Wait-Free Updates and Range Search using Uruv

Gaurav Bhardwaj, Bapi Chatterjee, Abhay Jain, Sathya Peri

SSS 2023

Sathya Peri URUV

Table of Contents

© Motivation

o B+ tree is a balanced tree data structure that maintains sorted data
and allows searches, insertions, deletions, and sequential access in
logarithmic time.

Types of Nodes:

o Internal Nodes.
o Leaf Nodes.

o In an m-ordered B+Tree each node contains between [m/2] - 1 to m
- 1 keys except root.

Similarly each internal node must contains at-least [m/2] children.

All the keys must be in the ascending order.

All actual keys are stored at the leaf nodes.

Sathya Peri URUV 3/50

B-+Tree (Example)

Child 25 f------- Root
Pointer "~~<_
Int | Sibling Pointer
1 5 ________ nternal _ _ _____ 35 45 ,’
Nodes N

5 [>{ 15120 || 25 | 30 [35 | 40 |>| 45 | 55

L J
RS
Leaf
Nodes
Figure: B+Tree
Sathya Peri URUV 4 /50

Insertion and Split

o Insertion finds the leaf node where a key should be located, and splits
full nodes as necessary to allow new elements to be inserted.

o Split- Starts at a full leaf node where a new element should be
placed, and propagates up the tree.

Sathya Peri URUV 5/50

Insertion and Split
Node is Full
Split!!
12 3[8]e]9]

L] prel prel prel

| | |—>| 3 8 | 9 | plit propagates upwards through
fuII nodes.
ode is Full
ln -
9
AE ;

Reached Leaf Node
[P13l prel prefre

(J
Figure: Insertion and Split Illlll

Insert 12 318

Sathya Peri URUV 6 /50

o Similar to insertion but bit more complicated.

o Instead of split merge is performed in order to balance the tree.

Sathya Peri URUV 7/50

raverse Down to leaf,
Node
Delete 3

Delete 3

Delete 3 Jl

L] el Plofre]

Figure: Deletion and Merge

Sathya Peri URUV 8/50

B-+Tree (Benefits)

Efficient Searching and Retrieval.

Range Queries.

Sequential Access.

Easy to Balance.
o Stable Performance.
o Widely Used in Databases.

(1]

Sathya Peri URUV 9/50

Concurrency

o In modern applications, the ability to handle concurrent operations is
crucial, especially in databases processing large volumes of data
simultaneously.

o Concurrent B+Trees are essential for real-time systems where data
consistency and responsiveness are paramount.

o Without proper synchronization, concurrent access can lead to race
conditions, jeopardizing data integrity.

o Inadequate concurrency control might cause deadlocks, halting
system operations and causing delays.

Sathya Peri URUV 10 /50

Correctness

o The ADT operations implemented by the data structure are
represented by their invocation and return steps.

o For an arbitrary concurrent execution of a set of ADT operations
should satisfy the consistency framework linearizability.

@ Assign an atomic step as a linearization point (LP) inside the
execution interval of each of the operations and show that the data
structure invariants are maintained across the LPs.

@ An arbitrary concurrent execution is equivalent to a valid sequential
execution obtained by ordering the operations by their LPs.

Sathya Peri URUV 11 /50

Linearizability Example

[T1I : Insert(K1, V1)]
[T2I : Insert(Ks, Vs)]
|— T3I : Contains(K;) = V4 —|
L i

Figure: Linearizability Example

(1]

Sathya Peri URUV 12 /50

Progress Condition: Avoiding Locks

o Deadlock Avoidance is hard.

o A low-priority process may hold the lock on a resource desired by a
high-priority process.

@ Only few percentage of process can access the critical section at a
time hampers the performance.

Sathya Peri URUV 13 /50

Non-Blocking Progress Condition

An execution is said to be Non-Blocking if it doesn't blocks the execution
of other threads.

o Obstruction Free: A thread is guaranteed to finish in a finite
number of steps in isolation.

o Lock-Freedom: Atleast one thread should be able to finish in the
finite number of steps.

o Wait-Freedom: All threads should be able to finish in a finite
number of steps.

Sathya Peri URUV 14 /50

Problem Statement

Develop a state of the art Wait-Free Concurrent B+Tree based
datastructure which supports consistent Range Queries.

Sathya Peri URUV 15 /50

ADT operations

An INSERT(K, V) inserts the key K and an associated value V if
K ¢ K.

A DELETE(K) deletes the key K and its associated value if K € K.
A SEARCH(K) returns the associated value of key K if K € K;
otherwise, it returns —1. It does not modify (K, V).

A RANGEQUERY(K1, K») returns keys {K € K : Ki<K<K>}, and
associated values without modifying (K, V); if no such key exists, it
returns —1.

Sathya Peri URUV 16 /50

Proactive Approach:

o If the number of keys in a node exceeds/falls short of its
maximum/minimum threshold after an insertion/deletion, it requires
splitting/merging.

o Splitting/Merging may cascade to the root.

o Proactive Approach: checks threshold of nodes whiles traversing
down a tree every time; if a node is found to have reached its
threshold, without waiting for its children, a preemptive split or merge
is performed.

Sathya Peri URUV 17 /50

Table of Contents

© Related Work

Related Work

o Lock-Free B+Tree?: Each node implements a linked list augmented
by an array.

o OpenBWstree® an optimized lock-free B+tree that was designed to
achieve high performance under realistic workloads.

o Bundeled Reference®: A lock-based approach using versions for
wait-free range search.

o Constant time snapshot?: A lock-free approach using versions for
wait-free range search.

®Anastasia Braginsky and Erez Petrank (2012). “A lock-free B4 tree”.

bZiqi Wang et al. (2018). “Building a bw-tree takes more than just buzz words” .

€Jacob Nelson, Ahmed Hassan, and Roberto Palmieri (2021). “Bundled references:

an abstraction for highly-concurrent linearizable range queries”.

4Yuanhao Wei et al. (2021). “Constant-time snapshots with applications to
concurrent data structures”. .
Sathya Peri URUV 19/ 50

o No existing approach supports proactive ADT operations, which leads
to the cascading effect. This cascading effect leads to the
performance hamper in concurrent settings.

o No existing tree-based structure supports the consistent range search.

o No wait-free tree-based data structure exists in the literature.

Sathya Peri URUV 20 /50

Our Contributions

o We have developed a Wait-Free Concurrent B+4Tree based data
structure using Proactive approach.

o Our implementation supports wait-free consistent ranngequery.

(1]

Sathya Peri URUV 21/50

Table of Contents

© URUV

URUV Datastructure Design

Search 63 root

50 | 137 | 243

Internal
Nodes

3 17 | 43 65 | 93 | 113 171 | 195 267 | 291 | 397

Leaf § *m | g 5 | [] | B = |

Nodes linear search

-

Figure: Example of Uruv's design. In this example, a search operation is being performed
wherein the green arrows indicate a traversal down Uruv, and we find the key, highlighted gredh
in the linked-list via a linear search. II.ll

et

Sathya Peri URUV 23 /50

URUV Datastructure Design

o We are using versioned linked list at leaf nodes for the consistent

rangesearch.

@ For each node in the linked list there is pointer to the version list.

o each node (vnode) in the version list contains the value for the
corresponding key aand the timestamp (ts).

o Each item the value for the corresponding key changes is been
updated on the head of the version list along with the timestamp.

{next}
3

‘ head }—){ K1

H tail |

I | ¥ v
(Vhead} [V4] [V3 V3]
R | ¥ v
{Vnext} [V3] [V2 V2]
v v v
(v] [vi)

Figure: Versioned Linked List
URUV

Sathya Peri

24 /50

Vnode{ 11Node { VLF.LL{

value_t wvalue; key-t key;
int ts; Vnode* vhead; 11Node* head;
Vnodex nextv; lINode* next;

} } }

Figure: Versioned Lock-Free Linked-List Data Structure

Uruv{
int global_ts; LeafNode: Node{ Node{
Nodes* root; VLF_LL* ver_head; long count;
LeafNodes next: bool isLeaf;
InternalNode: Node{ LeafNodex newNext: bool frozen:
long key [MAX] int ts
Nodes ptr [MAX+1] }
helpidx

Figure: URUV detailed structure

e

Sathya Peri URUV

Tree Insert(126)

Root Node
100 [200
60 | 80 120 (150 210 | 220
105 (106 122 1124 1130 155 {160 (170
) Leaf Node
Node is Full!! 124131125

Sathya Peri

Figure: URUV Tree Traversal

URUV

26 / 50

Freeze Internal

o Internal Node is frozen by marking the each child pointer one by one.

Root Node
Node Frozen
100 [200
60 | 80 120 | 150 210 | 220
105 (106 122 1124 {130 155 (160 | 170

Leaf Node

124—)!E|

Figure: Freezing Parent Node
Sathya Peri URUV 27 /50

Freeze Internal

@ Once a node is frozen then no thread can do changes to that node.

o If any thread finds any node frozen or undergoing freezing then that
thread helps in freezing and performing split/merge operation.

Root Node
100 (200
60 | 80 120 | 150 210 | 220
\ 2 —
105 | 106 122 | 124 1 130 155 | 160 | 170

Node Frozen

[ITI] =

Leaf Node

Leaf Node
[zpot] | ([

) [

Leaf Node
ERm

Sathya Peri

Figure: Freezing Leaf Node

URUV

28 /50

Split Internal

@ Once the node to be split and its parents are frozen we can perform
the split operation.

o We create the new parent node and the splitted node and replace
with the current pointer using CAS.

Root Node

|105|106| | ‘122‘124[130‘ |155|160|170| |105|105| | |122| | | |130| | |155|160|170|

Leat Node, Leaf Node

Leaf Node Lm‘md{ \ Leaf Node_ Leaf Node Leaf Node_ Leaf Node_
FER) FE) ER) B ERE) ERE) (=R

Figure: Splitting Internal Node

Sathya Peri URUV 29 /50

Split Leaf

o After traversing down to leaf node if the leaf node is full we split the

leaf node.
prev
50 137 | 243
7
{pidx}
65 93 | 113 171 | 195 267 | 291 | 397

Leaf Node is Full

child

Figure: Split Leaf
Sathya Peri URUV 30/50

Split Leaf

o Just like internal node parent of the leaf node to be splitted is frozen.

65

93

113

Sathya Peri

prev

50

137

243

195

267

291

397

child

Node Frozen

Figure: Split Leaf

URUV

e e

31/50

Split Leaf

o After freezing the parent node leaf node is also frozen.
o Leaf node is frozen by marking the next pointer of the linked list node
and the head of the version list.

prev
50 [137 | 243
‘_,7
Y
{pidx}
65 93 | 113 171 | 195 267 | 291 | 397

Node Frozen
@

Sathya Peri URUV 32/50

Figure: Split Leaf

Split Leaf

o After freezing the leaf node it is splitted into two parts.

o After splitting the leaf node a new parent node is created containing
the new splitted nodes are replaced with the current one using CAS

prev
50 137 | 243
7
A 4 S 3
(pidx) >
65 93 113 171 | 195 newNode 151 171 | 195
ERGRGRD

Figure: Split Leaf

Sathya Peri URUV 33/50

Merge Leaf

o Merge Leaf is similar to the split leaf where we merge two leaf nodes
instead of split.

prev

50 | 137 | 243

{pidx}

65 93 | 113 S 267 | 291 | 397

curr | 151 | 171 | 195 newNode | 171 | 195

139 151 child

J
Figure: Merge Leaf Illlll

Sathya Peri URUV 34 /50

Insert Leaf

o After Traversing down to the leaf node we add the key to the linked
list if it is not present.

[Insert(30, 10) Global_ts =7]
{next}
head > 10 > 20 > 40 tail
P A y
s G5)
\ y

{Vnex{:;

Sathya Peri URUV 35 /50

Insert Leaf

o Intially after inserting the node to the linked list ts of vnode at vhead
is -1.

o which is later initialise with the global_ts.

[Insert(30, 10) Global_ts = 7]
{next}
T N N e N e N o
{Vhead} 5 [10 B] [3 4 J
(Vnext—:i-.

Sathya Peri URUV 36 /50

Insert Leaf

[Insert(30, 10) Global_ts = 7]
{next}
| head H 10 H 20 l—)| 30 |—)| 40 H tail ‘
{Vhead} 5 [10 | 7] [s | 4]
(Vnexi—:;—

Sathya Peri URUV 37/50

Insert Leaf

o If the key is already there in the linked list we will add a new version
node on the vhead of the linked list node with the current timestamp.

[Insert(30, 5) Global_ts =9]

{next}

| head H 10 H 20 l—)| 30 |—)| 40 H tail ‘

(Vhea&;

(Vnexi—:;

Sathya Peri URUV 38/50

Insert Leaf

[Insert(30, 5) Global_ts =9]

{next}

|head }—)J——’—m H 20 |—)| 30 |—)| 40 l—)l tail‘
(Vheaé;——"——+ (5[5 (s1+) (c1+)

y

(73] [(w][7]) (3]1]

Sathya Peri URUV 39/50

Insert Leaf

[Insert(30, 5) Global_ts = 9]

{next}

| head }—).|.——'—10 H 20 l—)| 30 |—)| 40 l—)l tail ‘
«Vhe,ai"—* BRI (5% (5[%)

y

Range Search

o Rangesearch operation fetch the global_ts and increment it by 1.
o It is linearized when it fetches the global_ts.

o It collects all the methods whose timestamp is lower or equal them
the timestamp of RangeSearch.

Global_ts =10
[RangeSearch(10,50) ts=6]
{next}
| head H 10 H 20 |—>| 30 |—>| 40 l_)l tail ‘
(Vhead) (s]9] [(8]s8]
{Vnext}

(73) [(10]7]

Sathya Peri URUV 41/50

Wait-freedom is achieved using fast-path-slow-path method®.

Wait-free operation starts exactly as the lock-free algorithm. [Fast-
Path]

o If a thread cannot complete its operation even after several attempts,
it enters the slow path by announcing that it would need help.

o Global stateArray is maintained to keep track of the operations that
every thread currently needs help with.

@ In the slow path, an operation first publishes a State object
containing all the information required to help complete its operation.

®Shahar Timnat et al. (2012). “Wait-Free Linked-Lists". s
Sathya Peri Y 42 /50

Wait-Freedom

State* stateArray[totalThreads] class Statef
long phase:
class HelpRecord{ bool finished:
long currTid: Vnodes vnode;
long lastPhase; long key:
long nextCheck; long wvalue:
} 1lINode= searchNode
}

Figure: Data structures used in wait-free helping

et

Sathya Peri 43 /50

Table of Contents

e Result

o We have compared the lock-free as well as the wait-free version of our
implementation (URUV) with its counter parts such as LF_B+Treef
and Open_BwTree? for the update operation.

o For Rangesearch we have compared URUV with VCAS-BST".

fAnastasia Braginsky and Erez Petrank (2012). “A lock-free B+ tree”. I
Proceedings of SPAA, pp. 58-67.

€Ziqi Wang et al. (2018). "Building a bw-tree takes more than just buzz words". g
Proceedings of the 2018 International Conference on Management of Data, pp. 473*“"“

PYuanhao Wei et al. (2021). “Constant-time snapshots with applications to -

concurrent data structures”. [n: PPOPE 2021 pp. 2140,
Sathya Peri URUV 45 /50

|

BN LF B+TRee WM Open_BWTREE N LF-URUV Il WF-URUVI

lI-
reads
)

60 80 1 20 60 80 ° 1T 20 ¢
Th

5
B
5

5 oE
9

Throughput (MOPS)
6 N & o & B
i
i
i
1
Throughput (MOPS)
o N & o » b
L
1
E——
—
]
Throughput (MOPS)
v e e

4 60

C

Figure: The performance of Uruv when compared to LF_B+Tree and Open_BwTree. Higher is

better. The workload distributions are (a) Reads - 100% (b) Reads - 95%, Updates - 5%, and
(c) Reads - 50%, Updates - 50%
(J

46 /50

Sathya Peri URUV

Em VCAS-BST W LF-URULV mm WF-URUV]

°° 7T 2040 |!|l
Threads
(c)
(f)

Figure: The performance of Uruv when compared to VCAS-BST. The workload distributions
are (a) Reads - 94%, Updates - 5%, Range Queries of size 1K - 1%, (b) Reads - 90%, Updates -
5%, Range Queries of size 1K - 5%, (c) Reads - 85%, Updates - 5%, Range Queries of size 1
10%, (d) Reads - 49%, Updates - 50%, Range Queries of size 1K - 1%, (e) Reads - 45%,
Updates - 50%, Range Queries of size 1K - 5%, and (f) Reads - 40%, Updates - 50%, RanJllll
Queries of size 1K - 10%

Throughput (MOPS)
B

Throughput (MOPS)
Throughput (MOPS)

&

Thmnghpnt (MOPS)

Throughput (MOPS)
Throughput (MOPS)

Sathya Peri URUV 47 /50

Table of Contents

© Conclusion

Conclusion

o URUV is the first wait-free tree-based concurrent data structure.

o URUV proposed the first concurrent wait-free solution for proactive
self-balancing trees.

@ URUYV is the fastest wait-free tree-based data structure with
consistent range queries.

Sathya Peri URUV 49 /50

Questions??

	Motivation
	Related Work
	URUV
	Result
	Conclusion

