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o B+ tree is a balanced tree data structure that maintains sorted data
and allows searches, insertions, deletions, and sequential access in
logarithmic time.

Types of Nodes:

o Internal Nodes.
o Leaf Nodes.

o In an m-ordered B+Tree each node contains between [m/2] - 1 to m
- 1 keys except root.

Similarly each internal node must contains at-least [m/2] children.

All the keys must be in the ascending order.

All actual keys are stored at the leaf nodes.
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B-+Tree (Example)

Child 25 f------- Root
Pointer  "~~<_
Int | Sibling Pointer
1 5 ________ nternal _ _ _____ 35 45 ,’
Nodes N

5 [>{ 15120 || 25 | 30 [ 35 | 40 |>| 45 | 55

L J
RS
Leaf
Nodes
Figure: B+Tree
Sathya Peri URUV 4 /50



Insertion and Split

o Insertion finds the leaf node where a key should be located, and splits
full nodes as necessary to allow new elements to be inserted.

o Split- Starts at a full leaf node where a new element should be
placed, and propagates up the tree.
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o Similar to insertion but bit more complicated.

o Instead of split merge is performed in order to balance the tree.
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B-+Tree (Benefits)

Efficient Searching and Retrieval.

Range Queries.

Sequential Access.

Easy to Balance.
o Stable Performance.
o Widely Used in Databases.

(1]
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Concurrency

o In modern applications, the ability to handle concurrent operations is
crucial, especially in databases processing large volumes of data
simultaneously.

o Concurrent B+Trees are essential for real-time systems where data
consistency and responsiveness are paramount.

o Without proper synchronization, concurrent access can lead to race
conditions, jeopardizing data integrity.

o Inadequate concurrency control might cause deadlocks, halting
system operations and causing delays.
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Correctness

o The ADT operations implemented by the data structure are
represented by their invocation and return steps.

o For an arbitrary concurrent execution of a set of ADT operations
should satisfy the consistency framework linearizability.

@ Assign an atomic step as a linearization point (LP) inside the
execution interval of each of the operations and show that the data
structure invariants are maintained across the LPs.

@ An arbitrary concurrent execution is equivalent to a valid sequential
execution obtained by ordering the operations by their LPs.
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Linearizability Example

[ T1I : Insert(K1, V1) ]
[ T2I : Insert(Ks, Vs) ]
|— T3I : Contains(K;) = V4 —|
L i

Figure: Linearizability Example
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Progress Condition: Avoiding Locks

o Deadlock Avoidance is hard.

o A low-priority process may hold the lock on a resource desired by a
high-priority process.

@ Only few percentage of process can access the critical section at a
time hampers the performance.
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Non-Blocking Progress Condition

An execution is said to be Non-Blocking if it doesn't blocks the execution
of other threads.

o Obstruction Free: A thread is guaranteed to finish in a finite
number of steps in isolation.

o Lock-Freedom: Atleast one thread should be able to finish in the
finite number of steps.

o Wait-Freedom: All threads should be able to finish in a finite
number of steps.
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Problem Statement

Develop a state of the art Wait-Free Concurrent B+Tree based
datastructure which supports consistent Range Queries.
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ADT operations

An INSERT(K, V) inserts the key K and an associated value V if
K ¢ K.

A DELETE(K) deletes the key K and its associated value if K € K.
A SEARCH(K) returns the associated value of key K if K € K;
otherwise, it returns —1. It does not modify (K, V).

A RANGEQUERY(K1, K») returns keys {K € K : Ki<K<K>}, and
associated values without modifying (K, V); if no such key exists, it
returns —1.
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Proactive Approach:

o If the number of keys in a node exceeds/falls short of its
maximum/minimum threshold after an insertion/deletion, it requires
splitting/merging.

o Splitting/Merging may cascade to the root.

o Proactive Approach: checks threshold of nodes whiles traversing
down a tree every time; if a node is found to have reached its
threshold, without waiting for its children, a preemptive split or merge
is performed.
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Related Work

o Lock-Free B+Tree?: Each node implements a linked list augmented
by an array.

o OpenBWstree® an optimized lock-free B+tree that was designed to
achieve high performance under realistic workloads.

o Bundeled Reference®: A lock-based approach using versions for
wait-free range search.

o Constant time snapshot?: A lock-free approach using versions for
wait-free range search.

®Anastasia Braginsky and Erez Petrank (2012). “A lock-free B4 tree”.

bZiqi Wang et al. (2018). “Building a bw-tree takes more than just buzz words” .

€Jacob Nelson, Ahmed Hassan, and Roberto Palmieri (2021). “Bundled references:

an abstraction for highly-concurrent linearizable range queries”.

4Yuanhao Wei et al. (2021). “Constant-time snapshots with applications to
concurrent data structures”. .
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o No existing approach supports proactive ADT operations, which leads
to the cascading effect. This cascading effect leads to the
performance hamper in concurrent settings.

o No existing tree-based structure supports the consistent range search.

o No wait-free tree-based data structure exists in the literature.

Sathya Peri URUV 20 /50



Our Contributions

o We have developed a Wait-Free Concurrent B+4Tree based data
structure using Proactive approach.

o Our implementation supports wait-free consistent ranngequery.

(1]
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URUV Datastructure Design
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Figure: Example of Uruv's design. In this example, a search operation is being performed
wherein the green arrows indicate a traversal down Uruv, and we find the key, highlighted gredh
in the linked-list via a linear search. II.ll
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URUV Datastructure Design

o We are using versioned linked list at leaf nodes for the consistent

rangesearch.

@ For each node in the linked list there is pointer to the version list.

o each node (vnode) in the version list contains the value for the
corresponding key aand the timestamp (ts).

o Each item the value for the corresponding key changes is been
updated on the head of the version list along with the timestamp.

{next}
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‘ head }—){ K1
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I | ¥ v
(Vhead} [ V4 ] [ V3 V3 ]
R | ¥ v
{Vnext} [ V3 ] [ V2 V2 ]
v v v
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Figure: Versioned Linked List
URUV
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Vnode{ 11Node { VLF.LL{

value_t wvalue; key-t key;
int ts; Vnode* vhead; 11Node* head;
Vnodex nextv; lINode* next;

} } }

Figure: Versioned Lock-Free Linked-List Data Structure

Uruv{
int global_ts; LeafNode: Node{ Node{
Nodes* root; VLF_LL* ver_head; long count;
LeafNodes next: bool isLeaf;
InternalNode: Node{ LeafNodex newNext: bool frozen:
long key [MAX] int ts
Nodes ptr [MAX+1] }
helpidx

Figure: URUV detailed structure
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Tree Insert(126)
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Figure: URUV Tree Traversal
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Freeze Internal

o Internal Node is frozen by marking the each child pointer one by one.

Root Node
Node Frozen
100 [ 200
60 | 80 120 | 150 210 | 220
105 (106 122 1124 {130 155 (160 | 170

Leaf Node

124—)!E|

Figure: Freezing Parent Node
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Freeze Internal

@ Once a node is frozen then no thread can do changes to that node.

o If any thread finds any node frozen or undergoing freezing then that
thread helps in freezing and performing split/merge operation.

Root Node
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Figure: Freezing Leaf Node
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Split Internal

@ Once the node to be split and its parents are frozen we can perform
the split operation.

o We create the new parent node and the splitted node and replace
with the current pointer using CAS.

Root Node

|105|106| | ‘122‘124[130‘ |155|160|170| |105|105| | |122| | | |130| | |155|160|170|

Leat Node, Leaf Node

Leaf Node Lm‘md{ \ Leaf Node_ Leaf Node Leaf Node_ Leaf Node_
FER) FE) ER) B ERE) ERE) (=R

Figure: Splitting Internal Node
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Split Leaf

o After traversing down to leaf node if the leaf node is full we split the

leaf node.
prev
50 137 | 243
7
{pidx}
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Figure: Split Leaf
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Split Leaf

o Just like internal node parent of the leaf node to be splitted is frozen.
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Split Leaf

o After freezing the parent node leaf node is also frozen.
o Leaf node is frozen by marking the next pointer of the linked list node
and the head of the version list.

prev
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Split Leaf

o After freezing the leaf node it is splitted into two parts.

o After splitting the leaf node a new parent node is created containing
the new splitted nodes are replaced with the current one using CAS

prev
50 137 | 243
7
A 4 S 3
(pidx) >
65 93 113 171 | 195 newNode 151 171 | 195
ERGRGRD

Figure: Split Leaf
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Merge Leaf

o Merge Leaf is similar to the split leaf where we merge two leaf nodes
instead of split.

prev

50 | 137 | 243

{pidx}

65 93 | 113 S 267 | 291 | 397

curr | 151 | 171 | 195 newNode | 171 | 195

139 151 child

J
Figure: Merge Leaf Illlll

Sathya Peri URUV 34 /50




Insert Leaf

o After Traversing down to the leaf node we add the key to the linked
list if it is not present.

[ Insert(30, 10) Global_ts =7 ]
{next}
head > 10 > 20 > 40 tail
P A y
s G5 )
\ y

{Vnex{:;
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Insert Leaf

o Intially after inserting the node to the linked list ts of vnode at vhead
is -1.

o which is later initialise with the global_ts.

[ Insert(30, 10) Global_ts = 7]
{next}
T N N e N e N o
{Vhead} 5 [10 B ] [3 4 J
(Vnext—:i-.
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Insert Leaf

[ Insert(30, 10) Global_ts = 7]
{next}
| head H 10 H 20 l—)| 30 |—)| 40 H tail ‘
{Vhead} 5 [ 10 | 7 ] [ s | 4 ]
(Vnexi—:;—
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Insert Leaf

o If the key is already there in the linked list we will add a new version
node on the vhead of the linked list node with the current timestamp.

[ Insert(30, 5) Global_ts =9 ]

{next}

| head H 10 H 20 l—)| 30 |—)| 40 H tail ‘

(Vhea&;

(Vnexi—:;
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Insert Leaf

[ Insert(30, 5) Global_ts =9 ]

{next}

|head }—)J——’—m H 20 |—)| 30 |—)| 40 l—)l tail‘
(Vheaé;——"——+ (5[5 (s1+) (c1+)

y

(73] [(w][7]) (3]1]
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Insert Leaf

[ Insert(30, 5) Global_ts = 9]

{next}

| head }—).|.——'—10 H 20 l—)| 30 |—)| 40 l—)l tail ‘
«Vhe,ai"—* BRI (5% (5[%)
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Range Search

o Rangesearch operation fetch the global_ts and increment it by 1.
o It is linearized when it fetches the global_ts.

o It collects all the methods whose timestamp is lower or equal them
the timestamp of RangeSearch.

Global_ts =10
[ RangeSearch(10,50) ts=6 ]
{next}
| head H 10 H 20 |—>| 30 |—>| 40 l_)l tail ‘
(Vhead) (s ]9 ] [(8]s8]
{Vnext}

(73 ) [(10]7]
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Wait-freedom is achieved using fast-path-slow-path method®.

Wait-free operation starts exactly as the lock-free algorithm. [Fast-
Path]

o If a thread cannot complete its operation even after several attempts,
it enters the slow path by announcing that it would need help.

o Global stateArray is maintained to keep track of the operations that
every thread currently needs help with.

@ In the slow path, an operation first publishes a State object
containing all the information required to help complete its operation.

®Shahar Timnat et al. (2012). “Wait-Free Linked-Lists". s
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Wait-Freedom

State* stateArray[totalThreads] class Statef
long phase:
class HelpRecord{ bool finished:
long currTid: Vnodes vnode;
long lastPhase; long key:
long nextCheck; long wvalue:
} 1lINode= searchNode
}

Figure: Data structures used in wait-free helping
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o We have compared the lock-free as well as the wait-free version of our
implementation (URUV) with its counter parts such as LF_B+Treef
and Open_BwTree? for the update operation.

o For Rangesearch we have compared URUV with VCAS-BST".

fAnastasia Braginsky and Erez Petrank (2012). “A lock-free B+ tree”. I
Proceedings of SPAA, pp. 58-67.

€Ziqi Wang et al. (2018). "Building a bw-tree takes more than just buzz words". g
Proceedings of the 2018 International Conference on Management of Data, pp. 473*“"“

PYuanhao Wei et al. (2021). “Constant-time snapshots with applications to -

concurrent data structures”. [n: PPOPE 2021 pp. 2140,
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better. The workload distributions are (a) Reads - 100% (b) Reads - 95%, Updates - 5%, and
(c) Reads - 50%, Updates - 50%
(J

46 /50

Sathya Peri URUV



Em VCAS-BST W LF-URULV  mm WF-URUV]

°° 7T 2040 |!|l
Threads
(c)
(f)

Figure: The performance of Uruv when compared to VCAS-BST. The workload distributions
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Conclusion

o URUV is the first wait-free tree-based concurrent data structure.

o URUV proposed the first concurrent wait-free solution for proactive
self-balancing trees.

@ URUYV is the fastest wait-free tree-based data structure with
consistent range queries.
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