur before a memory operation, are optVis to it and are
closest to it in terms of level.

S.prevCloseSet(mX(y)) = {wY (y)|(wY (y) ∈ S.prevV isW (rX(y))) ∧ (S.levDist(wY (y),mX(y))

is smallest)}

For instance, for the writes of scheduleS3 in Example 4 mentioned above,
S3.prevCloseSet(r0241(x)) = {w0212

021 (x), w022(x)}
S3.prevCloseSet(r0242(y)) = {w0213

021 (y)}
S3.prevCloseSet(r02321(y)) = {w02312

0231 (y)}

Having defined these sets, we define the lastWrite for a read operation in a schedule as the closest write

13

operation from the prevCloseSet set. Formally,

S.lastWrite(mX(y)) = {wY (y)|(wY (y) ∈ S.prevCloseSet(mX(y)))∧

(S.schDist(mX(y), wY (y))is minimum)}

Since the set prevVisW has at least one element, lastWrite isnever nil. In the worst case a read operation
will read the values written bytinit. The lastWrites for all the reads inS3 of Example 4 are as follows:
{r011(x) : winit(x), r0211(z) : winit(z), r02311(x) : w022(x), r02321(y) : w

02312
0231 (y), r0241(x) : w

0212
021 (x),

r0242(y) : w
0213
021 (y), r031(y) : w

012
01 (y), r032(z) : winit(z)}

An important requirement of a STM is that no transaction reads from an aborted transaction. Intuitively
this implies that the lastWrite of no read operation belongsto an aborted transaction’s dSet. Consider the
readr02321(y). Its lastWrite isw02312

0231 (y) which belongs tot023’s dSet. Transactiont023 is aborted. In this
case it might seem that the readr02321(y) is reading from an aborted transaction. Butw02312

0231 (y) actually
belongs tot0231’s dSet which is a committed transaction. Furtherr02321(y) also belongs tot023. Thus the
properties that we want of aborted transactions have not been violated. We have the following property and
lemma which formalizes this notion:

Property 8 Consider a scheduleS which has a readrX . Let the lastWrite ofrX bewY . Then the holder of
wY cannot be an aborted transaction. Formally,
〈S : rX ∈ S.evts : (wY = S.lastWrite(rX)) ⇒ (S.holder(wY) is not aborted)〉

Lemma 9 Consider a scheduleS which has a readrX . Let the lastWrite ofrX bewY . If an ancestor of
wY , saytA, is aborted thenrX is in tA’s dSet. Formally,
〈S : rX ∈ S.evts, tA ∈ S.nodes : (wY = S.lastWrite(rX)) ∧ (tA ∈ S.ansc(wY)) ∧ (tA is aborted) ⇒
(rX ∈ S.dSet(tA))〉

Proof: Let the parent ofwY be tP . From Property 4, we get thattP is an ancestor ofrX . Hence, any
ancestor ofwY is an ancestor ofrX . This implies thattA is an ancestor ofrX . Thus,rX is in the dSet oftA.

✷

Informally this lemma implies that no transaction outside an aborted transaction reads from it. Consider
the read operationr0242(y) in S3 of Example 4. Its lastWrite isw0213

021 (y). But in S3 there is a write
w012
01 (y) which is optVis tor0242(y) and occurs before it. Moreoverw012

01 is closer tor0242(y) in schDist
thanw0213

021 (y) i.e. S3.schDist(r0242(y), w
0213
021 (y)) > S3.schDist(r0242(y), w

012
01 (y)). So intuitively it

might seem thatw012
01 (y) should be the lastWrite. Butw0213

021 (y) is closer tor0242(y) in terms of level
thanw012

01 (condition 3 of the properties required by lastWrite) i.e.S3.levDist(r0242(y), w
0213
021 (y)) <

S3.levDist(r0242(y), w
012
01 (y)). Hencew0213

021 (y) is the lastWrite. The following two properties describe
this notion formally,

Property 10 Consider a scheduleS with memory operationswZ , wY , rX such thatwZ occurs prior towY

in S, wZ is optVis torX andwY is the lastWrite ofrY . ThenwZ ’s level should be less than or equal to
wY ’s level. Formally,
〈S : {wZ , wY , rX} ∈ S.evts : (S.ord(wZ) < S.ord(rX))∧S.optV is(wZ , rX)∧(wY = S.lastWrite(rX))
⇒ (S.level(wZ) 6 S.level(wY))〉

Property 11 Consider a scheduleS with memory operationswZ , wY , rX such thatwZ ’s level is same as
wY ’s level,wZ occurs prior torX in S, wZ is optVis torX andwY is the lastWrite ofrX . ThenwZ also

14

occurs prior towY in S. Formally,
〈S : {wZ , wY , rX} ∈ S.evts : (S.level(wZ) = S.level(wY)) ∧ (S.ord(wZ) < S.ord(rX))
∧ S.optV is(wZ , rX) ∧ (wY = S.lastWrite(rX)) ⇒ (S.ord(wZ) < S.ord(wY) < S.ord(rX)〉

We would like to make a note about the definition of optVis. Consider a read operationrX(z) and a
committed transactiontY in a scheduleS. Let rX be intY ’s dSet. Then by our convention all the commit-
writes oftY occur afterrX has executed in theS. Thus no commit-write oftY can be the lastWrite ofrX .
Due to this property we defined optVis such that any writewY is not optVis torX if rX is contained intY ’s
dSet. Formally,
〈S : {rX , wY , tY } ∈ S.evts : (rX ∈ S.dSet(tY)) ∧ (wY ∈ tY ’s commit-set) ⇒ (S.optV is(wY , rX) =
false)〉

For a nodenP with a read operationrX in its dSet, the read is said to be anexternal-readof nP if its
lastWrite is not innP ’s dSet. For instance,r0241(x) is an external-read oft024 since its lastWritew0212

021 (x)
is not in t024’s dSet. The readr02321(y) is not an external-read of the transactiont023 since its lastWrite
w02312
0231 (y) belongs tot023’s dSet. From this definition we get that every read operationis an external-read of

itself. Thus,r0241(x) is an external-read of itself. It can be seen that a nested transaction interacts with its
peers through external-reads and commit-writes. Thus, a nested transaction can be treated as a non-nested
transaction consisting only of its external-reads and commit-writes. The external-reads and commit-writes
of a transaction constitute itsextOpsSet.

A schedule is calledwell-formedif it satisfies: (1) Validity of Transaction limits: After a transaction
executes a terminal operation no operation (memory or terminal) belonging to it can execute; and (2) Validity
of Read Operations: Every read operation reads the value written by its lastWrite operation.
We assume that all the schedules we deal with are well-formed.

3 Conflict Preserving Closed Nested Opacity

In this section, we (1) define opacity for closed nested transactions, represented by a class of schedulesCNO,
(2) present a new conflict notionoptConf for closed nested transactions (3) defineCP-CNO, a subclass of
CNO based on optConf and then (4) present an algorithm for verifying the membership of CP-CNO in
polynomial time.

3.1 Closed Nested Opacity

A STM system allows interleaving between transactions to efficiently utilize the system resources. But the
STM system should also ensure that the interleaving transactions execute in correct manner. In the context of
traditional databases the correctness criterion for the execution of concurrent transactions isserializability
[19]. Serializability ensures that the execution of all thecommitted transactions corresponds to a serial
execution. But serializability does not specify the correctness of aborted transactions. In STM systems
where transactions execute in memory it is imperative that all transactions including aborted transactions
execute correctly. Incorrect execution of aborted transactions could result in the STM system entering
into an inconsistent state. This could result in many errorssuch as crash failures, division-by-zero etc. as
described in Section 1.

To address this shortcoming Guerraoui and Kapalka [5] came up with the notion ofopacity. A schedule,
consisting of an execution of transactions, is said to beopaqueif there is an equivalent serial schedule
such that it respects the original schedule’s schedule-partial-order and the lastWrite for every read operation
(including the reads of aborted transactions) in the serialschedule is the same as in the original schedule.

15

To effectively capture this notion, Imbs and Raynal [9] treat all the aborted transactions in a given schedule
as read-only transactions. Then in the resulting schedule they try to find an equivalent serial schedule
satisfying the above mentioned conditions. We extend this notion to nested transactions. That is, in our
characterization, all aborted sub-transactions are viewed as read-only transactions. We define a class of
schedules called as Closed Nested Opacity or CNO as follows

Definition 4 A scheduleS belongs to Closed Nested Opacity (CNO) class if there existsa serial schedule
SS such that:

1. Event Equivalence: The events ofS andSS are the same. Formally,
〈(S.evts = SS.evts)〉

2. schedule-partial-order Equivalence: For any two nodesnY , nZ that are peers in the computation tree
represented byS if nY occurs beforenZ in S thennY occurs beforenZ in SS as well. Formally,
〈tX : {nY , nZ} ⊆ S.children(tX) : (nY <S nZ) ⇒ (nY <SS nZ)〉

3. lastWrite Equivalence: For all read operations the lastWrites inS andSS are the same. Formally,
〈S, SS : ∀rX : S.lastWrite(rX) = SS.lastWrite(rX)〉

Even though the definition of CNO is similar to opacity, the condition lastWrite equivalence captures
the intricacies of nested transactions. This class ensuresthat the reads of all the transactions including all
the sub-transactions of aborted transactions read consistent values. We denote this equivalence between a
scheduleS and a serial scheduleSS asS ≈o SS.

3.2 Conflict Notion: optConf

Checking opacity, like general serializability (for instance, view-serializability) cannot be done efficiently.
Restricted classes of serializability (like conflict-serializability) have been defined based on conflicts which
allow polynomial membership test, and facilitate online scheduling. Along the same lines, we define a
subclass of CNO, CP-CNO.

This subclass is based on the notion of conflicts. Two memory operations operating on the same data-
item are said to be in conflict if one of them is a write operation (and the other is either a read or write
operation). We extend the notion of conflicts to closed nested transactions. We call this conflict notion as
optConf (conflict for optimistic executions). It is tailored for closed-nested nature of transactions. This
notion is similar to the idea of conflicts presented in [4] fornon-nested transactions. In this section we
presentConflict Preserving Closed Nested Opacityor CP-CNOa subclass of CNO based on optConf notion
for closed nested transactions.

Consider a scheduleS and a serial scheduleSS with the same set of events asS. We show that, if the
set of optConfs between the events inS are also inSS, then the lastWrite for every read is also the same in
S andSS. It must be noted that since the set of events (and transactions) are the same inS andSS, from
Property 1 we get that their computation trees are also the same. As a result if an operationoX is at levellX
in S, then its level inSS is alsolX .

The conflict notion optConf is defined only between memory operations in extOpsSets (defined in Sec-
tion 2.4) of two peer nodes. As explained earlier, a node (or transaction) interacts with its peer nodes through
its extOpsSet. Consider two peer nodesnA, nB. For two memory operationsmX ,mY in the extOpsSets of
nA, nB, S.optConf(mX ,mY) is true if mX occurs beforemY in S and one of the following conditions
hold:

16

tR

rX

wL
wY

tR

rX

wL

wY

nP
nP

nQ

wZ

Figure 5: Example illustrating w-r and r-w conflicts

1. w-r optConf:mX is a commit-writewX of nA andmY is an external-readrY of nB or

2. r-w optConf:mX is an external-readrX in nA, mY is a commit-writewY of nB or

3. w-w optConf:mX is a commit-writewX of nA andmY is a commit-writewY of nB .

Figure 5 illustrates the conflicts for a readrX . HerewL andnP are peers withrX in nP ’s dSet and
the lastWrite ofrX is wL. In the figure on the left,wY is a peer ofwL andnP . This figure illustrates w-r
conflict betweenwY andrX . The dotted line shows the conflict.

The figure on the right of Figure 5 illustrates r-w conflict. Inthis figure,wY belongs tonP ’s dSet and
is a peer ofnQ. The commit-writewZ is a peer ofnP . The readrX is in nQ’s dSet and innP ’s dSet with
nP being an ancestor ofnQ. SincerX ’s lastWrite is not innQ’s dSet and also not innP ’s dSet, it is an
external-read of bothnQ andnP . HencerX is in r-w optConf with bothwY andwZ .

Next, we will motivate the reason for defining the conflicts inthis manner. Consider a readrX(d) in
a scheduleS with lastWrite aswL(d). Let wA(d) be an arbitrary write inS that is optVis torX(d). Let
their levels belX , lL, lA respectively. From optVis definition we get that,lL 6 lX andlA 6 lX and these
relationships hold inSS as well (since the set of events inS andSS are the same). The conflicts are defined
such thatwA does not becomerX ’s lastWrite in any conflict equivalent serial scheduleSS. The following
paragraphs explain this.

ForwL to be the lastWrite ofrX in SS, wL must occur beforerX in SS as well. This is ensured by
w-r optConf. Next, let us analyse the motive of r-w optConf. From the definition of lastWrite, we get that
if lA < lL (i.e,wA is closer to the root thanwL) thenwA can never be the lastWrite ofrX in SS. Hence, it
suffices to define r-w conflict only between the readrX and any suchwA whose levellA is greater than or
equal tolL. We do not need to consider conflicts between read and writes that are at level smaller than its
lastWrite (i.e. closer to the root than the lastWrite).

Consider the case thatlA > lL. Consider two peer nodesnP , nQ (which are at the same level in the tree
since they are peers). LetrX be innP ’s dSet andwA in nQ’s dSet. Also, letrX occur beforewA in S. Since
wA is optVis torX , wA must benQ’s commit-write (if nQ is a simple-memory operation then it is same
aswA). As a result, the levels ofnP , nQ andwA are the same. From our assumption, we have thatwA’s
level is greater than or equal tolL. Hence,nP ’s level is greater than or equal tolL as well. From Property 2
we get that,rX ’s lastWritewL cannot be innP ’s dSet. As a result,rX is an external-read ofnP . Thus by

17

defining r-w conflict between suchrX andwA we ensure thatwA can never berX ’s lastWrite in any conflict
equivalent serial scheduleSS.

Now consider the case that the writewA occurs beforewL andrX in S. Let wA’s level lA be same as
lL. Combining this with the observation thatwA andwL are optVis torX , we get thatwA andwL are peers.
It must be noted that w-r conflict ensures thatwA occurs beforerX in SS. But it is possible thatwA occurs
betweenwL andrX in SS. ThenwA becomesrX ’s lastWrite inSS. The w-w conflict betweenwA andwL

ensures thatwA occurs beforewL in SS as well. Thus all the three conflicts ensure thatwL is rX ’s lastWrite
in SS as well.

The set of conflicts for the scheduleS3 mentioned in Example 4 are:
{(r011(x), w

021
02 (x)), (r0211(z), w

0243
024 (z)), (w022(x), w

0212
021 (x)), (w022(x), r02311(x)), (r02311(x), w

0212
021 (x)),

(r02311(x), w
02322
0232 (x)), (w0213

021 (y), r0242(y)), (w
012
01 (y), r031(y)), (w

012
01 (y), w021

02 (y)), (r02311(x), w
0212
021 (x)),

(w02312
0231 (y), r02321(y)), (w

02312
0231 (y), w02323

0232 (y)), (w0212
021 (x), r0241(x)), (w022(x), r0241(x)), (r031(y), w

021
02 (y)),

(r032(z), w
024
02 (z))}

The conflicts involvingtinit andtfin are not shown here. Now, we describe a property about w-r conflict
and a lemma about r-w conflict,

Property 12 If the lastWrite of readrX in S iswY thenwY andrX are in w-r optConf. Formally,
〈(wY = S.lastWrite(rX)) ⇒ (S.optConf(wY , rX))〉

Lemma 13 Consider a writewA and a readrX in a scheduleS. LetrX ’s lastWrite bewL. Let the levels of
rX , wA, wL belX , lA, lL respectively. IflL is less than or equal tolA andwA is optVis torX andrX occurs
beforewA in S thenS.optConf(rX , wA) is true. Formally,
(wL = S.lastWrite(rX)) ∧ (lL 6 lA) ∧ (S.optV is(wA, rX)) ∧ (S.ord(rX) < S.ord(wA)) ⇒
(S.optConf(rX , wA))

Proof: Let holder ofwA benA (which is same aswA, if it is a simple-write). SincewA is optVis torX ,
there is a peernB of nA such thatrX is in nB ’s dSet. SincenA, nB are peers we get thatlevel(wA) =
level(nA) = level(nB) = lA. Here we have two cases depending on the levels ofwL andwA.

Case 1lL < lA: This case implies thatlL < level(nB). Combining this with the contrapositive of Property 2,
we get thatwL is not innB ’s dSet. ButrX is in nB ’s dSet. HencerX is an external-read ofnB.

Case 2lL = lA: This case implies thatlL = level(nB). Consider the case thatwL is innB ’s dSet. Then from
Property 3, we get that holder ofwL is same asnB ’s holder. This is possible only whenwL is nB ’s
commit-write. SincewL is lastWrite ofrX , it occurs beforerX in S. This implies thatwL is not a
commit-write ofnB . This is possible only whenwL is not innB ’s dSet. HencerX is an external-read
of nB.

Thus in both the cases, we get thatrX is an external-read ofnB. From our assumptions we have that
nA, nB are peers,wA is a commit-write ofnA, and we are given that(S.ord(rX) < S.ord(wA). These are
the conditions of r-w conflict. Hence,S.optConf(rX , wA) is true. ✷

Based on this conflict definition, we define a class of schedules called asConflict Preserving Closed Nested
Opacityor CP-CNO.

Definition 5 A scheduleS belongs to CP-CNO class if there exists a serial scheduleSS such that:

18

1. Event Equivalence: The events ofS andSS are the same. Formally,
〈(S.evts = SS.evts)〉

2. schedule-partial-order Equivalence: For any two nodesnY , nZ that are peers in the computation tree
represented byS if nY occurs beforenZ in S thennY occurs beforenZ in SS as well. Formally,
〈tX : {nY , nZ} ⊆ S.children(tX) : (nY <S nZ) ⇒ (nY <SS nZ)〉

3. optConf Implication: if two memory operations inS are in optConf then they are also in optConf in
SS. Formally,

〈∀mY ,∀mZ : {mY ,mZ} ⊆ S.evts : (S.optConf(mY ,mZ) ⇒ SS.optConf(mY ,mZ))〉

We denote this equivalence to such a serial schedule as(S ≈oc SS). As we can see, the class CP-CNO
is different from CNO only in condition 3. We prove this equivalence also ensures that lastWrites are the
same i.e. class CP-CNO is a subset of CNO.

Theorem 14 If a scheduleS is in the class CP-CNO then it is also in CNO. Formally,
〈(S ∈ CP-CNO) ⇒ (S ∈ CNO)〉

Proof: SinceS ∈ CP-CNO, we know that there exists a serial scheduleSS such thatS ≈oc SS. We
will prove that the lastWrite for every read operation inSS is same as inS. We will prove this using
contradiction. Consider a readrX . Let (wY = S.lastWrite(rX)) 6= (wZ = SS.lastWrite(rX)). Let
S.parent(wY) = tP andS.parent(wZ) = tQ. SincewY is the lastWrite ofrX in S, from the definition of
optConf and Property 12, we get thatS.optConf(wY , rX) is true which also impliesSS.optConf(wY , rX)
is true. Thus from the definition of optConf we get thatwY occurs prior torX in SS. Formally,

〈(wY = S.lastWrite(rX))
Property 12
−−−−−−−→ S.optConf(wY , rX)

S≈ocSS−−−−−→

SS.optConf(wY , rX)
optConf

−−−−−−→
definition

(SS.ord(wY) < SS.ord(rX))〉 (1)

From the definition of lastWrite we have that

(wY = S.lastWrite(rX)) ⇒ S.optV is(wY , rX)
S.evts=SS.evts,
−−−−−−−−−−→

Lemma 6
SS.optV is(wY , rX)) (2)

(wZ = SS.lastWrite(rX)) ⇒ SS.optV is(wZ , rX)
S.evts=SS.evts,
−−−−−−−−−−→

Lemma 6
S.optV is(wZ , rX)) (3)

Consider Eqn (1) and Eqn (2). We have thatwY occurs prior torX in SS andSS.optV is(wY , rX). Further
we have thatwZ is the lastWrite ofrX in SS. Combining these with Property 10 we get thatSS.level(wZ)
is greater than or equal toSS.level(wY). Formally,

〈(SS.ord(wY) < SS.ord(rX)) ∧ SS.optV is(wY , rX) ∧ (wZ = SS.lastWrite(rX))
Property 10
−−−−−−−→

(SS.level(wZ) > SS.level(wY))
SS.evts=S.evts
−−−−−−−−−→ (S.level(wZ) > S.level(wY))〉 (4)

Now we have two cases based on the positions ofwZ , rX in S.

19

Case 1S.ord(wZ) < S.ord(rX): HerewZ also occurs beforerX in S. Similar to the argument of Eqn (4),
combining Eqn (3) with this case we get that level ofwY in S andSS is greater than equal towZ ’s
level,

〈(S.ord(wZ) < S.ord(rX)) ∧ S.optV is(wZ , rX) ∧ (wY = S.lastWrite(rX))
Property 10
−−−−−−−→

(S.level(wY) > S.level(wZ))
SS.evts=S.evts
−−−−−−−−−→ (SS.level(wY) > SS.level(wZ))〉 (5)

Combining Eqn (4) with Eqn (5) we get that level ofwY in S andSS is equal towZ ’s level,

(S.level(wZ) > S.level(wY))∧(S.level(wY) > S.level(wZ)) ⇒ (S.level(wZ) = S.level(wY))

SS.evts=S.evts
−−−−−−−−−→ (SS.level(wZ) = SS.level(wY)) (6)

This gives us that the levels are the same. Combining this result with the information ofS i.e. wZ

occurs prior torX in S, wZ is optVis torX andwY is the lastWrite ofrX in S and Property 11 we
get thatwZ occurs prior towY in S. Formally,

〈(S.level(wZ) = S.level(wY)) ∧ (S.ord(wZ) < S.ord(rX) ∧ S.optV is(wZ , rX)∧

(wY = S.lastWrite(rX))
Property 11
−−−−−−−→ (S.ord(wZ) < S.ord(wY))〉 (7)

Similarly combining Eqn (6) with the information aboutSS, we get thatwY occurs prior towZ in
SS.

〈(SS.level(wZ) = SS.level(wY)) ∧ (SS.ord(wY) < SS.ord(rX) ∧ SS.optV is(wY , rX)∧

(wZ = SS.lastWrite(rX))
Property 11
−−−−−−−→ (SS.ord(wY) < SS.ord(wZ))〉 (8)

From Eqn (2) we have thatwY is optVis torX in S and from Eqn (3) we have thatwZ is optVis to
rX in S. In Eqn (6) we obtained that level ofwZ is same aswY ’s level inS. Combining these results
with Property 5 we get that parent ofwZ is same aswY in S,

〈S.optV is(wY , rX) ∧ S.optV is(wZ , rX) ∧ (S.level(wZ) = S.level(wY))

Property 5
−−−−−−−→ (S.parent(wY) = S.parent(wZ))〉 (9)

Combining Eqn (7), which states thatwZ occurs beforewY in S, with the result obtained just above
in Eqn (9) we get thatwZ is in optConf withwY in S. FromS ≈oc SS, we get that this is also true in
SS. HencewZ should also occur prior towY in SS,

〈(S.parent(wY) = S.parent(wZ))∧((S.ord(wZ) < S.ord(wY))
optConf

−−−−−−→
definition

(S.optConf(wZ , wY))

S≈ocSS−−−−−→ (S.optConf(wZ , wY))
optConf

−−−−−−→
definition

((SS.ord(wZ) < SS.ord(wY))〉 (10)

20

But this result contradicts with Eqn (8) which states thatwY should occur prior towZ in SS. Hence
this case is not possible.

Case 2S.ord(rX) < S.ord(wZ): In this caserX occurs beforewZ in S.

Eqn (3) stateswZ is optVis torX in S. From Eqn (4) we have that level ofwZ is greater than or equal
to level ofwY which is the lastWrite ofrX in S. Combining all these with the current case we obtain
that rX , wZ are in optConf inS. FromS ≈oc SS, we get that this is also true inSS. HencewZ

should occur afterrX in SS,

(S.ord(rX) < S.ord(wZ)) ∧ (S.level(wZ) > S.level(wY)) ∧ S.optV is(wZ , rX)∧

(wY = S.lastWrite(rX))
Lemma 13
−−−−−−→ (S.optConf(rX , wZ))

S≈ocSS−−−−−→

(SS.optConf(rX , wZ))
optConf

−−−−−−→
definition

(SS.ord(rX) < SS.ord(wZ))〉 (11)

ThuswZ cannot be lastWrite ofrX in SS which again is a contradiction. Hence this case is also not
possible and rules out all cases.

This implies that(wZ 6= SS.lastWrite(rX)). ✷

Next we give an example of a schedule which is in CNO but not in CP-CNO. Consider the following
computation tree and schedule:

Example 5 Computation Tree:
t0 : {tinit, t01, t02, t03, tfin},
t01 : {sm011 = r011(x), sm012 = w012(y), c01},
t02 : {sm021 = r021(y), sm022 = w022(y), c02},
t03 : {sm031 = r031(z), sm032 = w032(y), c03}
Schedule:
S4 : r011(x)r021(y)w012(y)w

012
01 (y)c01w022(y)w

022
02 (y)c02r031(z)w032(y)w

032
03 (y)c03

Figure 6 shows the computation tree corresponding toS4. An equivalent opaque serial schedule is:
S5 : r021(y)w022(y)w

022
02 (y)c02r011(x)w012(y)w

012
01 (y)c01r031(z)w032(y)w

032
03 (y)c03

The set of optConfs inS4:
{(r021(y)), w

012
01 (y)), (r021(y)), w022(y)), (r021(y)), w

032
03 (y)), (w012

01 (y), w022
02 (y)), (w012

01 (y), w032
03 (y)),

(w022
02 (y), w032

03 (y))}
But there is no optConf equivalent serial schedule for this example. In the next section we will show this
using the graph construction algorithm. This shows that CP-CNO⊂ CNO.

In many of the existing STM systems proposed (for non-nestedtransactions), whenever a conflict is
detected between a read and a write operation of two transactions, one of the transactions is aborted [9]. It
can be verified that the set of schedules accepted by such a system is a subclass of CP-CNO. By defining
optConf only between external-reads and commit-writes as opposed to any arbitrary read and write, the class
CP-CNO is as non-restrictive as possible.

21

r021(y)

t02

r011(x)

t01

w012(y) w022(y) r031(z) w032(y)

t0

tinit t03

c01 c02

c03

tfin

Figure 6: The computation tree for Example 5

3.3 Algorithm

In this subsection, we describe the algorithm for testing the membership of the class CP-CNO in polyno-
mial time. Our algorithm is based on the graph construction algorithm by Resende and Abbadi [16]. For
a scheduleS, the algorithm computes aconflict graph(also referred asserialization graph) based on opt-
Confs, denoted asS.optConfGraph, and checks for the acyclicity of the graph constructed. We call this
asoptConfGraphCons algorithm. The graphS.optConfGraph is constructed as follows: (1) Vertices: It
comprises of all the nodes in the computation tree. The vertex for a nodenX is denoted asvX . (2) Edges:
Consider each transactiontX starting fromt0. For each pair of childrennP , nQ, (other thantinit andtfin)
in S.children(tX) we add an edge from vertexvP (corresponding tonP) to vertexvQ (corresponding to
nQ) as follows:

1. Completion edges: ifnP <S nQ

2. Conflict edges: For any two memory operations,mY ,mZ such thatmY is in nP ’s dSet andmZ is in
nQ’s dSet, an edge fromnP to nQ if S.optConf(mY ,mZ) is true.

Then the algorithm checks for the acyclicity of the graphS.optConfGraph constructed. Since the
position of the transactionstinit and tfin are fixed in the tree and in any schedule, we do not consider
them in our graph construction algorithm. It must be noted that in our graph construction all the edges are
between vertices corresponding to peer nodes. There are no edges between vertices that correspond to nodes
of different levels. Thus the graph constructed consists ofdisjoint subgraphs. Applying this algorithm on
the schedule ofS3 of Example 4 we get the graph shown in Figure 7. In Figure 8 we show the serialization
graph for the scheduleS4 of Example 5. As one can see this graph has a cycle caused by theconflicts:
(w012

01 (y), w022
02 (y)) and(r021(y), w012

01 (y)). Hence this schedule is not in CP-CNO.
We use this graph characterization to determine if a schedule S is in CP-CNO or not. We show in

Theorem 30 that a scheduleS is in CP-CNO if and only if the serialization graph constructed is acyclic. We
prove this theorem using a series of lemmas and properties. The properties and lemmas from Property 15

22

Subgraph fort0

Subgraph fort023

Subgraph fort02

n01

n02
n03

n0231
n0232

n021 n022

n024n023

Figure 7: The serialization graph for the schedule in Example 4. Only the subgraphs of nested trans-
actions are show here.

23

n01

n02
n03

Figure 8: The serialization graph for the schedule in Example 5. Only the subgraph of the nested
transaction t0 is show here.

until Lemma 20 show that ifS is in CP-CNO thenS.optConfGraph is acyclic (forward direction of the
theorem).

Proposition 15 Consider a graphg1, which is a subgraph of another graphg2. If g1 is cyclic theng2 is
also cyclic. Formally,
〈(g1 ⊆ g2) ∧ (g1 is cyclic) ⇒ (g2 is cyclic)〉

From graph theory we get the above property. Next we get the following property and lemmas from
optConfGraphCons algorithm.

Property 16 Consider a scheduleS, and the corresponding graph,S.optConfGraph, constructed by opt-
ConfGraphCons algorithm. Let it contain two verticesvR (corresponding to the tree nodenR) and vS
(corresponding to the tree nodenS). If there is an edge fromvR to vS then the tree nodesnR andnS have
the same parent.

Lemma 17 Consider a serial scheduleSS, its serialization graphSS.optConfGraph constructed using
optConfGraphCons algorithm. Let it contain two verticesvR (corresponding to the tree nodenR) andvS
(corresponding to the tree nodenS). If there is an edge fromvR to vS then the last event ofnR in SS occurs
before the first event ofnS in SS.

Proof: From the construction ofSS.optConfGraph as observed in Property 16 we have that there is a
transactiontP which is the parent ofnR andnS. Now we have two cases depending on the type of edge
connecting fromvR to vS .

• Completion edge: From the definition of completion edge, we directly get thatSS.ord(SS.nR.last) <
SS.ord(SS.nS .f irst).

• Conflict edge: From the definition of conflict edge, we have that,
〈(∃mX ,mY : (mX ∈ SS.dSet(nR))∧(mY ∈ SS.dSet(nS))∧(SS.parent(nR) = SS.parent(nS))∧

(SS.optConf(mX ,mY)))
optConf

−−−−−−→
definition

((∃mX ,mY : (mX ∈ SS.dSet(nR))∧(mY ∈ SS.dSet(nS))∧

(SS.parent(nR) = SS.parent(nS)) ∧ (SS.ord(mX) < SS.ord(mY))〉
Applying Property 7 on this result we get thatSS.ord(SS.nR.last) < SS.ord(SS.nS .f irst)

24

✷

Lemma 18 For a serial scheduleSS, SS.optConfGraph is acyclic.

Proof: We will prove this using contradiction. LetSS.optConfGraph be cyclic. Let a cycle inSS.optConfGraph
be composed ofk vertices,vX1 → vX2 → ... → vXk → vX1. From Lemma 17 we get that,
(SS.ord(SS.nX1.last) < SS.ord(SS.nX2.f irst) < SS.ord(SS.nX2.last) < SS.ord(SS.nX3.f irst) <
... < SS.ord(SS.nX1.f irst) < SS.ord(SS.nX1.last)) ⇒ (SS.ord(SS.nX1.last) < SS.ord(SS.nX1.last))
This is not possible. HenceSS.optConfGraph cannot be cyclic. ✷

Lemma 19 Consider a scheduleS and a serial scheduleSS such that(S ≈oc SS). ThenS.optConfGraph
is a subgraph ofSS.optConfGraph. Formally,
〈(S ≈oc SS) ∧ (SS is serial) ⇒ (S.optConfGraph ⊆ SS.optConfGraph)〉

Proof: To prove this we have to show that, if(S ≈oc SS) then(S.optConfGraph.v = SS.optConfGraph.v)∧
(S.optConfGraph.e ⊆ SS.optConfGraph.e)).

From optConfGraphCons algorithm we get that every vertex inthe graph corresponds to a computation
tree node. Since(S ≈oc SS), the set of events and transactions ofS are the same asSS. Hence we get
(S.optConfGraph.v = SS.optConfGraph.v).

Coming to the edges, any edge inS.optConfGraph corresponds to either a completion or conflict edge
between peer nodes inS. From≈oc equivalence we get that these relationships also exist inSS. Hence these
edges also exist inSS.optConfGraph. Thus we have(S.optConfGraph.e ⊆ SS.optConfGraph.e).
This implies(S.optConfGraph ⊆ SS.optConfGraph). ✷

Lemma 20 Let S be a schedule for which there is a serial scheduleSS such that(S ≈oc SS). Then
S.optConfGraph is acyclic. Formally,
〈(S ≈oc SS) ∧ (SS is serial) ⇒ (S.optConfGraph is acyclic)〉

Proof: We will prove this using contradiction. LetS.optConfGraph be cyclic. We have,

(S ≈oc SS) ∧ (SS is serial) ∧ (S.optConfGraph is cyclic)

⇒ { Lemma 19}

(S.optConfGraph ⊆ SS.optConfGraph) ∧ (SS is serial) ∧ (S.optConfGraph is cyclic)

⇒ { Property 15}

(SS is serial) ∧ (SS.optConfGraph is cyclic)

⇒ { contrapositive of Lemma 18}

(SS is serial) ∧ (SS is not serial)

25

Here we have a contradiction. HenceS.optConfGraph is acyclic. ✷

Next we show that for a given scheduleS, if its serialization graph is acyclic thenS is in CP-CNO (the
reverse direction of Theorem 30). This is shown in properties, lemmas Lemma 21 to Lemma 29.

We give an algorithm for generating conflict preserving serial schedule fromS.optConfGraph if it
is acyclic. We call thisexpander algorithm. The expander algorithm separates the disjoint sub-graphsof
S.optConfGraph. For a transactiontX , a subgraph denoted asgX is constructed by taking all the nodes
corresponding totX ’s children nodes and the edges between them. To construct the final schedule the
expander algorithm works withxschedules. A xschedule is like a normal schedule but also has transaction
operations in its event set. Similar to a schedule all the events in a xschedule are totally ordered. When a
xschedule has no transaction operations in it, then it is same as a normal schedule. For a transactiontX , a
subgraph denoted asgX = tX .subGraph(S) is constructed as follows:

Initialize a xscheduleXS to t0

1 Parse the xscheduleXS. Perform the following actions when each of the following isencountered:

1.1 TransactiontN : Replace this transaction with all its child operations, followed bytN ’s commit-
write set andtN ’s terminal operation. The order oftN ’s children is given by a topological sort
obtained from the graphgN = tN .subGraph(S).

1.2 Memory and Terminal operations: Nothing needs to be done.

2 Repeat the above step until the serial scheduleXS contains only memory and terminal operations.

When the expander algorithm starts, the xscheduleXS has only one transactiont0 in it. Then expander
algorithm recursively replaces any transaction operationinXS with its children, its commit-write operations
and its terminal operation untilXS has no more transactions in it. We denote the various changesin the
xschedule by subscriptingXS. The expander algorithm starts withXS0, working throughXS1, XS2 and
so on until it reaches the final scheduleXSf . We denote the final scheduleXSf asRS (resultant schedule).

The topological sorts of the various subgraphs obtained by applying this algorithm onS3.optConfGraph
of Example 4:
g0 : t01t03t02
g01 : t011t012
g02 : t022t023t021t024
g021 : t0211t0212t0213
g023 : t0231t0232
g0231 : t02311t02312
g0232 : t02321t02322t02323
g024 : t0241t0242t0243
g03 : t031t032t033

The resultant schedule is:
S6 : r011(x)w012(y)w

012
01 (y)c01r031(y)r032(z)w033(d)w

033
03 (d)c03w022(x)r02311(x)w02312(y)w

02312
0231 (y)c0231

r02321(y)w02322(x)w02323(y)w
02322
0232 (x)w02323

0232 (y)c0232a023r0211(z)w0212(x)w0213(y)w
0212
021 (x)w0213

021 (y)c021
r0241(x)r0242(y)w0243(z)w

0243
024 (z)w021

02 (x)w021
02 (y)w024

02 (z)c02

Now we will prove if S.optConfGraph is acyclic then the resultant scheduleRS obtained is serial and
optConf equivalent to the original scheduleS.

26

Lemma 21 Consider aXSi that has two nodesnP , nQ such thatnP occurs beforenQ. Then inXSf (RS),
the last event ofnP , XSf .nP .last occurs before the first event ofnQ, XSf .nQ.f irst. Formally,
〈({nP , nQ} ⊆ XSi.evts : XSi.ord(nP) < XSi(nQ)) ⇒ (XSf .ord(XSf .nP .last) < XSf .ord(
XSf .nQ.f irst))〉

Proof: This is can be easily proved using induction on the distance betweennP , nQ inXSi: δ = |XSi.ord(nP)
−XSi.ord(nQ)|. ✷

One can see the following property aboutRS.

Property 22 Consider a scheduleS such thatS.optConfGraph is acyclic. Then the resultant scheduleRS
satisfies validity of transaction limits i.e. after a transaction terminates no operation (memory or terminal)
belonging to it should execute

In the next lemma we describe the relationship between edgesin a graph ofS.optConfGraph and the
resultant scheduleRS.

Lemma 23 Consider a scheduleS with the graphS.optConfGraph being acyclic. Let there be two ver-
tices invP , vQ in it corresponding to tree nodesnP , nQ. If there is an edge fromvP to vQ then inRS the
last event ofnP occurs before the first event ofnQ. Formally,
〈vP , vQ ⊆ S.optConfGraph.v, ei ∈ S.optConfGraph.e : (ei connectsvP to vQ) ⇒ (RS.ord(RS.nP .last) <
RS.ord(RS.nQ.f irst))〉

Proof: From our construction ofS.optConfGraph, we get thatnP , nQ are peers. Let these nodes be
children of a transactiontN in the computation tree. Let the subgraph corresponding totN be gN =
tN .subGraph(S). When the expander algorithm encounterstN in some xscheduleXSj and parses, it
replacestN by all its children, followed bytN ’s commit-write set andtN ’s terminal operation. The ordering
among the child nodes is given by topological sort ofgN .

Since there is an edge fromvP to vQ in S.optConfGraph, the expander algorithm ensures thatvP
occurs beforevQ in the topological sort ofgN . Hence inXS(j+1), the expander algorithm placesnP before
nQ. Combining this result with Lemma 21, we get that inRS the last event ofnP occurs before the first
event ofnQ. ✷

Next we show thatRS satisfies each of the conditions mentioned in the definition of CP-CNO.

Property 24 If S.optConfGraph is acyclic thenRS contains the same events asS. Formally,
〈(S.optConfGraph is acyclic) ⇒ (S.evts = RS.evts)〉

This property directly follows from the observation that the expander algorithm does not alter the computa-
tion tree. It only alters the schedule of the memory operations.

Property 25 If S.optConfGraph is acyclic thenRS is serial.

This property follows directly from the working of expanderalgorithm.

Lemma 26 Consider a scheduleS such thatS.optConfGraph is acyclic. LettX be a transaction inS
with childrennP andnQ. If nP occurs beforenQ in S thennP also occurs beforenQ in RS. Formally,
〈S : tX ∈ S.nodes, {nP , nQ} ⊆ S.children(tX) : ((S.optConfGraph is acyclic) ∧ (nP <S nQ)) ⇒
(nP <RS nQ)〉

27

Proof: From the construction ofg = S.optConfGraph we can see that it contains two verticesvP (cor-
responding tonP) andvQ (corresponding tonQ). If (nP <S nQ) then ing there is an edge fromvp (the
vertex corresponding tonP) to vq (the vertex corresponding tonQ). Combining this with Lemma 23 we get
that(RS.ord(RS.nP .last) < RS.ord(RS.nQ.f irst)) which implies that(nP <RS nQ). ✷

Lemma 27 Consider a scheduleS with two memory operationsmX ,mY such thatS.optConf(mX ,mY)
is true. IfS.optConfGraph is acyclic then inRS, mX occurs beforemY . Formally,
(S.optConfGraph is acyclic) ∧ S.optConf(mX,mY) ⇒ (RS.ord(mX) < RS.ord(mY))

Proof: From the definition of optConf, we get that there exist two peer nodesnP , nQ such thatmX is in
nP ’s dSet andmY is in nQ’s dSet. From the construction ofg = S.optConfGraph we can see that it
contains two verticesvP (corresponding tonP) andvQ (corresponding tonQ) and there is an edge between
vP andvQ. Now the argument is similar to the proof of Lemma 26. Due to the presence of an edge, from
Lemma 23 we get that(RS.ord(RS.nP .last) < RS.ord(RS.nQ.f irst)). Hence,mX occurs beforemY

in RS. ✷

Lemma 28 Consider a scheduleS such thatS.optConfGraph is acyclic. Then the lastWrite for every
read operation inS is the same as inRS. Formally,
〈S.optConfGraph ⇒ (∀rX ∈ S.evts : (S.lastWrite(rX) = RS.lastWrite(rX))〉

Proof: The proof is very similar to Theorem 14. ✷

Lemma 29 Consider a scheduleS with two memory operationsmX ,mY such thatS.optConf(mX ,mY)
is true. IfS.optConfGraph is acyclic thenRS.optConf(mX,mY) is true as well. Formally,
〈(S.optConfGraph is acyclic) ∧ S.optConf(mX ,mY) ⇒ RS.optConf(mX,mY)〉

Proof: From Property 24, we get that all the events inRS is same asS. Thus their computation trees are
the same. Further from Lemma 28, we get that all the lastWrites for every read are same inS andRS. Let
us consider each case of conflict:

• mX = wX , mY = rY : This case implies that there exist two peer nodesnP , nQ such thatwX is nP ’s
commit-write andrY is nQ’s external-read inS. Since the computation trees ofS andRS are the
same and the lastWrites for every read are the same we have that wX is nP ’s commit-write andrY is
nQ’s external-read inRS as well. From Lemma 27, we get thatwX occurs beforerY in RS. These
are the conditions forwX andrY to be in optConf inRS. Hence,wX , rY are in optConf inRS as
well.

• mX = rX , mY = wY : The argument is the same as above.

• mX = wX , mY = wY : Here,wX andwY are peers inS. Since the computation trees ofS andRS
are the same,wX andwY are peers inRS as well. From Lemma 27, we get thatwX occurs before
wY in RS. Hence,wX , wY are in optConf inRS as well.

Thus, in all the cases we get thatRS.optConf(mX ,mY) is true. ✷

Finally we have,

28

Theorem 30 A scheduleS is in CP-CNO iff if the conflict graphS.optConfGraph is acyclic. Formally,
(S ∈ CP-CNO) ⇔ (S.optConfGraph is acyclic)

Proof: We will prove each direction.

(⇒) (S ∈ CP-CNO) ⇒ (S.optConfGraph is acyclic):

Here we have that,

(S ∈ CP-CNO)
CP−CNO
−−−−−−→
definition

((S ≈oc SS) ∧ (SS is serial))
Lemma 20
−−−−−−→ (S.optConfGraph

is acyclic)

(⇐) (S.optConfGraph is acyclic) ⇒ (S ∈ CP-CNO):

SinceS.optConfGraph is acyclic, the expander algorithm generates a scheduleRS. From Prop-
erty 25 we get thatRS is serial. Next we will prove each of the conditions requiredby the definition
of CP-CNO.

– Event Equivalence: From Property 24 we get that,
((S.evts = RS.evts) ∧ (S.nodes = SS.nodes)).

– schedule-partial-order Equivalence: From Lemma 26, we getthat,
〈S : tX ∈ S.nodes, {nP , nQ} ⊆ S.children(tX) : (nP <S nQ) ⇒ (nP <RS nQ)〉

– optConf Implication: From Lemma 29, we get that,
〈S : ({mX ,mY } ⊆ S.evts) : (S.optConf(mX ,mY)) ∧ (S.optConfGraph is acyclic) ⇒
(RS.optConf(mX ,mY))〉.

This proves all the requirements for CP-CNO.

✷

This proof shows that checking the membership of CP-CNO can be done in polynomial time since checking
for acyclicity can be done in polynomial time.

4 Extensions to Closed Nested Opacity

In the previous section we developed a polynomial time verifiable characterization of CP-CNO, a subclass
of CNO (Theorem 30). In this section we will develop some extensions to CNO.

4.1 Drawback of CNO

Given a schedule with aborted transactions, opacity specifies that the read operations of aborted transac-
tions also read consistent values. To ensure that no transaction reads from an aborted transaction, aborted
transactions are treated as read-only transactions. A given schedule is said to be opaque if there exists a
serial schedule equivalent to it. In this way the current specification of opacity ensures that the reads of all
transactions (including aborted transactions) are consistent and the writes of aborted transactions are hidden
from other transactions. Class CNO extends opacity to nested transactions, treating aborted sub-transactions
in the same manner.

Consider the following transactions,

29

Transaction 1 t01
1: ready
2: write y
3: write z

Transaction 2 t02
1: readd
2: invoket022
3: invoket023

Transaction 3 t022
1: ready
2: readz
3: write d

Transaction 4 t023
1: readp
2: readz
3: write z

For this example, let the transactionst01, t02 execute in an interleaved manner. Let the following partial
schedule represent the execution of these transactions. Inthis partial schedule, transactions do not have
terminal operations. A STM scheduler on receiving these events in this order will decide to abort or commit
the transactions.

Example 6 t0 : {tinit, t01, t02, tfin},
t01 : {sm011 = r011(y), sm012 = w012(y), sm013 = w013(z)},
t02 : {sm021 = r021(d), t022, t023},
t022 : {sm0221 = r0221(y), sm0222 = r0222(z), sm0223 = w0223(d)},
t023 : {sm0231 = r0231(p), sm0232 = r0232(z), sm0233 = w0233(z)},

Schedule:
S7 : r011(y)r021(d)w012(y)r0221(y)w013(z)r0222(z)w0223(d)r0231(p)r0232(z)w0233(z)

Consider a schedulerH based on the class CP-CNO (and hence the class CNO) which schedules these
events. The scheduler is invoked on-demand basis. When a transaction wishes to perform a read operation or
wishes to commit, it invokes the scheduler. On being invoked, the scheduler looks at the current operation
(either read or commit operation) with the history of eventsalready executed. Using all these events it
constructs a serialization graph based on optConf and checks for acyclicity. If the graph is acyclic, then the
scheduler allows the current operation to execute. Otherwise it does not allow the operation to execute and
aborts the corresponding transaction.

In the given schedule, the scheduler allows all the events till the transactiont01 commits. None of these
events form a conflict cycle. Thus the schedule of the events are:
r011(y)r021(d)w012(y)r0221(y)w013(z)w

012
01 (y)w013

01 (z)c01
Then, let the next event to be executed ber0222(z) belonging tot022. In between the reads of the variables
y andz by the transactiont022, the transactiont01 updates these variables. Thus a conflict cycle is formed
between the transactionst01 andt02 in the serialization graph and hence this schedule is not in CP-CNO. As
a result the scheduler will abort the transactiont022. Further it can be verified that this schedule is not in the
class CNO as well.

Next the events of the transactiont023 execute as shown in the schedule. The read operationr0231(p) is
allowed by the scheduler. The next event to execute is a read operationr0232(z). But the schedulerH will
not allow this event to execute as it causes a conflict cycle. It can be seen that the read operationr0221(y)
by the transactiont022 has been performed before the transactiont01 commits. But the readr0232(z) is
performed aftert01 commits and the lastWrite ofr0232(z) is w012

01 (z). Due to these operations, a cycle is

30

tfin

t0

tinit

t01

r011(y)
w012(y)

r021(d)

w013(z)

t02

t022

r0231(p)
r0232(z) w0233(z)

t023

r0222(z)
w0223(d)

r0221(y)

Figure 9: The tree for Example 6

formed in the serialization graph between the nodest01 andt02. Even though the transactiont022 has been
aborted, its read operation still causest023 to abort. Thus, this schedule of eventsS7 is not in CP-CNO.
This schedule is not in CNO as well. For this schedule to be accepted by the scheduler, no sub-transaction
of t02 starting aftert022 has aborted can read any of the data-items written byt01. In the worst case all the
sub-transactions oft02 starting aftert022 could abort due tor0221(y) which effectively implies thatt02 is
aborted as well. This shows that the read of an aborted sub-transaction can cause its top-level transaction to
abort.

Thus with CNO, an aborted sub-transaction can severely restrict the concurrency of nested transactions.
An aborted transaction affects the transactions that follow it. But ideally we would want an aborted trans-
action to have no affect on the transactions that follow it. To address this shortcoming, we formulate a
new correctness criterion calledAbort-Shielded Consistencyor ASC. This criterion is based on the notion
of sub-schedules. Next, we will describe a few notations which we will later use to describe the correctness
criterion.

4.2 Notations

For a transactiontX in S we denote the terminal operations of all the sub-transactions in tX ’s dSet by
terminal operation orS.termOp(tX). We denoteS.schOps(tX) as the set of operations inS.dSet(tX)
which are also present inS.evts along with the set of terminal operations. Formally,S.schOps(tX) =
(S.dSet(tX) ∩ S.evts) ∪ S.termOp(tX).

We define two functions for a commit-write operation. IfwX is a commit-write operation inS, then
S.orgWrite(wX(d)) denotes the original simple-write ofwX(d). Let the holder of the commit-writewX be
nX . Then functionS.baseWrite(wX(d)) denotes the corresponding commit-write or simple-write ond in

31

the child transaction ofnX . For example inS7 of Example 6, for the commit-writew022
02 (d), the baseWrite

is w0223
022 (d) and the orgWrite isw0223(d). For the commit-writew0223

022 (d), the baseWrite and orgWrite are
w0223(d). Thus the orgWrite is always a simple-write whereas the baseWrite can be either a commit-write
or a simple-write.

We define a few notations based on aborted transactions in a schedule. Consider a scheduleS, with a
transactiontX . We denoteS.abort(tX) as the set of all aborted transactions intX ’s dSet. IftX is an aborted
transaction thenS.abort(tX) containstX as well. FortX , we defineS.prune(tX) as all the events in the
schOps oftX after removing the events from all the aborted transactionsin tX ’s dSet. Formally,
S.prune(tX) = {S.schOps(tX)− (

⋃

tA∈S.abort(tX)

S.schOps(tA))}

Intuitively this function denotes the schOps remaining intX after pruning all the aborted transactions
from it. If tX has no aborted transaction in its dSet thenS.prune(tX) is same asS.schOps(tX). If tX is an
aborted transaction thenS.prune(tX) is nil. Also for a schedule,S.prune(t0) denotes the schedule events
with only the committed transactions and no aborted transaction.

To capture all the pruned descendants of an aborted transaction we define chrnPruned (children-pruned)
function. For a transactiontX (either committed or aborted),
S.chrnPruned(tX) = {

⋃

tY ∈S.children(tX)

S.prune(tY) ∪ S.cwrite(tY)}

It must be noted that for a committed transactiontX , S.prune(tX) is same asS.chrnPruned(tX).
For a nodenP , its anscTermSetdenoted asS.anscTermSet(nP) is the set of terminal operations of all

its ancestors in the schedule. We denote a node as acommitted nodeif it is either a committed transaction
or a simple-memory operation.

4.3 Sub-Schedules

Now we will formally define the notion of sub-schedules. Given a well-formed scheduleS a sub-schedule
subS should satisfy:

• subS.evts ⊆ S.evts

• subS.ord ⊆ S.ord

It was observed earlier that the events of scheduleS constitute a computation tree with the events being
the leaves. The same property applies tosubS as well.

Consider a sub-schedulesubS of a scheduleS. Since the events insubS could be a random subset
of events of aS, it may not signify anything. ForsubS to be meaningful it must be well-formed. The
conditions of well-formedness defined in Section 2.4 for schedules also apply to sub-schedules. The set of
events of the sub-schedule is a subset of the events inS, a well-formed schedule. Since the order of events in
the sub-schedulesubS is same as the order of the events in theS, after a transaction terminates no operation
belonging to it executes. This is the condition (1), validity of transaction limits, of the well-formedness
requirement.

A read operation in a sub-schedule is valid if it reads its lastWrite value ofS which is condition (2) of
well-formedness. Thus for any read operation in a sub-schedule, its lastWrite inS should also be insubS.
In addition to this, for any memory operationmX in subS, all the memory operations thataffectmX in S
should also be insubS. This requirement is calledcausalityof events. We say thatsubS is causally complete
w.r.tmX if it contains all the events that affectmX in S. Now we define a few functions to formally define
the affects relationship. First, we define a functionisUsefulbetween two memory operations. This function

32

defines when one memory operation is useful to another memoryoperation. It is similar toimmediately-
useful-torelation of [18]. For two memory operationsmY ,mX in S, it is denoted asS.isUseful(mY ,mX):

1. mY = wY ,mX = rX : wY is the lastWrite ofrX thenS.isUseful(wY , rX) is true

2. mY = rY ,mX = wX , wherewX is a simple-write: If there exists a nodenP such thatnP is optVis
to wX , nQ is a peer ofnP with wX is in nQ’s dSet,nP occurred beforenQ in S, rY is in the pruned
set ofnP andrY is an external-read ofnP thenS.isUseful(rY , wX) is true. Formally,
〈∃nP ,∃nQ : (nP , nQ are peers) ∧ (nP <S nQ) ∧ (rY ∈ S.prune(nP)) ∧ (S.lastWrite(rY) /∈
S.dSet(nP)) ∧ (wX ∈ S.dSet(nQ)) ⇒ S.isUseful(rX , wY)〉

3. mY = rY ,mX = wX , wherewX is a commit-write: LetS.orgWrite(wX) bewZ , the corresponding
simple write. ThenS.isUseful(rY , wX) is true whenS.isUseful(rY , wZ) is true

A read operation’s lastWrite affects the read operation. Hence it is useful to the read operation. Consider
a simple-write operation,wX , and a read operationrY . If the read is its peer and occurs before it in the
schedule thenrY affectswX . Consider another scenario. LetnP andnQ be two peer nodes such thatnP

occurs beforenQ in S. Let wX be innQ’s dSet. HencenP is optVis towX . If rY is in the pruned set
of nP and is an external-read ofnP then it affectswX . The same idea can be extended towX if it is a
commit-write. HencerY is useful towX . Thus, from the definition of isUseful we get that ifmY is useful
tomX , thenmY occurs beforemX in S.

In the scheduleS7, S7.isUseful(w013
01 (z), r0232(z)) is true, sincew013

01 (z) is the lastWrite ofr0232(z).
ThenS7.isUseful(r011(y), w013(z)) andS7.isUseful(r011(y), w

013
01 (z)) are true sincer011 <S7 w013,

w013 is the simple-write forw013
01 andr011(d) being a simple-memory operation is an external-read of itself.

Based on isUseful function, for a given memory operationmX in S, we define the setusefulMemOps
which consists of all memory operations that are useful tomX ,
S.usefulMemOps(mX) = {mY |S.isUseful(mY ,mX)}

Next based on the notion of usefulMemOps, we identify a set ofnodes that are useful to a memory
operationmX in S. It consists of all the nodes that are optVis tomX and have at least one memory
operation in their pruned sets which is useful tomX . We call this set asusefulNodes. Formally,
S.usefulNodes(mX) = {nY |S.optV is(nY ,mX)∧ (S.prune(nY)∩S.usefulMemOps(mX) 6= nil)}
It can be verified that any node in the usefulNodes set of a memory operationmX terminates beforemX in
the schedule.

Next we define a functiontransUsefulNodesthat computes all nodes that are directly and transitively
useful to a memory operationmX . This is recursively defined and uses usefulNodes as the basecase.

S.transUsefulNodes(mX) = (S.usefulNodes(mX))∪

(
⋃

nY ∈S.usefulNodes(mX)∧mY ∈S.prune(nY)

S.transUsefulNodes(mY))

Thus any node that is useful to a memory operation is also transitively useful to it. It must also be noted
that if a transaction is aborted, then it cannot be useful or transitively useful to any memory operation. Thus
we have the lemma,

Lemma 31 If a nodenZ is useful to some memory operationmX in S, then the nodenZ is a committed
node. Formally,
〈nZ ∈ S.transUsefulNodes(mX) ⇒ nZ is a committed node〉

33

Proof: This can be proved using induction over the schDist of the last event ofnZ frommX . The base case
of the induction is whennZ is in the usefulNodes set ofmX . ✷

The notion committed node is defined in Section 4.2. Similar to usefulNodes, it can be proved that all the
nodes in the set transUsefulNodes terminate beforenX in S.

Using the set transUsefulNodes we will construct the set usefulSchEvts for a memory operationmX . It
consists of all the pruned operations from all the nodesmY that are transitively useful tonX . Formally,
S.usefulSchEvts(mX) = {(

⋃

nY ∈S.transUsefulNodes(mX)

S.prune(nY))}

Using usefulSchEvts we can formally define affects relationship. A memory operationmY affects another
memory operationmX if mY is in the usefulSchEvts set ofmY . Formally,

S.affects(mY ,mX) =

{

true (mY ∈ S.usefulSchEvts(mX))

false otherwise
Having formally defined the affects function, we state the requirements for the well-formedness of any

sub-schedule:

1. Causality Completeness: For any memory operationmX present in a sub-schedulesubS of a schedule
S, the sub-schedule should also contain all the memory operations that affectmX . Formally,
〈mX ∈ subS.evts ⇒ S.usefulSchEvts(mX) ∈ subS.evts〉

Consider a sub-schedulesubS of a scheduleS that is causally complete. With this definition of causal-
ity completeness, we get that if a commit-write operationwX is in subS then the baseWrite ofwX ,
S.baseWrite(wX) is also insubS. If wX ’s baseWrite is another commit-write then its baseWrite is also
in subS. Following the baseWrites recursively which terminates inwX ’s orgWrite, we get that it is also
included insubS.

Having described the usefulSchEvts w.r.t a memory operation, we next extend this notion to transactions
as well (and nodes). Consider a nodenX in a schedule. For this node we define usefulSchEvts as the union
of usefulSchEvts of all the memory operations in the pruned set ofnX . Formally,
S.usefulSchEvts(nX) = {(

⋃

mY ∈S.chrnPruned(nX)

S.usefulSchEvts(mY))}

In addition to causality, we also require that for every transaction present in a sub-schedule, its terminal
operation is also present in it. This clearly indicates whena transaction completes.

2. Transaction termination: Consider a sub-schedulesubS of a scheduleS. If the subS contains events
from a transactiontX then it also contains the terminal operation oftX in its set of events. Formally,
〈tX ∈ subS.evts ⇒ S.termOp(tX) ∈ subS.evts〉

It must be noted that by this characterization a transactionin a well-formed sub-schedule can have
its commit operation but none of its commit-write operations in the sub-schedule. The sub-schedule still
satisfies all the requirements of well-formedness. From causality completeness, we get the following lemma
on sub-schedules.

Lemma 32 Consider a scheduleS in CNO. LetsubS be a sub-schedule ofS that is causally complete.
Then, there exists a serial sub-schedulessubS that:

1. Sub-Schedule Event Equivalence: The events ofsubS andssubS are the same.

34

2. Schedule-Partial-Order Equivalence: For any two nodesnY , nZ that are peers in the computation
tree represented bysubS if nY occurs beforenZ in subS thennY occurs beforenZ in ssubS as well.

3. LastWrite Equivalence: For all read operations the lastWrites in subS andssubS are the same.

Proof: These properties follow directly from the definition of CNO.SinceS is in CNO, we get that there
exists a serial scheduleSS which has the same set of events asS. Removing all the events from the serial
schedule that are not insubS, we get that the resulting sub-schedule, denoted assubSS, has the same set of
events assubS and is serial. Further it can be seen that schedule-partial-order insubS is same assubSS.
This proves the conditions 1 and 2 above.

It must be noted that sinceS is in CNO, the lastWrites for every read inS andSS are the same. Since
subS is causally complete the lastWrite for every read operationof subS is also insubS. Similarly the
lastWrite for every read operation ofsubSS is also insubSS. Further from the construction ofsubSS, we
get that the lastWrite of every read insubSS is same as insubS. This proves the condition 3 above. Hence,
the lemma follows. ✷

4.4 Abort Shielded Consistency

In Section 4.1 we observed how an aborted transaction can affect the transactions following it. But ideally we
want an aborted transaction to have no effect on the transactions that follow it. By looking for a single serial
schedule involving all transactions, opacity limits concurrency. In this section, we present a class of sched-
ulesAbort-Shielded Consistencyor ASC, which define a correctness criterion in which an aborted transaction
does not affect the transactions that follow it. Then we presentConflict Preserving Abort-Shielded Consis-
tencyor CP-ASC, a subset of ASC based on optConf. The membership of CP-ASC can tested in polynomial
time. Using CP-ASC, we give the design of a scheduler CP-ASC-Sched for scheduling interleaving nested
transactions.

We consider the following scheduleS9 for illustrating this class.

Example 7 t0 : {tinit, t01, t02, t03, tfin},
t01 : {sm011 = r011(x), sm012 = w012(y), sm013 = w013(z), c01},
t02 : {sm021 = r021(b), sm022 = r022(z), sm023 = w023(d), c02},
t03 : {t031, t032, t033, c03},
t031 : {sm0311 = r0311(y), sm0312 = w0312(b), a031},
t032 : {sm0321 = r0321(d), sm0322 = r0322(z), a032},
t033 : {sm0331 = r0331(y), sm0332 = r0332(d), sm0333 = w0333(x), c033},

Schedule:
S9 : r011(x)r0311(y)w012(y)r021(b)w013(z)w

012
01 (y)w013

01 (z)c01r022(z)w0312(b)a031r0321(d)w023(d)w
023
02 (d)

c02r0322(z)a032r0331(y)r0332(d)w0333(x)w
0333
033 (x)c033w

033
03 (x)c03

In this schedule,r0311(y) reads fromtinit, whereasw012
01 (y) of t01 writes iny. But r0322(z) reads from

w013
01 (z) of t01. Thus between two external-reads oft03, we havet01’s updates. Hence there is no serial

schedule equivalent to it. As a result it is not in CNO. The optConf serialization graph for this schedule is
shown in Figure 11 which shows thatS9 is not in CP-CNO.

Consider a scheduleS with an aborted transactiontA. If the aborted transaction should not affect the
transactions following it, thentA should be dropped from the schedule while considering the correctness of

35

tfin

t0

tinit

r011(x)

t02

w023(d)

t03
t01

t032

r0322(z)

a032

r0321(d)

c02
t033

r0332(d)

t031

r0311(y)
w0312(b)

a031
w013(z)

c01

r022(z)

r0331(y)
w0333(x)

c033

c03

r021(b)w012(y)

Figure 10: Computation tree for Example 7

v03

v01 v02
v032 v033

v031

Figure 11: The graph shows the CP-CNO conflict graph forS9

36

the remaining transactions. Generalizing this idea to all aborted transactions, we construct a sub-schedule
which consists of events only from committed transactions (sub-transactions) and no event from any aborted
transaction. It does not contain events from committed transactions that are sub-transactions of aborted
transactions as well. Thus, the sub-schedule consists of all the events fromS.prune(t0). For simplicity we
will denote this sub-schedule ascommitSubSch0. Then we check for the correctness ofcommitSubSch0.
This idea is similar to verifying the consistency of committed transactions in virtual worlds consistency [8].

As explained in [5], it is necessary that each aborted transaction tA also reads consistent values. To
ensure this, we construct a sub-schedule ofS denoted aspprefSubSchA (pruned prefix sub-schedule) for
tA. For this, we consider the prefix of all the events untiltA’s abort operation. From this prefix we construct
the sub-schedule by removing (1) events from transactions that aborted earlier and (2) events of any aborted
sub-transaction oftA. Thus, the sub-schedule consists of events from transactions that committed before
tA and events from live transactions, i.e., transactions thathave not yet terminated whentA is aborted. The
ordering among the events is same as in the original scheduleS.

Finally, for every live transaction which including the ancestors oftA, we add a commit operation after
tA’s abort operation to the sub-schedule. But we do not add the commit-writes for these transactions. The
ordering among the commit operations is such that an ancestor’s commit operation is added only after all
its children’s commit operations (which are also ancestorsof tA) have been added. This ensures that well-
formedness of the sub-schedule is maintained. By adding thecommit operations, we ensure that all the
transactions in the sub-schedule have a terminal operation. Then we look for the correctness of this sub-
schedule. InS9, for the aborted transactiont031, pprefSubSch031 is:
r011(x)r0311(y)w012(y)r021(b)w013(z)w

012
01 (y)w013

01 (z)c01r022(z)w0312(b)a031c02c03.
Similarly the sub-schedules for every aborted transactioncan be constructed.

The set of pprefSubSchs for the scheduleS9 are,
commitSubSch0 = r011(x)w012(y)r021(b)w013(z)w

012
01 (y)w013

01 (z)c01r022(z)w023(d)w
023
02 (d)c02r0331(y)

r0332(d)w0333(x)w
0333
033 (x)c033w

033
03 (x)c03

pprefSubSch031 = r011(x)r0311(y)w012(y)r021(b)w013(z)w
012
01 (y)w013

01 (z)c01r022(z)w0312(b)a031c02c03
pprefSubSch032 = r011(x)w012(y)r021(b)w013(z)w

012
01 (y)w013

01 (z)c01r022(z)r0321(d)w023(d)w
023
02 (d)c02

r0322(z)a032c03
From the definition of pprefSubSch we can prove that pprefSubSchs are causally complete stated in the

following lemma,

Lemma 33 For every aborted transactiontA in S, the sub-schedulepprefSubSchA is causally complete.

Proof: This follows from the construction of pprefSubSch. The sub-schedulepprefSubSchA contains
events either from transactions that committed beforetA or transactions that have not yet terminated. Thus,
all the events that affectstA are inpprefSubSchA. Hence it is causally complete. ✷

For a scheduleS, we define a set of well-formed sub-schedules denoted assubSchSet. It consists of
the following sub-schedules:

1. The sub-schedulecommitSubSch0 is in subSchSet . Formally,
〈commitSubSch0 ∈ subSchSet〉

2. For every aborted transactiontA in S, there exists a pprefSubSch,pprefSubSchA in subSchSet,
〈∀tA : pprefSubSchA ∈ subSchSet〉

Using subSchSet, we define a class of schedules,Abort-Shielded Consistencyor ASCas:

37

Definition 6 A scheduleS belongs to ASC class if for every sub-schedulesubS in the setsubSchSet of S,
there exists a serial sub-schedulessubS such that:

1. Sub-Schedule Event Equivalence: The events ofsubS andssubS are the same. Formally,
〈subS.evts = ssubS.evts〉

2. schedule-partial-order Equivalence: For any two nodesnY , nZ that are peers in the computation tree
represented bysubS if nY occurs beforenZ in subS thennY occurs beforenZ in ssubS as well.
Formally,
〈tX : {nY , nZ} ⊆ subS.children(tX) : (nY <subS nZ) ⇒ (nY <ssubS nZ)〉

3. lastWrite Equivalence: For all read operations the lastWrites in subS andssubS are the same. For-
mally,
〈∀rX ∈ subS : subS.lastWrite(rX) = ssubS.lastWrite(rX)〉

Similarly using pprefSubSch we define an extension to CP-CNO, Conflict Preserving Abort Shielded
Consistencyor CP-ASC. It differs from the definition of the class ASC only in the case 3 as:

3. optConf Implication: If two memory operations insubS are in optConf then they are also in optConf
in ssubS. Formally,

〈∀mY ,∀mZ : {mY ,mZ} ⊆ subS.evts : (subS.optConf(mY ,mZ) ⇒

ssubS.optConf(mY ,mZ))〉

For this class, we get the following lemmas

Lemma 34 If a scheduleS is in CNO then it is also in ASC. Formally
〈CNO ⊂ ASC〉

Proof: Consider a scheduleS in CNO. Then, from the definition of CNO we get that there exists a serial
scheduleSS such that the lastWrites ofS andSS are the same. Thus for any sub-schedulesubS of S that
is causally complete, there exists a serial sub-schedulessubS that is serial and has the same lastWrites of
subS, by Lemma 32.

To prove thatS is also in ASC, we have to prove that,

• For commitSubSch0, there exists a serial sub-schedule, namelycommitSerSubSchSS0: It must
be noted thatcommitSubSch0 is a sub-schedule ofS and is causally complete. SinceS is in CNO,
from Lemma 32 we get that there exists a serial sub-schedulecommitSerSubSchSS0.

• The sub-schedulepprefSubSchA for every aborted transaction,tA has an equivalent serial sub-
schedule: From Lemma 33 we get that the sub-schedulepprefSubSchA is causally complete. Hence
the reasoning for this case is same as the above case.

This completes the proof. ✷

It can be verified that scheduleS9 is in ASC but not in CNO. Hence, the class CNO is a strict subsetof
ASC.

Lemma 35 If a scheduleS is in CP-ASC then it is also in ASC. Formally
〈CP-ASC⊂ ASC〉

38

Serialization Graph for Serialization Graph for Serialization Graph for

n031
n032

n01
n01 n02

n03

n01 n02

n03

pprefSubSch033pprefSubSch031 commitSubSch0

n033

n02

n03

Figure 12: The serialization graphs for the schedule in Example 7. This shows that this schedule is in
CP-ASC

Proof: The proof is similar to Theorem 14. ✷

It can be seen that verifying whetherS is in CP-ASC or not can be done in polynomial time. From the
scheduleS, the sub-schedulescommitSubSch0 andpprefSubSchA for every aborted transactiontA are
constructed. Then for each sub-schedule, the serialization graph is constructed using optConfGraphCons
algorithm based on optConf. If all the graphs constructed are acyclic, then the scheduleS is in CP-ASC.
The equivalent serial sub-schedules for the sub-schedulesis constructed from the graphs using the expander
algorithm.

For the scheduleS9 of Example 7, the set of serialpprefSerSubSchs are as follows where
commitSerSubSchSS0 is the serial sub-schedule corresponding tocommitSubSch0,
commitSerSubSchSS0 = t01t02t03 = r011(x)w012(y)w013(z)w

012
01 (y)w013

01 (z)c01r021(b)r022(z)w023(d)
w023
02 (d)c02r0331(y)r0332(d)w0333(x)w

0333
033 (x)c033w

033
03 (x)c03

pprefSerSubSch031 = t03t01t02 = r0311(y)w0312(b)a031c03r011(x)w012(y)w013(z)w
012
01 (y)w013

01 (z)c01
r021(b)r022(z)c02
pprefSerSubSch032 = t01t03t02 = r011(x)w012(y)w013(z)w

012
01 (y)w013

01 (z)c01r0321(d)r0322(z)a032c03
r021(b)r022(z)w023(d)w

023
02 (d)c02

The CP-ASC serialization graphs are shown in Figure 12.

4.5 CP-ASC-Sched: A scheduler based on CP-ASC

In this section we give the outline of a scheduler, called as CP-ASC-Sched (CP-ASC Scheduler) which
implements the class CP-ASC. When a transaction wants to read, write or commit, it sends the request
to the scheduler CP-ASC-Sched. The scheduler on receiving arequest from a transaction, checks with
the previously committed and live transactions to see if therequest maintains the consistency. If it does,
then CP-ASC-Sched allows the request to proceed. Otherwiseit does not allow the request to proceed and
aborts the corresponding transaction. Consistency is checked by adding the appropriate conflict edges in the

39

conflict graph and checking for its acyclicity.
The scheduler maintains a conflict graph for each transaction tP , denoted asGP . The scheduler CP-

ASC-Sched implements CP-ASC using optConfGraphCons algorithm (described in Section 3.3) as follows:

1. On receiving a request from a transactiontP to invoke a new transactiontS , a nodevS is created in
GP . Then CP-ASC-Sched adds completion edges from all the peersof tS that have terminated earlier
to vS

2. On receiving a read requestrX(d) from a transactiontP , CP-ASC-Sched creates a nodevX for rX in
GP and adds completion edges from all the peer nodes ofrX that completed before it. LetrX ’s last-
Write bewL, wL be a commit-write of a nodenL (either a transaction or simple-memory operation)
andwL’s parent betQ (tQ is same astP if wL is a peer ofrX). Also letnK be a peer node ofnL in
whose dSet is the readrX is contained. Then CP-ASC-Sched adds a w-r conflict edge fromvL to vK
in GQ. Then, the readrX is stored as an external-read in all its ancestors starting from tP ending at
nK .

3. On receiving a write requestwY (d) from a transactiontP , CP-ASC-Sched adds a nodevY in the
graph. Then it adds completion edges from all the peers ofwY that have completed before it. For
any peer nodenZ of wY that has an external-readrX(d), a r-w conflict edge is added fromvZ to vY
in GP . Similarly for any peer nodenT that has a commit-writewT (d) a w-w conflict edge is added
from vT to vY .

4. TransactiontP on receiving a request to commit from a transactiontX , CP-ASC-Sched adds r-w and
w-w conflict edges w.r.t the commit-writes oftX (similar to step 3). It adds these edges betweennX

and its corresponding peers inGP .

After adding the edges, CP-ASC-Sched checks if these edges form a cycle inGp. If no cycle is formed,
then the requested action of the transaction is permitted. Otherwise, the requested action is not permitted.
The corresponding transactiontP (or tX) and all its live descendant transactions are aborted (the status of
committed sub-transactions of the aborted transaction remain unchanged). The vertex and edges oftP are
removed from the graph. All the reads intP ’s dSet that are stored as external-reads in its ancestors are
removed. In this way, an aborted transaction does not affectany other transaction that follows it. With this
implementation, we get that any schedule accepted by CP-ASC-Sched is also in CP-ASC.

We note that the scheduler can be implemented in a completelydistributed manner. The different com-
ponents of the graph can be maintained by different processes. It is not necessary for any single process to
have the global information. A more detailed version of thispaper can be found in [15].

5 Discussion

5.1 A Simpler Conflict Notion

Having described the idea of optConf, in this subsection we will discuss a variant to the conflict notion.
As discussed earlier (in Section 2.4), a read operation can read from the value written by a write operation
only if the write is optVis to the read. Based on this observation, one can come up with a simpler notion of
conflict between any arbitrary read and a write operation based only on optVis. This conflict notion does not
concern if a given read operation is an external-read or not.We call such a conflict asvConf.

For two memory operationsmX ,mY in the dSets of peersnA, nB , S.vConf(mX(d),mY (d)) is true if
mX occurs beforemY in S and one of the following conditions holds:

40

1. r-w conflict: mX is a readrX (and not necessarily an external-read) innA’s dSet,mY is a commit-
write wY of nB or

2. w-r conflict:mX is a commit-writewX of nA andmY is a readrY in nB ’s dSet or

3. w-w conflict:mX is a commit-writewX of nA andmY is a commit-writewY of nB.

Based on this conflict definition we can define a class of schedules called asVisible Conflict Preserving
Closed Nested Opacityor VCP-CNO. It is very similar to CP-CNO and differs only in condition 3 of CP-
CNO definition, the conflict implication. It is defined as below:
vConf Implication: if two memory operations inS are in vConf then they are also in vConf inSS. Formally,

〈∀mY ,∀mZ : {mY ,mZ} ⊆ S.evts : (S.vConf(mY ,mZ) ⇒ SS.vConf(mY ,mZ))〉

We denote this equivalence to such a serial schedule as(S ≈vc SS). From the definitions of vConf and
optConf we get that in a given scheduleS, if two memory operationsmX ,mY are in optConf then they
are also in vConf i.e.S.optConf(mY ,mZ) ⇒ S.vConf(mY ,mZ). From this one can prove that if any
scheduleS is in VCP-CNO then it is also in CP-CNO i.e.(S ∈ VCP-CNO) ⇒ (S ∈ CP-CNO). But the
class VCP-CNO is not as generic as CP-CNO. There are some schedules which are in CP-CNO but not in
VCP-CNO. The following example illustrates it.

Example 8 Computation Tree:
t0 : {tinit, t01, t02, t03, tfin},
t01 : {r011(x), w012(y), c01},
t02 : {r021(d), w022(x), w023(y), c02},
t03 : {t031, t032, sm033 = w033(z), c03},
t031 : {sm0311 = r0311(z), sm0312 = w0312(y), c031},
t032 : {sm0321 = r0321(y), sm0322(x) = w0322(x), c032}
Schedule:
S10 : r011(x)r021(d)w012(y)r0311(z)w

01
012(y)c01w0312(y)w

0312
031 (y)c031w022(x)r0321(y)w0322(x)w

0322
032 (x)

c032w023(y)w
022
02 (x)w023

02 (y)c02w033(z)w
031
03 (y)w032

03 (x)w033
03 (z)c03

The corresponding computation tree is shown in Figure 13. The lastWrites for all the reads in the above
example are:
{r011(x) : winit(x), r021(d) : winit(d), r0311(z) : winit(z), r0321(y) : w

0312
031 (y)}

The set of all optConfs in the above example:
{(r011(x), w

022
02 (x)), (r011(x), w

032
03 (x)), (r0311(z), w033(z)), (w

022
02 (x), w032

03 (x)), (w0312
031 (y), r0321(y)),

(w012
01 (y), w023

02 (y)), (w012
01 (y), w031

03 (y)), (w023
02 (y), w031

03 (y))}

The set of all vConfs in the above example:
{(r011(x), w

022
02 (x)), (r011(x), w

032
03 (x)), (r0311(z), w033(z)), (w

022
02 (x), w032

03 (x)), (w0312
031 (y), r0321(y)),

(w012
01 (y), w023

02 (y)), (w012
01 (y), w031

03 (y)), (w023
02 (y), w031

03 (y)), (w012
01 (y), r0321(y)), (r0321(y), w

023
02 (y))}

We have underlined the extra conflicts in this example. We didnot mention the conflicts caused bytinit
andtfin in the above conflicts. We discussed the optConfGraphCons algorithm in the previous section to
verify if a given scheduleS is in CP-CNO or not. This algorithm can be easily adapted to verify if the
scheduleS is in VCP-CNO or not. This algorithm differs only in the way conflict edges are added. We
add a conflict edge when two memory operations are in vConf instead of optConf. We call this algorithm
vGraphCons algorithm.

41

r0321(y)

t032

tfin

c02

t0

tinit t01

r011(x)

c01

r021(d)
w012(y)

t02
t03

r0311(z) w0312(y)

c031

t031

c03

w022(x) w023(y)
w033(z)

w0322(x)

c032

Figure 13: The computation tree for Example 8

Using optConfGraphCons algorithm and vGraphCons algorithm we generate the serialization graphs
based on both these conflicts. The graphs are shown in Figure 14. The graphs show that the scheduleS10 is
in CP-CNO but not in VCP-CNO. As one can see from the conflict sets, r0321(y) andw023

02 (y) are in vConf
but not in optConf. They cause the cycle betweenn03 andn02 in the graph of VCP-CNO. This shows that
VCP-CNO is a proper subset of CP-CNO. The optConf equivalentserial schedule is:
r011(x)w012(y)w

01
012(y)c01r021(d)w022(x)w023(y)w

022
02 (x)w023

02 (y)c02r0311(z)w0312(y)w
0312
031 (y)c031r0321(y)

w0322(x)w
0322
032 (x)c032w033(z)w

031
03 (y)w032

03 (x)w033
03 (z)c03

5.2 Schedule Partial Order

The second condition in the definitions of the classes CNO andASC is schedule-partial-order. This con-
dition specifies that for any two peer nodes (transactions orsimple-memory operation), saynY , nZ , in the
scheduleS such thatnY executes beforenZ then in the corresponding serial scheduleSS, nY executes
beforenZ as well. But for some nested STM systems this may not be sufficient. The application that gener-
ates the transactions might dictate the STM to be more strict. These systems might want that the condition
schedule-partial-order to be modified such that if any nodenY occurs before any other transactionnZ in S,
then inSS alsonY occurs beforenZ . That is, the nodesnY andnZ need not be peers but any arbitrary
nodes. Thus the condition 2 of CNO can restated as follows:
schedule-partial-order Equivalence: For any two nodesnX , nY in the computation tree represented byS if
nY occurs beforenZ in S thennY occurs beforenZ in SS as well. Formally,
〈S : {nY , nZ} ∈ S.nodes : (nY <S nZ) ⇒ (nY <SS nZ)〉

This modification can be made to the definitions of CP-CNO and CP-ASC. To accommodate this change
in the graph construction optConfGraphCons algorithm, we modify the way completion edges are added.
Consider the nodesnY , nZ in S for which (nY <S nZ). Let tP be a transaction such that it is the least
common ancestor ofnY , nZ , i.e.,S.lca(nY , nZ) = tP . SincenY occured beforenZ in S, nY cannot be a

42

n032n031

optConf

Graph based on

n032n031

Graph based on
vConf

n01

n03

n02

n01

n03

n02

Figure 14: These are the serialization graphs based on optConf and vConf for the schedule in Exam-
ple 8

ancestor ofnZ nor the vice-versa. HencetP cannot be the same asnY or nZ but an ancestor to both. Thus
tP will have two childrennR andnT such thatnY is inS.dSet(nR) andnZ is in T.dSet(nQ). Next we add
a completion edge fromnR to nT in the graph. Then we check for acyclicity of the resulting graph. If the
graph is acyclic then in the resultant scheduleRS generated,nY will be beforenZ i.e. nY <RS nZ .

6 Conclusion

Composing simple transactions to build larger transactionsystems is extremely useful property which forms
the basis of modular programming. In STMs this can be achieved through nesting of transactions. There
have been many implementations of nested transactions in the past few years. But none of them provide
a precise and efficient formulation of the guarantees that a nested software transactional memory system
should provide.

Concurrent executions of transactions in Transactional Memory are expected to ensure that aborted
transactions also, as the committed ones, read consistent values. In addition, the property that aborted trans-
actions should not affect the consistency for the other transactions following it is desirable. Incorporating
these simple-sounding criteria has been non-trivial even for non-nested transactions as can be seen in recent
publications [5, 9, 3].

In this paper, we have considered these requirements for closed nested transactions. We have also
defined new conflict-preserving classes that allow polynomial membership test, by means of constructing
conflict-graphs and checking acyclicity. Further, the conflict preserving classes have resulted in the elegant
design of a scheduler. The conflict-graph has separate components for each (parent) sub-transaction. Each
component can be maintained at a different site (process executing the sub-transaction) autonomously and
the checking can be done in a distributed manner.

We have chosen a novel representation of schedules, namely,adding commit-writes, that facilitates easy
association of lastWrites for the read operations. We believe that this representation will be useful for dealing
with commit-pending transactions also. Our future work includes the study of how the above two properties

43

manifest in executions with open nested transactions and with non-transactional steps.

References

[1] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in transactional memory. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, pages 163–174, New York, NY, USA, 2008. ACM.

[2] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory models for open-nested transactions.
In MSPC ’06: Proceedings of the 2006 workshop on Memory system performance and correctness,
pages 70–81, New York, NY, USA, 2006. ACM.

[3] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Towards Formally Specifying
and Verifying Transactional Memory. InREFINE, 2009.

[4] Rachid Guerraoui, Thomas Henzinger, and Vasu Singh. Permissiveness in transactional memories. In
DISC ’08: Proc. 22nd International Symposium on Distributed Computing, pages 305–319, sep 2008.
Springer-Verlag Lecture Notes in Computer Science volume 5218.

[5] Rachid Guerraoui and Michal Kapalka. On the correctnessof transactional memory. InPPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principlesand practice of parallel program-
ming, pages 175–184, New York, NY, USA, 2008. ACM.

[6] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Composable memory transac-
tions. InPPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium onPrinciples and practice
of parallel programming, pages 48–60, New York, NY, USA, 2005. ACM.

[7] Maurice Herlihy and J. Eliot B.Moss. Transactional memory: architectural support for lock-free data
structures.SIGARCH Comput. Archit. News, 21(2):289–300, 1993.

[8] Damien Imbs, José Ramon de Mendivil, and Michel Raynal.Brief announcement: virtual world con-
sistency: a new condition for STM systems. InPODC ’09: Proceedings of the 28th ACM symposium
on Principles of distributed computing, pages 280–281, New York, NY, USA, 2009. ACM.

[9] Damien Imbs and Michel Raynal. A lock-based stm protocolthat satisfies opacity and progressive-
ness. InOPODIS ’08: Proceedings of the 12th International Conference on Principles of Distributed
Systems, pages 226–245, Berlin, Heidelberg, 2008. Springer-Verlag.

[10] J.E.B.Moss. Open Nested Transactions: Semantics and Support.In Workshop on Memory Performance
Issues, 2006.

[11] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit,
Michael M. Swift, and David A. Wood. Supporting nested transactional memory in logtm. InASPLOS-
XII: Proceedings of the 12th international conference on Architectural support for programming lan-
guages and operating systems, pages 359–370, New York, NY, USA, 2006. ACM.

[12] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: model and architecture
sketches.Sci. Comput. Program., 63(2):186–201, 2006.

44

[13] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L. Hudson, J. Eliot B.
Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting in software transactional memory. InPPoPP
’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pages 68–78, New York, NY, USA, 2007. ACM.

[14] Christos H. Papadimitriou. The serializability of concurrent database updates.J. ACM, 26(4):631–653,
1979.

[15] Sathya Peri and K.Vidyasankar. An efficient scheduler for closed nested transactions that satisfies all-
read-consistency and non-interference. In13th International Conference on Distributed Computing
and Networking, Hongkong, China, 2012.

[16] R. F. Resende and A. El Abbadi. On the serializability theorem for nested transactions.Inf. Process.
Lett., 50(4):177–183, 1994.

[17] Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing, pages 204–213, New York,
NY, USA, 1995. ACM.

[18] K. Vidyasankar. Generalized theory of serializability. Acta Inf., 24(1):105–109, 1987.

[19] Gerhard Weikum and Gottfried Vossen.Transactional Information Systems: Theory, Algorithms, and
the Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

45

